Embedded Systems

Exercise 6: Scheduling and Marked Graphs

18 May 2016

Georgia Giannopoulou
(email: ggeorgia@tik.ee.ethz.com)

Office: ETZ G77
Scheduling – problem

Given:
- Sequence graph
- Operations of different types
- Allocated a limited number of resource units
- Operations possibly mapped to different resource units
- Operations may have different execution times

Problem:
- Starting times of operations?
Scheduling – definitions

sequence graph

\[\tau(v_{\text{nop1}}) = 0 \]

\[\tau(v_{\text{nop2}}) - \tau(v_{\text{nop1}}) \]

\[\tau(v_{\text{nop2}}) = n \]

operations

Start time of execution

\[\tau(v_i) = t \]
Scheduling – unlimited resources, operation execution time = 1

time 0

X

X

-

time 1

+

time 2

<

time 3

nop

latency = 3
Timing Constraints

- data dependencies & computation time

If multiplication takes 2 time units:

\[\tau(v_2) \geq \tau(v_1) + 2 \quad \text{(Linear constraint)} \]
Question 1

• Given a sequence graph
• One resource type for all operations
• Execution time of each operation = 1

• Formulate a *linear optimization problem* for finding the starting times of the operations that minimize the latency L
Linear Optimization Problem

• Find variables \(x \) that:

\[
\begin{align*}
\text{maximize} & \quad c^T x \\
\text{subject to} & \quad A x \leq b \\
\text{and} & \quad x \geq 0
\end{align*}
\]

Objective function
Linear constraints
Non-negative variables

• Example: Find variables \(x_1, x_2 \) that:

\[
\begin{align*}
\text{maximize} & \quad 2 \cdot x_1 - x_2 \\
\text{subject to} & \quad x_1 - x_2 \leq 1 \\
& \quad -2 \cdot x_1 + 2 \cdot x_2 \leq -3 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]
Question 1

• Define non-negative variables $\tau(v_x)$
• Setup the linear inequalities for the starting times
 – Form: $\tau(v_3) \geq \tau(v_1) + 1$
• Determine the objective function
 – Minimization of latency L

• Determine the minimum latencies for the graph under the two resource assumptions
 – Only 1 resource unit allocated
 – Unlimited number of resource units allocated
Question 1
Question 1 – Solution

\[
\begin{align*}
\tau(v_3) & \geq \tau(v_1) + 1 \\
\tau(v_3) & \geq \tau(v_2) + 1 \\
\tau(v_4) & \geq \tau(v_3) + 1 \\
\tau(v_5) & \geq \tau(v_4) + 1 \\
\tau(v_5) & \geq \tau(v_7) + 1 \\
\tau(v_7) & \geq \tau(v_6) + 1 \\
\tau(v_9) & \geq \tau(v_8) + 1 \\
\tau(v_{11}) & \geq \tau(v_{10}) + 1 \\
\tau(v_1) & \geq \tau(v_0) \\
\tau(v_2) & \geq \tau(v_0) \\
\tau(v_6) & \geq \tau(v_0) \\
\tau(v_8) & \geq \tau(v_0) \\
\tau(v_{10}) & \geq \tau(v_0) \\
\tau(v_n) & \geq \tau(v_5) + 1 \\
\tau(v_n) & \geq \tau(v_9) + 1 \\
\tau(v_n) & \geq \tau(v_{11}) + 1 \\
\end{align*}
\]

Initial condition:
\[\tau(v_0) \geq 0\]

Objective function:
\[\min \tau(v_n) - \tau(v_0)\]
Question 1 – Solution

- Case: Resource constraints from task 1: \(L_{\text{min}} = 11 \)
- Case: Unlimited resources: \(L_{\text{min}} = 4 \)

1 resource: e.g.

\[
\tau(v_1) = 0; \tau(v_2) = 1; \tau(v_3) = 2; \tau(v_4) = 3; \tau(v_6) = 4; \\
\tau(v_7) = 5; \tau(v_5) = 6; \tau(v_8) = 7; \tau(v_9) = 8; \tau(v_{10}) = 9; \\
\tau(v_{11}) = 10; \tau(v_n) = L = 11
\]

Unlimited resources: e.g.
Question 2

• Determine the optimal design configurations (Pareto points) in terms of *minimum cost* (number of allocated resource units) and *minimum latency*
Multi-criteria optimization / Pareto-points

A dominates B
Multi-criteria optimization / Pareto-points

A and C not comparable
Multi-criteria optimization / Pareto-points

Points dominated by C

Pareto-front

Pareto-Points = Points, which are not dominated by others
Dominance, Pareto Points

• A (design) point A is *dominated* by B, iff B is
 – better than A in at least one criterion and
 – not worse than A in all other criteria

• A point is Pareto-optimal or a *Pareto-point* if it is not
dominated.

