Embedded Systems

7. System Components

Lothar Thiele
Contents of Course

1. Embedded Systems Introduction

2. Software Introduction

3. Real-Time Models

4. Periodic/Aperiodic Tasks

5. Resource Sharing

6. Real-Time OS

7. System Components

8. Communication

9. Low Power Design

10. Models

11. Architecture Synthesis

12. Model Based Design

Software and Programming

Processing and Communication

Hardware
Embedded system hardware is frequently used in a loop ("hardware in a loop"):

- A/D converter
- Sample-and-hold
- Sensors
- Environment
- Information processing
- Display
- D/A converter
- Actuators
- Embedded system

This course
Topics

- **System Specialization**
 - Application Specific Instruction Sets
 - Micro Controller
 - Digital Signal Processors and VLIW
 - Programmable Hardware
 - ASICs
 - System-on-Chip
Implementation Alternatives

Performance

Power Efficiency

Flexibility

General-purpose processors

Application-specific instruction set processors (ASIPs)
 - Microcontroller
 - DSPs (digital signal processors)

Programmable hardware
 - FPGA (field-programmable gate arrays)

Application-specific integrated circuits (ASICs)
Energy Efficiency

© Hugo De Man, IMEC, Philips, 2007
General-purpose Processors

- **High performance**
 - Highly optimized circuits and technology
 - Use of parallelism
 - superscalar: dynamic scheduling of instructions
 - super-pipelining: instruction pipelining, branch prediction, speculation
 - complex memory hierarchy

- Not suited for real-time applications
 - Execution times are highly unpredictable because of intensive resource sharing and dynamic decisions

- **Properties**
 - Good average performance for large application mix
 - High power consumption
General-purpose Processors

- Multicore Processors
 - Potential of providing higher execution performance by exploiting parallelism
 - Especially useful in high-performance embedded systems, e.g. autonomous driving
 - Disadvantages and problems for embedded systems:
 - Increased interference on shared resources such as buses and shared caches
 - Increased timing uncertainty
 - Often, there is limited parallelism in embedded applications
Multicore Examples

48 cores

4 cores
Multicore Examples

Intel Xeon Phi
(5 Billion transistors,
22nm technology,
350mm² area)

Oracle Sparc T5
Embedded Multicore Example

- Recent development:
 - Specialize multicore processors towards real-time processing and low power consumption
 - Target domains:

<table>
<thead>
<tr>
<th>Core Generation</th>
<th>Number of Processing Cores</th>
<th>GFLOPs/W</th>
<th>GOPS/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andey</td>
<td>256</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>Bostan (2014)</td>
<td>256</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>Coolidge (2015)</td>
<td>64/256/1024</td>
<td>75</td>
<td>115</td>
</tr>
</tbody>
</table>
System Specialization

- The main difference between general purpose highest volume microprocessors and embedded systems is **specialization**.

- **Specialization should respect flexibility**
 - application domain specific systems shall cover a class of applications
 - some flexibility is required to account for late changes, debugging

- **System analysis required**
 - identification of application properties which can be used for specialization
 - quantification of individual specialization effects
Architecture Specialization Techniques

A simple system design classification

- DSP subsystems
- Micro controllers

- Processors
- Coprocessors
- Conf. HW functions (FPGA)

- Buses
- Data paths
- Interfaces
- Memory blocks

- Logic cells
- Switch elements
- Memory cells
Example: Code-size Efficiency

- RISC (Reduced Instruction Set Computers) machines designed for run-time-, not for code-size-efficiency.

- **Compression techniques**: key idea
Example: Multimedia-Instructions

Multimedia instructions exploit that many registers, adders etc are quite wide (32/64 bit), whereas most multimedia data types are narrow (e.g. 8 bit per color, 16 bit per audio sample per channel)

2-8 values can be stored per register and added.

4 additions per instruction; carry disabled at word boundaries.
Example: Heterogeneous registers

Example (ADSP 210x):

Different functionality of registers AR, AX, AY, AF, MX, MY, MF, MR
Example: Multiple memory banks or memories

Simplifies parallel fetches
Example: Address generation units

Example (ADSP 210x):

- Data memory can only be fetched with address contained in register file A, but its update can be done in parallel with operation in main data path (takes effectively 0 time).
- Register file A contains several precomputed addresses \(A[i] \).
- There is another register file M that contains modification values \(M[j] \).

- Possible updates:
 \[M[j] := \text{‘immediate’} \]
 \[A[i] := A[i] \pm M[j] \]
 \[A[i] := A[i] \pm 1 \]
 \[A[i] := A[i] \pm \text{‘immediate’} \]
 \[A[i] := \text{‘immediate’} \]
Example: Modulo addressing

Modulo addressing:
Am++ ≡ Am:= (Am+1) mod n
(implements ring or circular buffer in memory)

x[t]: value accessed at time t

.. x[t1-1] x[t1] x[t1-n+1] x[t1-n+2] ..

Memory

.. x[t1-1] x[t1] x[t1+1] x[t1-n+2] ..

