Question 1

• Q: Consider the following taskset:

\[\tau_1 : T_1 = 4, \ D_1 = 3, \ C_1 = 2, \ \Phi_1 = 0 \]

\[\tau_2 : T_2 = 6, \ D_2 = 3, \ C_2 = ?, \ \Phi_2 = 0 \]

What is the largest value of \(C_2 \) such that a feasible schedule exists (there exists a schedule that meets all task deadlines).

• A: Both tasks have to finish execution by time 3. Since \(C_1 = 2 \), we have \(C_2 \leq 1 \).
Question 2

• **Q:** Consider the following taskset:

\[\tau_1 : T_1 = 4, \quad D_1 = 3, \quad C_1 = 2 \]

\[\tau_2 : T_2 = 5, \quad D_2 = 4, \quad C_2 = 2 \]

Following cyclic-executive is used to schedule the taskset: \(f=1, \quad P=20 \).

• **A:** Violated: Tasks start and finish within a single frame.
Question 3

• **Q:** Consider the following taskset:

\[\tau_1 : T_1 = 4, \quad D_1 = 3, \quad C_1 = 2\]

\[\tau_2 : T_2 = 5, \quad D_2 = 4, \quad C_2 = 2\]

Following cyclic-executive is used to schedule the taskset: f=3, P=20.

• **A:** Violated: P is a multiple of f. Between release time and deadline of any task, there is at least one full frame.
Question 4

• **Q:** Consider the following taskset:

\[\tau_1 : \ T_1 = 4, \ D_1 = 3, \ C_1 = 2 \]

\[\tau_2 : \ T_2 = 5, \ D_2 = 4, \ C_2 = 2 \]

Following cyclic-executive is used to schedule the taskset: \(f=4, P=20 \).

• **A:** Violated: Between release time and deadline of any task, there is at least one full frame.
Question 5

• Q: Consider the following taskset:

\[\tau_1 : T_1 = 4, \quad D_1 = 3, \quad C_1 = 2 \]

\[\tau_2 : T_2 = 5, \quad D_2 = 4, \quad C_2 = 2 \]

Following cyclic-executive is used to schedule the taskset: \(f=2, \quad P=20 \).

• A: All conditions are satisfied!
Real Time Systems
Cyclic-executive Scheduling

Stefan Drašković, stefan.draskovic@tik.ee.ethz.ch
Today’s Exercise

- Introduction to Cyclic-executive Scheduling
- You solve Task 1
- Discussion about Task 1
- Repeat for Task 2
Definitions

• Γ: denotes the set of all periodic tasks
• τ_i: denotes a periodic task
• $\tau_{i,j}$: denotes the jth instance (job) of task i
• $r_{i,j}, d_{i,j}$: denote the release time and absolute deadline of the jth instance of task i
• Φ_i: phase of task i, release time of first instance
• D_i: relative deadline of task i
Time-triggered Cyclic-executive Scheduling

- Tasks are periodic, but may have different periods. Instances of a task are regularly activated with a period T_i.

 $$r_{i,j} = \Phi_i + (j - 1) T_i$$

- All instances have same worst case execution time C_i.
- All instances have same relative deadline D_i. The absolute deadlines are:

 $$d_{i,j} = \Phi_i + (j - 1) T_i + D_i$$
Time-triggered Cyclic-executive Scheduling

- The period P of the system is divided into frames f
- Timer interrupts regularly every frame start
- Schedule computed *off-line*
- Deterministic behaviour at runtime
Example

<table>
<thead>
<tr>
<th>Γ</th>
<th>T_i</th>
<th>Φ_i</th>
<th>D_i</th>
<th>C_i</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>12</td>
<td>2</td>
<td>8</td>
<td>2.8</td>
<td>2</td>
</tr>
<tr>
<td>τ_2</td>
<td>12</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>τ_3</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

$P = 12, f = 4$
Example

<table>
<thead>
<tr>
<th>Γ</th>
<th>T_i</th>
<th>Φ_i</th>
<th>D_i</th>
<th>C_i</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>12</td>
<td>2</td>
<td>8</td>
<td>2.8</td>
<td>2</td>
</tr>
<tr>
<td>τ_2</td>
<td>12</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>τ_3</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

