Embedded Systems

11. Architecture Synthesis

Lothar Thiele
Contents of Course

1. Embedded Systems Introduction

2. Software Introduction
3. Real-Time Models
4. Periodic/Aperiodic Tasks
5. Resource Sharing
6. Real-Time OS

7. System Components
8. Communication
9. Low Power Design

10. Models
11. Architecture Synthesis
12. Model Based Design

Software and Programming

Processing and Communication

Hardware
Contents

► Models
 ► Scheduling without resource constraints
 ▪ ASAP
 ▪ ALAP
 ▪ Timing Constraints
 ► Scheduling with resource constraints
 ▪ List Scheduling
 ▪ Integer Linear Programming
 ► Iterative Algorithms
 ► Dynamic Voltage Scaling
Determine a hardware architecture that efficiently executes a given algorithm.

Major tasks of architecture synthesis:
- *allocation* (determine the necessary hardware resources)
- *scheduling* (determine the timing of individual operations)
- *binding* (determine relation between individual operations of the algorithm and hardware resources)

Classification of synthesis algorithms:
- *heuristics* or *exact methods*

Synthesis methods can often be applied *independently of granularity* of algorithms, e.g. whether operation is a whole complex task or a single operation.
Models

- **Sequence graph** \(G_S = (V_S, E_S) \)
 where \(V_S \) denotes the operations of the algorithm and \(E_S \) the dependence relations.

- **Resource graph** \(G_R = (V_R, E_R) \), \(V_R = V_S \cup V_T \)
 where \(V_T \) denote the resource types of the architecture and \(G_R \) is a bipartite graph. An edge \((v_s, v_t) \in E_R \)
 represents the availability of a resource type \(v_t \) for an operation \(v_s \).

- **Cost function** \(c : V_T \to \mathbb{Z} \)

- **Execution times** \(w : E_R \to \mathbb{Z}^{\geq 0} \)
 are assigned to each edge \((v_s, v_t) \in E_R \)
 and denote the execution time of operation \(v_s \in V_S \) on resource type \(v_t \in V_T \).
Models

Example sequence graph:
- Given algorithm (differential equation):

```c
int diffeq(int x, int y, int u, int dx, int a) {  
    int x1, u1, y1;
    while ( x < a ) {  
        x1 = x + dx;
        u1 = u - (3 * x * u * dx) - (3 * y * dx);
        y1 = y + u * dx;
        x = x1;
        u = u1;
        y = y1;
    }
    return y;
}
```
Models

- **Sequence graph:**

![Sequence graph diagram]
Models

- **Resource graph**:

 ![Resource Graph Diagram]

 \[
 c(r_1) = 8 \\
 c(r_2) = 3
 \]
Allocation and Binding

An allocation is a function $\alpha : V_T \rightarrow \mathbb{Z}^{\geq 0}$ that assigns to each resource type $v_t \in V_T$ the number $\alpha(v_t)$ of available instances.

A binding is defined by functions $\beta : V_S \rightarrow V_T$ and $\gamma : V_S \rightarrow \mathbb{Z}^{>0}$. Here, $\beta(v_s) = v_t$ and $\gamma(v_s) = r$ denote that operation $v_s \in V_S$ is implemented on the rth instance of resource type $v_t \in V_T$.
A schedule is a function $\tau : V_S \to \mathbb{Z}^>0$ that determines the starting times of operations. A schedule is feasible if the conditions

$$\tau(v_j) - \tau(v_i) \geq w(v_i) \quad \forall (v_i, v_j) \in E_S$$

are satisfied. $w(v_i) = w(v_i, \beta(v_i))$ denotes the execution time of operation v_i.

