Solution to Exercises 8: Integer Linear Programming & Iterative Algorithms

Discussion Date: 31.05.2017

Task 1: Integer Linear Programming

Given the sequence graph \(G_S = (V_S, E_S) \) in Fig. 1.

![Sequence graph](image)

Figure 1: Sequence graph.

For the execution times of the operations assume: A multiplication operation (MULT) takes 2 time units and all other (ALU) operations take 1 time unit each. Two units of the resource type \(r_1 \) (multiplier) and two units of the resource type \(r_2 \) (ALU) are allocated.

a) Apply the ASAP and ALAP algorithms to compute the earliest \(l_i \) and the latest \(h_i \) starting time of all operations \(v_i \in V_S, i \in \{1, \ldots, 11\} \). For ALAP, assume the maximum latency \(T = 7 \). Fill in the starting times in Table 1.
Table 1: Earliest and latest starting times (Task 1a)

<table>
<thead>
<tr>
<th>v_i</th>
<th>l_i (ASAP)</th>
<th>h_i (ALAP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>v_2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>v_3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>v_4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>v_5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>v_6</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>v_7</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>v_8</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>v_9</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>v_{10}</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>v_{11}</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

b) Formulate the problem of latency minimization with restricted resources as an integer linear program (ILP). For this, you should introduce the binary variables $x_{i,t} \in \{0,1\} \ \forall v_i \in V_S$ and $\forall t \in \{t \in \mathbb{Z} \mid l_i \leq t \leq h_i\}$. $\tau(v_i)$ is used to denote the starting time of operation $v_i \in V_S$ and $\alpha(r_i)$ with $r_i \in V_R = \{\text{MULT, ALU}\}$ denotes the number of allocated resource instances. Given the above notations, write down the following equations/inequations without using the \sum symbol.

i) Express the objective function of the ILP

ii) Define $\tau(v_i) \ \forall i \in \{1, \ldots, 11\}$ as a function of $x_{i,t}$, where $l_1 \leq t \leq h_1$

iii) Express all data dependencies

iv) Express all resource limitations

c) In an analogous manner try to formulate an ILP that solves the problem of cost minimization with latency limitation. Hint: We assume that the cost of a realization is the sum of the costs c of the multipliers with $c(r_1) = 2$ per allocated unit, and of the ALUs with $c(r_2) = 1$ per allocated unit. For the latency bound, we choose $\bar{L} = 6$.

a) The starting times are listed in Table 1. The corresponding ASAP/ALAP schedules are depicted in Figure 2.

![Figure 2: Schedule with ASAP and ALAP](image)

b) i) Objective function:

$$\min \ L = \tau(v_n) - \tau(v_0)$$
ii) Introduction of binary variables:

\[
\begin{align*}
\tau(v_3) - \tau(v_1) &\geq 2 \\
\tau(v_4) - \tau(v_3) &\geq 2 \\
\tau(v_7) - \tau(v_6) &\geq 2 \\
\tau(v_9) - \tau(v_8) &\geq 2 \\
\tau(v_n) - \tau(v_5) &\geq 1 \\
\tau(v_n) - \tau(v_{11}) &\geq 1
\end{align*}
\]

\[
\tau(v_1), \tau(v_2), \tau(v_6), \tau(v_8), \tau(v_{10}) \geq \tau(v_0) \geq 1
\]

iv) Resource limitations:

\(t = 1: \)

\[
\begin{align*}
x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} &\leq 2 \\
x_{10,1} &\leq 2
\end{align*}
\]

\(t = 2: \)

\[
\begin{align*}
x_{1,2} + x_{2,1} + x_{2,2} + x_{6,1} + x_{6,2} + x_{8,1} + x_{8,2} &\leq 2 \\
x_{10,2} + x_{11,2} &\leq 2
\end{align*}
\]

\(t = 3: \)

\[
\begin{align*}
x_{1,2} + x_{2,2} + x_{6,2} + x_{6,3} + x_{8,2} + x_{8,3} + x_{3,3} + x_{7,3} &\leq 2 \\
x_{10,3} + x_{11,3} + x_{9,3} &\leq 2
\end{align*}
\]

\(t = 4: \)

\[
\begin{align*}
x_{6,3} + x_{8,3} + x_{8,4} + x_{3,3} + x_{3,4} + x_{7,3} + x_{7,4} &\leq 2 \\
x_{10,4} + x_{11,4} + x_{9,4} &\leq 2
\end{align*}
\]