• The domination relation imposes a partial order on all
design points
 – We are faced with a set of optimal solutions.
Question 2

• Determine the optimal design configurations (Pareto points) in terms of minimum cost (number of allocated resource units) and minimum latency

 – Calculate upper and lower bounds on the cost and upper and lower bounds on the latency

 – **Hint:** For each number of resource units (within the bounds), calculate the minimum latency
Question 2 – Solution

Latency bounds: $4 \leq L \leq 11$
Cost bounds: $1 \leq c \leq 5$
Marked graphs

node (= operation)

token (= data)

FIFO queues

Firing
Question 3

- Describe output of given marked graphs as a function of input, initial tokens, and previous outputs
 \[b(k) = f(a(k), b(...), s) \]

- Hint: Start from the beginning:
 \[b(1) = \ldots \]
 \[b(2) = \ldots \]
 \[\ldots \]
 \[b(n) = \ldots \]
Question 3

• Describe output of given marked graphs as a function of input, initial tokens, and previous outputs
 \[b(k) = f(a(k), b(...), s) \]

\[b(1) = a(1) + s \]

\[b(k) = a(k) + b(k - 1) \quad \text{for} \quad k > 1 \]

with \(s \) being the data value of the initial mark
Question 3 – Solution

\[a) \quad I) \quad b(1) = a(1) + s \]
\[b(k) = a(k) + b(k - 1) \text{ for } k > 1 \]
\[\text{with } s \text{ being the data value of the initial mark} \]

\[II) \quad \text{For } n = 0 \text{ the output sequence is empty.} \]
\[\text{For } n > 0: \]
\[b(k) = a(k) + s_k \text{ for } k \leq n \]
\[b(k) = a(k) + b(k - n) \text{ for } k > n \]
\[\text{with } s_1, \ldots, s_n \text{ being the data values of the initial marks.} \]
b) \[v(1) = 2 \cdot s_2 \cdot (u(1) + s_1) \]
\[v(2) = 2 \cdot v(1) \cdot (u(2) + s_2) \]
\[v(k) = 2 \cdot v(k - 1) \cdot (u(k) + v(k - 2)) \text{ for } k > 2 \]
Question 4

• Find a marked graph for the Fibonacci sequence starting from \(n = 1 \): 1, 1, 2, 3, 5, ...

\[
Fib(n) = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
Fib(n - 1) + Fib(n - 2) & \text{if } n > 1
\end{cases}
\]

Hint: Need to have at least two edges: one with one initial data token, and one with two initial data tokens
Question 4 – Solution

\[x_1 + x_2 = F \]

or

\[0 + 0 = 0 \]

\[1 + 1 = 2 \]
Question 5 – Sequence graphs

Hierarchical arrangement of dependence graphs
Question 5 – Solution

\[w := a + b \times d; \]
\[x := a - b \times e; \]
\[y := w \times c; \]
\[z := a + b + d; \]
\[\text{IF} (z < 0) \text{ THEN} \]
\[z := -z; \]
\[\text{END IF} \]
\[\text{IF} (y > 0) \text{ THEN} \]
\[v := 1 / y; \]
\[\text{ELSE} \]
\[v := z \times y; \]
\[\text{END IF} \]
w := a + b * d;
x := a - b * e;
y := w * c;
z := a + b + d;
IF (z < 0) THEN
 z := -z;
END IF
IF (y > 0) THEN
 v := 1 / y;
ELSE
 v := z * y;
END IF
w := a + b * d;
x := a - b * e;
y := w * c;
z := a + b + d;
IF (z < 0) THEN
 z := -z;
END IF
IF (y > 0) THEN
 v := 1 / y;
ELSE
 v := z * y;
END IF
w := a + b * d;
x := a - b * e;
y := w * c;
z := a + b + d;

IF (z < 0) THEN
 z := -z;
END IF

IF (y > 0) THEN
 v := 1 / y;
ELSE
 v := z * y;
END IF
Question 5 – Solution

\[w := a + b \times d; \]
\[x := a - b \times e; \]
\[y := w \times c; \]
\[z := a + b + d; \]

IF \((z < 0)\) THEN
\[z := -z; \]
END IF

IF \((y > 0)\) THEN
\[v := 1 / y; \]
ELSE
\[v := z \times y; \]
END IF
Question 5 – Solution

\[w := a + b \times d; \]
\[x := a - b \times e; \]
\[y := w \times c; \]
\[z := a + b + d; \]
\[\text{IF } (z < 0) \text{ THEN} \]
\[z := -z; \]
\[\text{END IF} \]
\[\text{IF } (y > 0) \text{ THEN} \]
\[v := 1 / y; \]
\[\text{ELSE} \]
\[v := z \times y; \]
\[\text{END IF} \]
w := a + b * d;
x := a - b * e;
y := w * c;
z := a + b + d;
IF (z < 0) THEN
z := -z;
END IF
IF (y > 0) THEN
v := 1 / y;
ELSE
v := z * y;
END IF
w := a + b * d;
x := a - b * e;
y := w * c;
z := a + b + d;
IF (z < 0) THEN
 z := -z;
END IF
IF (y > 0) THEN
 v := 1 / y;
ELSE
 v := z * y;
END IF
\[w := a + b \times d; \]
\[x := a - b \times e; \]
\[y := w \times c; \]
\[z := a + b + d; \]
\[\text{IF } (z < 0) \text{ THEN} \]
\[z := -z; \]
\[\text{END IF} \]
\[\text{IF } (y > 0) \text{ THEN} \]
\[v := 1 / y; \]
\[\text{ELSE} \]
\[v := z \times y; \]
\[\text{END IF} \]
Question 5 – Solution

\[w := a + b \times d; \]
\[x := a - b \times e; \]
\[y := w \times c; \]
\[z := a + b + d; \]
\[\text{IF } (z < 0) \text{ THEN} \]
\[z := -z; \]
\[\text{END IF} \]
\[\text{IF } (y > 0) \text{ THEN} \]
\[v := 1 / y; \]
\[\text{ELSE} \]
\[v := z \times y; \]
\[\text{END IF} \]