The latency L of a schedule is the time difference between start node v_0 and end node v_n:

$$L = \tau(v_n) - \tau(v_0).$$
Scheduling

Example:

\[L = \tau(v_{12}) - \tau(v_0) = 7 \]

\[
\begin{align*}
\tau(v_0) &= 1 \\
\tau(v_1) &= \tau(v_{10}) = 1 \\
\tau(v_2) &= \tau(v_{11}) = 2 \\
\tau(v_3) &= 3 \\
\tau(v_6) &= \tau(v_4) = 4 \\
\tau(v_7) &= 5 \\
\tau(v_8) &= \tau(v_5) = 6 \\
\tau(v_9) &= 7 \\
\tau(v_{12}) &= 8
\end{align*}
\]
Binding

Example ($\alpha(r_1) = 4$, $\alpha(r_2) = 2$):

$\beta(v_1) = r_1$, $\gamma(v_1) = 1$,
$\beta(v_2) = r_1$, $\gamma(v_2) = 2$,
$\beta(v_3) = r_1$, $\gamma(v_3) = 2$,
$\beta(v_4) = r_2$, $\gamma(v_4) = 1$,
$\beta(v_5) = r_2$, $\gamma(v_5) = 1$,
$\beta(v_6) = r_1$, $\gamma(v_6) = 3$,
$\beta(v_7) = r_1$, $\gamma(v_7) = 3$,
$\beta(v_8) = r_1$, $\gamma(v_8) = 4$,
$\beta(v_9) = r_2$, $\gamma(v_9) = 1$,
$\beta(v_{10}) = r_2$, $\gamma(v_{10}) = 2$,
$\beta(v_{11}) = r_2$, $\gamma(v_{11}) = 2$
Multiobjective Optimization

- Architecture Synthesis is an optimization problem with more than one objective:
 - Latency of the algorithm that is implemented
 - Hardware cost (memory, communication, computing units, control)
 - Power and energy consumption

- Optimization problems with several objectives are called “multiobjective optimization problems”.

Multiobjective Optimization

Let us suppose, we would like to select a typewriting device. Criteria are

- mobility (related to weight)
- comfort (related to keyboard size and performance)

<table>
<thead>
<tr>
<th>Icon</th>
<th>Device</th>
<th>weight (kg)</th>
<th>comfort rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>🖥️</td>
<td>PC of 2009</td>
<td>20.00</td>
<td>10</td>
</tr>
<tr>
<td>🖥️</td>
<td>PC of 1984</td>
<td>7.50</td>
<td>7</td>
</tr>
<tr>
<td>🖥️</td>
<td>Laptop</td>
<td>3.00</td>
<td>9</td>
</tr>
<tr>
<td>🖥️</td>
<td>Typewriter</td>
<td>9.00</td>
<td>5</td>
</tr>
<tr>
<td>🖥️</td>
<td>Touchscreen Smartphone</td>
<td>0.11</td>
<td>2</td>
</tr>
<tr>
<td>🖥️</td>
<td>PDA with large keyboard</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>🖥️</td>
<td>PDA with small keyboard</td>
<td>0.11</td>
<td>4</td>
</tr>
<tr>
<td>🖥️</td>
<td>Organizer with tiny keyboard</td>
<td>0.08</td>
<td>1</td>
</tr>
</tbody>
</table>
Multiobjective Optimization

- Pareto optimal
- dominated
Pareto set:

dominated area (hypervolume)

PC of 2009

PC of 1984

better (dominates)

better

writing comfort
(better↑)

better

Laptop

incomparable

PDA with small keyboard

PDA with larger keyboard

Touchscreen Smartphone

Organizer with tiny keyboard

better

(1/20 1/9 1/7.5 1/3 1/0.11 1/0.09 1/0.08)
Definition: A solution $a \in X$ weakly Pareto-dominates a solution $b \in X$, denoted as $a \preceq b$, if it is as least as good in all objectives, i.e., $f_i(a) \leq f_i(b)$ for all $1 \leq i \leq n$. Solution a is better than b, denoted as $a < b$, iff $(a \preceq b) \land (b \not\preceq a)$.

Decision space: x

Objective space: f_1, f_2

- dominated by k
- dominate k
A solution is named **Pareto-optimal**, if it is not Pareto-dominated by any other solution in X.