$P = 12, f = 4$
Example

<table>
<thead>
<tr>
<th>Γ</th>
<th>T_i</th>
<th>Φ_i</th>
<th>D_i</th>
<th>C_i</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>12</td>
<td>2</td>
<td>8</td>
<td>2.8</td>
<td>2</td>
</tr>
<tr>
<td>τ_2</td>
<td>12</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>τ_3</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

$P = 12, \ f = 4$
Example

<table>
<thead>
<tr>
<th>Γ</th>
<th>T_i</th>
<th>Φ_i</th>
<th>D_i</th>
<th>C_i</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>12</td>
<td>2</td>
<td>8</td>
<td>2.8</td>
<td>2</td>
</tr>
<tr>
<td>τ_2</td>
<td>12</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>τ_3</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

$P = 12, f = 4$
Conditions for P and f

- A task executes at most once within frame:

\[f \leq T_i \quad \forall \tau_i \]

- P is a multiple of f

- Tasks start and complete within a single frame:

\[f \geq C_i \quad \forall \tau_i \]

- Between the release time and deadline of every task there is at least one full frame:

\[2f - \gcd(T_i, f) \leq D_i \quad \forall \tau_i \]
Correctness of Schedule

- f_{ij} notes that instance j of task τ_i executes in frame f_{ij}
- Is P a common multiple of all periods T_i? Is P a multiple of f?
- Is the frame sufficiently long?

$$\sum_{\{i|f_{ij}=k\}} C_i \leq f \quad \forall 1 \leq k \leq \frac{P}{f}$$

- Determine offsets such that instances start after release time:

$$\Phi_i = \min_{1 \leq j \leq \frac{P}{T_i}} \{(f_{ij} - 1)f - (j - 1)T_i\} \quad \forall \tau_i$$

- Are deadlines respected?

$$(j - 1)T_i + \Phi_i + D_i \geq f_{ij}f \quad \forall \tau_i, \ 1 \leq j \leq \frac{P}{T_i}$$
Task 1: Check Schedule Correctness!

- f_{ij} notes that instance j of task τ_i executes in frame f_{ij}
- Is P a common multiple of all periods T_i? Is P a multiple of f?
- Is the frame sufficiently long?

$$\sum_{\{i|f_{ij}=k\}} C_i \leq f \quad \forall 1 \leq k \leq \frac{P}{f}$$

- Determine offsets such that instances start after release time:

$$\Phi_i = \min_{1 \leq j \leq \frac{P}{T_i}} \left\{ (f_{ij} - 1)f - (j - 1)T_i \right\} \quad \forall \tau_i$$

- Are deadlines respected?

$$(j - 1)T_i + \Phi_i + D_i \geq f_{ij}f \quad \forall \tau_i, \ 1 \leq j \leq \frac{P}{T_i}$$
Task 1: Solution

- Is P a common multiple of all periods T_i? Is P a multiple of f?
 Yes!

- Is the frame sufficiently long?
 Yes!
Task 1: Solution

- Determine offsets such that instances start after release time.

\[
\Phi_1 = \min \left\{ \begin{array}{l}
(2 - 1)4 - (1 - 1)15 \\
(5 - 1)4 - (2 - 1)15 \\
(9 - 1)4 - (3 - 1)15 \\
(12 - 1)4 - (4 - 1)15
\end{array} \right. = \begin{array}{l}
4 \\
1 \\
2 \\
-1
\end{array}
\]

\[
\Phi_2 = 0 \quad \Phi_3 = -2 \quad \Phi_4 = 2
\]
Task 1: Solution

• Are deadlines respected?
 Yes, for example for τ_1:

\[
\begin{align*}
(1 - 1)15 - 1 + 9 &= 8 \geq 8 = 2 \cdot 4 \\
(2 - 1)15 - 1 + 9 &= 23 \geq 20 = 5 \cdot 4 \\
(3 - 1)15 - 1 + 9 &= 38 \geq 36 = 9 \cdot 4 \\
(4 - 1)15 - 1 + 9 &= 53 \geq 48 = 12 \cdot 4
\end{align*}
\]
Task 2: Find Schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>Period</th>
<th>Deadline</th>
<th>Execution Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>
Task 2: Possible Solution