\(t = 5: \)

\[
\begin{align*}
x_{8,4} + x_{8,5} + x_{3,4} + x_{7,4} + x_{7,5} &\leq 2 \\
x_{10,5} + x_{11,5} + x_{9,5} + x_{4,5} &\leq 2
\end{align*}
\]
\[t = 6: \]
\[
 x_{8,5} + x_{7,5} \leq 2
\]
\[
 x_{10,6} + x_{11,6} + x_{9,6} + x_{4,6} + x_{5,6} \leq 2
\]

\[t = 7: \]
\[
 (0 \leq 2)
\]
\[
 x_{11,7} + x_{9,7} + x_{5,7} \leq 2
\]

c) Restating the resource limitations, and introducing additional variables:
\[t = 1: \]
\[
 x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} - \alpha(r_1) \leq 0
\]
\[
 x_{10,1} - \alpha(r_2) \leq 0
\]

Latency limitations:
\[L = \tau(v_n) - \tau(v_0) \leq \bar{L} = 6 \]

New objective function:
\[
 \min \quad C = \alpha(r_1) \cdot c(r_1) + \alpha(r_2) \cdot c(r_2) = 2 \cdot \alpha(r_1) + \alpha(r_2)
\]

Task 2: Iterative Algorithms

Please answer the following questions considering the given video codec application specified as a marked graph in Figure 3.

![Diagram of Video Codec Application](attachment:image.png)

Figure 3: Video codec marked graph representation

Table 2: Execution time of each function

<table>
<thead>
<tr>
<th>(w(v_i))</th>
<th>(\nu_1)</th>
<th>(\nu_2)</th>
<th>(\nu_3)</th>
<th>(\nu_4)</th>
<th>(\nu_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

a) Formulate all existing dependencies in Figure 3 from \(\nu_i \) to \(\nu_j \) in the form of
\[\tau(\nu_j) - \tau(\nu_i) \geq w(\nu_i) - d_{ij} \cdot P, \]
where \(P \) is the minimum iteration interval. The execution time of each function is listed in Table 2.

b) Assuming unlimited resources and only one token on the edge between \(\nu_5 \) and \(\nu_1 \), determine the minimum iteration interval \(P \) and the latency \(L \). To justify your answer, draw the scheduling on the timeline given in Figure 4 with the dependency from \(\nu_5 \) to \(\nu_1 \) highlighted.
c) The motion estimation function (ν_1) uses the result of the previous frame (See the dependency between ν_1 and ν_5). Let us now suppose that any arbitrary number of tokens can be inserted to reduce P using functional pipelining. Then, determine the minimum number of tokens that should be added on the edge $\nu_5 \rightarrow \nu_1$ to achieve $P = 10$? To justify your answer, draw the pipelined scheduling on the timeline given in Figure 5 with the dependency from ν_5 to ν_1 highlighted and calculate the latency L of the schedule.
a) Dependencies:
\[
\begin{align*}
\tau(\nu_2) - \tau(\nu_1) & \geq 10 \\
\tau(\nu_3) - \tau(\nu_2) & \geq 10 \\
\tau(\nu_4) - \tau(\nu_2) & \geq 10 \\
\tau(\nu_5) - \tau(\nu_4) & \geq 5 \\
\tau(\nu_1) - \tau(\nu_5) & \geq 5 - 1 \cdot P
\end{align*}
\]

b) We solve the system of inequalities of 2a) for \(P \).
\[\Rightarrow P_{\text{min}} = 30 \]
\[L = 30 \]

![Figure 6: Scheduling result of the video codec](image)

Figure 6: Scheduling result of the video codec

c) Now the iteration interval \(P \) is given \((P = 10) \) and we are looking for the number of tokens \(n \). Therefore, we replace the last inequation in 2a) by \(\tau(\nu_1) - \tau(\nu_5) \geq 5 - n \cdot 10 \) and solve the new set of inequations for \(n \).
\[\Rightarrow n_{\text{min}} = 3 \]
We have to add at least 2 tokens on the edge between \(\nu_5 \) and \(\nu_1 \).
\[L = 30 \]

![Figure 7: Pipelined scheduling result of the video codec](image)

Figure 7: Pipelined scheduling result of the video codec