The set of all Pareto-optimal solutions is denoted as the Pareto-optimal set and its image in objective space as the **Pareto-optimal front**.
Contents

► Models

► Scheduling without resource constraints
 ▪ ASAP
 ▪ ALAP
 ▪ Timing Constraints

► Scheduling with resource constraints
 ▪ List Scheduling
 ▪ Integer Linear Programming

► Iterative Algorithms

► Dynamic Voltage Scaling
Scheduling Algorithms

Classification

- **unlimited resources**: no constraints in terms of the available resources are defined.
- **limited resources**: constrains are given in terms of the number a types of available resources.
- **iterative algorithms**: an initial solution to the architecture synthesis is improved step by step.
- **constructive algorithms**: the synthesis problem is solved in one step.
- **transformative algorithms**: the initial problem formulation is converted into a (classical) optimization problem.
Scheduling Without Resource Constraints

The scheduling method can be used

- as a **preparatory step** for the general synthesis problem
- to **determine bounds** on feasible schedules in the general case
- if there is a **dedicated resource** for each operation.

Given is a sequence graph \(G_S = (V_S, E_S) \) and a resource graph \(G_R = (V_R, E_R) \). Then the latency minimization without resource constraints is defined as

\[
L = \min \{ \tau(v_n) : \tau(v_j) - \tau(v_i) \geq w(v_i) \quad \forall (v_i, v_j) \in E_S \}
\]
Contents

- Models
- Scheduling without resource constraints
 - ASAP
 - ALAP
 - Timing Constraints
- Scheduling with resource constraints
 - List Scheduling
 - Integer Linear Programming
- Iterative Algorithms
- Dynamic Voltage Scaling
The ASAP Algorithm

\[\text{ASAP}(G_S(V_S, E_S), w) \{ \]
\[\tau(v_0) = 1; \]
\[\text{REPEAT} \{ \]
\[\quad \text{Determine } v_i \text{ whose predec. are planned;} \]
\[\quad \tau(v_i) = \max\{\tau(v_j) + w(v_j) \forall (v_j, v_i) \in E_S\} \]
\[\} \text{ UNTIL } (v_n \text{ is planned}); \]
\[\text{RETURN } (\tau); \]
\[\} \]
The ASAP Algorithm

Example:

\(w(v_i) = 1 \)
Contents

- Models
- Scheduling without resource constraints
 - ASAP
 - ALAP
 - Timing Constraints
- Scheduling with resource constraints
 - List Scheduling
 - Integer Linear Programming
- Iterative Algorithms
- Dynamic Voltage Scaling
The ALAP Algorithm

ALAP = As Late As Possible

\[
\text{ALAP}(G_S(V_S, E_S), w, L_{max}) \{ \\
\quad \tau(v_n) = L_{max} + 1; \\
\quad \text{REPEAT} \{ \\
\qquad \text{Determine } v_i \text{ whose succ. are planned;} \\
\qquad \tau(v_i) = \min\{\tau(v_j) \forall (v_i, v_j) \in E_S\} - w(v_i) \\
\quad \} \text{ UNTIL } (v_0 \text{ is planned}); \\
\quad \text{return } (\tau); \\
\}
\]
The ALAP Algorithm

Example:

\[L_{\text{max}} = 7 \]
\[w(v_i) = 1 \]
Contents

► Models
► Scheduling without resource constraints
 ▪ ASAP
 ▪ ALAP
 ▪ *Timing Constraints*
► Scheduling with resource constraints
 ▪ List Scheduling
 ▪ Integer Linear Programming
► Iterative Algorithms
► Dynamic Voltage Scaling
Scheduling with Timing Constraints

- Different classes of timing constraints:
 - **deadline** (latest finishing times of operations), for example
 \[\tau(v_2) + w(v_2) \leq 5 \]
 - **release times** (earliest starting times of operations), for example
 \[\tau(v_3) \geq 4 \]
 - **relative constraints** (differences between starting times of a pair of operations), for example
 \[\tau(v_6) - \tau(v_7) \geq 4 \]
 \[\tau(v_4) - \tau(v_1) \leq 2 \]
We will model all timing constraints using relative constraints. Deadlines and release times are defined relative to the start node \(v_0 \).

Minimum, maximum and equality constraints can be converted into each other:

- **Minimum constraint:**
 \[
 \tau(v_j) \geq \tau(v_i) + l_{ij} \quad \rightarrow \quad \tau(v_j) - \tau(v_i) \geq l_{ij}
 \]

- **Maximum constraint:**
 \[
 \tau(v_j) \leq \tau(v_i) + l_{ij} \quad \rightarrow \quad \tau(v_i) - \tau(v_j) \geq -l_{ij}
 \]

- **Equality constraint:**
 \[
 \tau(v_j) = \tau(v_i) + l_{ij} \quad \rightarrow \quad \tau(v_j) - \tau(v_i) \leq l_{ij} \land \tau(v_j) - \tau(v_i) \geq l_{ij}
 \]
Weighted Constraint Graph

Timing constraints can be represented in form of a weighted constraint graph:

A weighted constraint graph $G_C = (V_C, E_C, d)$ related to a sequence graph $G_S = (V_S, E_S)$ contains nodes $V_C = V_S$ and a weighted edge for each timing constraint. An edge $(v_i, v_j) \in E_C$ with weight $d(v_i, v_j)$ denotes the constraint $\tau(v_j) - \tau(v_i) \geq d(v_i, v_j)$.
Weighted Constraint Graph

In order to represent a feasible schedule, we have one edge corresponding to each precedence constraint with

\[d(v_i, v_j) = w(v_i) \]

where \(w(v_i) \) denotes the execution time of \(v_i \).

A consistent assignment of starting times \(\tau(v_i) \) to all operations can be done by solving a single source longest path problem.

A possible algorithm (Bellman-Ford) has complexity \(O(|V_C| |E_C|) \):

Iteratively set \(\tau(v_j) := \max\{\tau(v_j), \tau(v_i) + d(v_i, v_j) : (v_i, v_j) \in E_C\} \) for all \(v_j \in V_C \) starting from \(\tau(v_i) = -\infty \) for \(v_i \in V_C \setminus \{v_0\} \) and \(\tau(v_0) = 1 \).
Weighted Constraint Graph

> **Example:** \(w(v_1) = w(v_3) = 2 \), \(w(v_2) = w(v_4) = 1 \)

\(\tau(v_0) = \tau(v_1) = \tau(v_3) = 1, \tau(v_2) = 3, \tau(v_4) = 5, \tau(v_n) = 6 \), \(L = \tau(v_n) - \tau(v_0) = 5 \)
Contents

► Models
► Scheduling without resource constraints
 ▪ ASAP
 ▪ ALAP
 ▪ Timing Constraints
► Scheduling with resource constraints
 ▪ List Scheduling
 ▪ Integer Linear Programming
► Iterative Algorithms
► Dynamic Voltage Scaling
Scheduling With Resource Constraints

Given is a sequence graph $G_S = (V_S, E_S)$, a resource graph $G_R = (V_R, E_R)$ and an associated allocation α and binding β.

Then the minimal latency is defined as

$$L = \min\{\tau(v_n) : \\
(\tau(v_j) - \tau(v_i) \geq w(v_i, \beta(v_i)) \forall (v_i, v_j) \in E_S) \land \\
(|\{v_s : \beta(v_s) = v_t \land \tau(v_s) \leq t < \tau(v_s) + w(v_s, v_t)\}| \leq \alpha(v_t) \\
\forall v_t \in V_T, \forall 1 \leq t \leq L_{max})\}$$

where L_{max} denotes an upper bound on the latency.
Contents

► Models
► Scheduling without resource constraints
 ▪ ASAP
 ▪ ALAP
 ▪ Timing Constraints
► Scheduling with resource constraints
 ▪ *List Scheduling*
 ▪ Integer Linear Programming
► Iterative Algorithms
► Dynamic Voltage Scaling
List Scheduling

\[
\text{LIST}(G_S(V_S, E_S), G_R(V_R, E_R), \alpha, \beta, \text{priorities}) \{
\begin{align*}
t &= 1; \\
\text{REPEAT} \{ \\
 &\text{FORALL } v_k \in V_T \{ \\
 &\text{determine candidates to be scheduled } U_k; \\
 &\text{determine running operations } T_k; \\
 &\text{choose } S_k \subseteq U_k \text{ with maximal priority} \\
 &\text{and } |S_k| + |T_k| \leq \alpha(v_k); \\
 &\tau(v_i) = t \ \forall v_i \in S_k; \\
 \}
\}
t &= t + 1;
\text{UNTIL } (v_n \text{ planned})
\text{RETURN } (\tau); \}
\]
List Scheduling

- One of the most **widely used** algorithms for scheduling under resource constraints.

Principles:

- To each operation there is a **priority** assigned which denotes the urgency of being scheduled. This **priority is static**, i.e. determined before the List Scheduling.
- The algorithm schedules **one time step after the other**.
- U_k denotes the set of operations that (a) are mapped onto resource v_k and whose predecessors finished.
- T_k denotes the currently running operations mapped to resource v_k.
List Scheduling

Example:

\[G_S \]

\[G_R \]

\[\alpha(r_1) = 1 \]

\[\alpha(r_2) = 1 \]
List Scheduling

- Solution via *list scheduling*:
 - In the example, the solution is independent of priority.
 - Because of the *greedy* principle, all resources are directly occupied.
 - List scheduling is a *heuristic algorithm*.
 In this example, it does not yield the minimal latency!
List Scheduling

- Solution via an **optimal method**:
 - *Latency is smaller* than with list scheduling.
 - An example of an optimal algorithm is the transformation into an *integer linear program*.
Contents

» Models
» Scheduling without resource constraints
 ▪ ASAP
 ▪ ALAP
 ▪ Timing Constraints
» Scheduling with resource constraints
 ▪ List Scheduling
 ▪ Integer Linear Programming
» Iterative Algorithms
» Dynamic Voltage Scaling
Integer Linear Programming

Principle:

1. Synthesis Problem
2. Transformation into ILP
3. Integer Linear Program (ILP)
4. Optimization of ILP
5. Solution of ILP
6. Back interpretation
7. Solution of Synthesis Problem
Integer Linear Program

- Yields **optimal solution** to synthesis problems as it is based on an exact mathematical description of the problem.
- Solves **scheduling, binding and allocation** simultaneously.
- **Standard optimization** approaches (and software) are available to solve integer linear programs:
 - in addition to linear programs (linear constraints, linear objective function) some variables are forced to be integers.
 - much more complex than solving linear program
 - efficient methods are based on (a) branch and bound methods and (b) determining additional hyperplanes (cuts).
Many variants exist, depending on available information, constraints and objectives, e.g. minimize latency, minimize resources, minimize memory. Just an example is given here!!

For the following example, we use the assumptions:

- The binding is determined already, i.e. every operation v_i has a unique execution time $w(v_i)$.
- We have determined the earliest and latest starting times of operations v_i as l_i and h_i, respectively. To this end, we can use the ASAP and ALAP algorithms that have been introduced earlier. The maximal latency L_{max} is chosen such that a feasible solution to the problem exists.
Integer Linear Program

minimize: \(\tau(v_n) - \tau(v_0) \)

subject to
\[x_{i,t} \in \{0, 1\} \quad \forall v_i \in V_S \quad \forall t: l_i \leq t \leq h_i \]
(1)

\[\sum_{t=l_i}^{h_i} x_{i,t} = 1 \quad \forall v_i \in V_S \]
(2)

\[\sum_{t=l_i}^{h_i} t \cdot x_{i,t} = \tau(v_i) \quad \forall v_i \in V_S \]
(3)

\[\tau(v_j) - \tau(v_i) \geq w(v_i) \quad \forall (v_i, v_j) \in E_S \]
(4)

\[\sum_{\forall i: (v_i, v_k) \in E_R} \sum_{p' = \max\{0, t - h_i\}}^{} x_{i,t-p'} \leq \alpha(v_k) \]
(5)
Integer Linear Program

Explanations:

- (1) declares variables x to be binary.
- (2) makes sure that exactly one variable $x_{i,t}$ for all t has the value 1, all others are 0.
- (3) determines the relation between variables x and starting times of operations τ. In particular, if $x_{i,t} = 1$ then the operation v_i starts at time t, i.e. $\tau(v_i) = t$.
- (4) guarantees that all precedence constraints are satisfied.
- (5) makes sure that the resource constraints are not violated. For all resource types $v_k \in V_T$ and for all time instances t it is guaranteed that the number of active operations does not increase the number of available resource instances.
Integer Linear Program

Explanations:

(5) The first sum selects all operations that are mapped onto resource type v_k. The second sum considers all time instances where operation v_i is occupying resource type v_k:

$$w(v_i) - 1 \sum_{p' = 0}^{x_i,t-p'} x_{i,t-p'} = \begin{cases}
1 & : \forall t : \tau(v_i) \leq t \leq \tau(v_i) + w(v_i) - 1 \\
0 & : \text{sonst}
\end{cases}$$
Contents

- Models
- Scheduling without resource constraints
 - ASAP
 - ALAP
 - Timing Constraints
- Scheduling with resource constraints
 - List Scheduling
 - Integer Linear Programming
- Iterative Algorithms
- Dynamic Voltage Scaling
Iterative Algorithms

Iterative algorithms consist of a set of indexed equations that are evaluated for all values of an index variable \(l \):

\[
x_i[l] = F_i[... , x_j[l - d_{ji}], ...] \quad \forall l \quad \forall i \in I
\]

Here, \(x_i \) denote a set of indexed variables, \(F_i \) denote arbitrary functions and \(d_{ji} \) are constant index displacements.

Examples of well known representations are signal flow graphs (as used in signal and image processing and automatic control), marked graphs and special forms of loops.
Iterative Algorithms

Several representations of the same iterative algorithm:

- One indexed equation with constant index dependencies:

\[y[l] = au[l] + by[l - 1] + cy[l - 2] + dy[l - 3] \quad \forall l \]

- Equivalent set of indexed equations:

\[x_1[l] = au[l] \quad \forall l \]
\[x_2[l] = x_1[l] + dy[l - 3] \quad \forall l \]
\[x_3[l] = x_2[l] + cy[l - 2] \quad \forall l \]
\[y[l] = x_3[l] + by[l - 1] \quad \forall l \]
Iterative Algorithms

- **Extended sequence graph** $G_S = (V_S, E_S, d)$: To each edge $(v_i, v_j) \in E_S$ there is associated the **index displacement** d_{ij}. An edge $(v_i, v_j) \in E_S$ denotes that the variable corresponding to v_j depends on variable corresponding to v_i with displacement d_{ij}.

- Equivalent **marked graph**:

![Extended sequence graph diagram](image)

![Equivalent marked graph diagram](image)
Iterative Algorithms

- Equivalent signal flow graph:

```
  u
   → a → d → c → b → y
     |    |    |    |
     Z⁻¹ Z⁻¹ Z⁻¹
```

- Equivalent loop program:

```java
while(true) {
    t1 = read(u);
    t5 = a*t1 + d*t2 + c*t3 + b*t4;
    t2 = t3;
    t3 = t4;
    t4 = t5;
    write(y, t5);
}
```
Iterative Algorithms

- An iteration is the set of all operations necessary to compute all variables $x_i[\ell]$ for a fixed index ℓ.

- The iteration interval P is the time distance between two successive iterations of an iterative algorithm. $1/P$ denotes the throughput of the implementation.

- The latency L is the maximal time distance between the starting and the finishing times of operations belonging to one iteration.

- In a pipelined implementation (functional pipelining), there exist time instances where the operations of different iterations ℓ are executed simultaneously.

- In case of loop folding, starting and finishing times of an operation are in different physical iterations.
Iterative Algorithms

Implementation principles

- A **simple possibility**, the edges with $d_{ij} > 0$ are removed from the extended sequence graph. The resulting simple sequence graph is implemented using **standard methods**.

Example with unlimited resources:

![Diagram of a sequence graph with nodes labeled u, x₁, x₂, x₃, and y, connected by edges. The diagram shows the execution times $w(v_i)$, where $L = 7$, $P = 7$, and no pipelining.]

- One iteration
- One physical iteration
- L = 7
- P = 7
- No pipelining
Iterative Algorithms

Implementation principles

- Using *functional pipelining*: Successive iterations overlap and a higher throughput (1/P) is obtained.

Example with unlimited resources (note data dependencies across iterations!)

\[\begin{array}{cccc}
0 & x_1 & 0 & x_2 \\
0 & 1 & 0 & 2 \\
0 & 2 & 0 & 3 \\
0 & 2 & 0 & 4 \\
\end{array} \]

- 4 resources
- functional pipelining
- loop folding
Iterative Algorithms

Solving the synthesis problem using *integer linear programming*:

- Starting point is the ILP formulation given for simple sequence graphs.
- Now, we use the *extended sequence graph* (including displacements d_{ij}).
- **ASAP** and **ALAP** scheduling for upper and lower bounds h_i and l_i use only edges with $d_{ij} = 0$ (remove dependencies across iterations).
- We suppose, that a suitable *iteration interval* P is chosen beforehand. If it is too small, no feasible solution to the ILP exists and P needs to be increased.
Iterative Algorithms

- Eqn. (4) is replaced by:

\[\tau(v_j) - \tau(v_i) \geq w(v_i) - d_{ij} \cdot P \quad \forall (v_i, v_j) \in E_S \]

Proof of correctness:

\[\tau(v_i) + w(v_i) \leq \tau(v_j) + d_{ij} \cdot P \]
Iterative Algorithms

- Eqn. (5) is replaced by

\[
\sum_{\forall i: (v_i, v_k) \in E_R} \sum_{p'=0}^{w(v_i)-1} \sum_{\forall p: l_i \leq t - p' + p \cdot P \leq h_i} x_{i, t - p' + p \cdot P} \leq \alpha(v_k)
\]

\[
\forall 1 \leq t \leq P, \forall v_k \in V_T
\]

Sketch of **Proof**: An operation \(v_i\) starting at \(\tau(v_i)\) uses the corresponding resource at time steps \(t\) with

\[
t = \tau(v_i) + p' - p \cdot P
\]

\[
\forall p', p : 0 \leq p' < w(v_i) \land l_i \leq t - p' + p \cdot P \leq h_i
\]

Therefore, we obtain

\[
\sum_{p'=0}^{w(v_i)-1} \sum_{\forall p: l_i \leq t - p' + p \cdot P \leq h_i} x_{i, t - p' + p \cdot P}
\]
Contents

- Models
- Scheduling without resource constraints
 - ASAP
 - ALAP
 - Timing Constraints
- Scheduling with resource constraints
 - List Scheduling
 - Integer Linear Programming
- Iterative Algorithms
- Dynamic Voltage Scaling
Dynamic Voltage Scaling

- If we transform the DVS problem into an integer linear program optimization: we can optimize the energy in case of dynamic voltage scaling.
- As an example, let us model a set of tasks with dependency constraints.
 - We suppose that a task $v_i \in V_S$ can use one of the execution times $w_k(v_i) \ \forall \ k \in K$ and corresponding energy $e_k(v_i)$. There are $|K|$ different voltage levels.
 - We suppose that there are deadlines $d(v_i)$ for each operation v_i.
 - We suppose that there are no resource constraints, i.e. all tasks can be executed in parallel.
Dynamic Voltage Scaling

\[
\begin{align*}
\text{minimize:} & \quad \sum_{k \in K} \sum_{v_i \in V_S} y_{ik} \cdot e_k(v_i) \\
\text{subject to:} & \quad y_{ik} \in \{0, 1\} \quad \forall v_i \in V_S, k \in K \\
& \quad \sum_{k \in K} y_{ik} = 1 \quad \forall v_i \in V_S \\
& \quad \tau(v_j) - \tau(v_i) \geq \sum_{k \in K} y_{ik} \cdot w_k(v_i) \quad \forall (v_i, v_j) \in E_S \\
& \quad \tau(v_i) + \sum_{k \in K} y_{ik} \cdot w_k(v_i) \leq d(v_i) \quad \forall v_i \in V_S
\end{align*}
\]
Dynamic Voltage Scaling

Explanations:

- The objective functions just sums up all individual energies of operations.
- Eqn. (1) makes decision variables y_{ik} binary.
- Eqn. (2) guarantees that exactly one implementation (voltage) $k \in K$ is chosen for each operation v_i.
- Eqn. (3) implements the precedence constraints, where the actual execution time is selected from the set of all available ones.
- Eqn. (4) guarantees deadlines.