Memory

sliding window
Topics

- System Specialization
- Application Specific Instruction Sets
 - *Micro Controller*
 - Digital Signal Processors and VLIW
- Programmable Hardware
- ASICs
- System-on-Chip
Control Dominated Systems

- Reactive systems with *event driven behavior*
- Underlying semantics of system description ("input model of computation") typically (coupled) Finite State Machines or Petri Nets
Microcontroller

- control-dominant applications
 - supports process scheduling and synchronization
 - preemption (interrupt), context switch
 - short latency times
- low power consumption
- peripheral units often integrated
- suited for real-time applications

8051 core
SIECO51 (Siemens)
Microcontroller as a System-on-Chip

- complete system
- timers
- \(\text{i}^2\text{C}-\text{bus and par./ser. interfaces for communication} \)
- A/D converter
- watchdog (SW activity timeout): safety
- on-chip memory (volatile/non-volatile)
- interrupt controller

MSP 430 RISC Processor (Microchip)
Topics

- System Specialization
- Application Specific Instruction Sets
 - Micro Controller
 - *Digital Signal Processors and VLIW*
- Programmable Hardware
- ASICs
- System-on-Chip
Data Dominated Systems

- **Streaming oriented systems** with mostly periodic behavior
- Underlying semantics of input description e.g. flow graphs (“input model of computation”)

Application examples: signal processing, control engineering
Very Long Instruction Word (VLIW)

Key idea: detection of possible parallelism to be done by compiler, not by hardware at run-time (inefficient).

VLIW: parallel operations (instructions) encoded in one long word (instruction packet), each instruction controlling one functional unit. E.g.:
Explicit Parallelism Instruction Computers

The TMS320C62xx VLIW Processor as an example of EPIC:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>G</td>
</tr>
</tbody>
</table>
MAC (multiply & accumulate)

```c
sum = 0.0;
for (i=0; i<N; i++)
    sum = sum + a[i]*b[i];
```

zero-overhead loop
(repeat next instruction N times)

MAC - Instruktion

TMS320C3x Assembler
(Texas Instruments)
Digital Signal Processor

- optimized for data-flow applications
- suited for simple control flow
- parallel hardware units (VLIW)
- specialized instruction set
- high data throughput
- zero-overhead loops
- specialized memory

- suited for real-time applications
Example Infineon

Processor core for car mirrors
Infineon

200MHz, 0.76 Watt
100Gops @ 8b
25Gops @ 32b
Example NXP Trimedia VLIW

Nexperia Digital Video Platform
NXP

1 MIPS, 2 Trimedia
60 coproc, 250 RAM’s
266MHz, 1.5 watt 100 Gops
Topics

- System Specialization
- Application Specific Instruction Sets
 - Micro Controller
 - Digital Signal Processors and VLIW
- Programmable Hardware
- ASICs
- System-on-Chip
FPGA – Basic Structure

- Logic Units
- I/O Units
- Connections
FPGA - Classification

- **Granularity of logic units:**
 - Gate, tables, memory, functional blocks (ALU, control, data path, processor)

- **Communication network:**
 - Crossbar, hierarchical mesh, tree

- **Reconfiguration:**
 - fixed at production time, once at design time, dynamic during run-time
Floor-plan of VIRTEX II FPGAs
Virtex Logic Cell
Example Virtex-6

- Combination of flexibility (CLB’s), Integration and performance (heterogeneity of hard-IP Blocks)

- Development of next generation FPGA: Virtex-6
 - Logic (CLB)
 - Memory (RAM)
 - DSP slice
 - Interfaces (PCI, high speed)
 - Clock distribution
 - Fast communication
XILINX Virtex UltraScale

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective LEs (K)</td>
<td>3,435</td>
</tr>
<tr>
<td>Logic Cells (K)</td>
<td>2,863</td>
</tr>
<tr>
<td>UltraRAM (Mb)</td>
<td>432.0</td>
</tr>
<tr>
<td>Block RAM (Mb)</td>
<td>94.5</td>
</tr>
<tr>
<td>DSP Slices</td>
<td>11,904</td>
</tr>
<tr>
<td>I/O Pins</td>
<td>832</td>
</tr>
</tbody>
</table>

Virtex-6 CLB Slice
Topics

- System Specialization
- Application Specific Instruction Sets
 - Micro Controller
 - Digital Signal Processors and VLIW
- Programmable Hardware
- **ASICs**
- System-on-Chip
Application Specific Circuits (ASICS)

Custom-designed circuits necessary
- if ultimate speed or
- energy efficiency is the goal and
- large numbers can be sold.

Approach suffers from
- long design times,
- lack of flexibility
 (changing standards) and
- high costs
 (e.g. Mill. $ mask costs).
Topics

- System Specialization
- Application Specific Instruction Sets
 - Micro Controller
 - Digital Signal Processors and VLIW
- Programmable Hardware
- ASICs
- System-on-Chip
System-on-Chip

Samsung Galaxy Note II
- Eynos 4412 System on a Chip (SoC)
- ARM Cortex-A9 processing core
- 32 nanometer: transistor gate width
- Four processing cores
Configurable System-On-Chip

Example:
Altera’s SoC FPGA integrates a dual-core ARM Cortex-A9 processor system with a low power FPGA fabrics.
Trend: multiprocessor systems-on-a-chip (MPSoCs)

3G Multi-Media Cellular Phone System

Previous System

New System Using G1

HPA
High Power Amplifier

Baseband Processor

Application Processor

Multi-Media Accelerator

RFIC
Radio Frequency IC

One Chip
SH-MobileG1

HPA
High Power Amplifier

RFIC
Radio Frequency IC

Multiprocessor systems-on-a-chip (MPSoCs)

A Sample of System Architecture using G1
Multiprocessor systems-on-a-chip (MPSoCs)

SH-MobileG1: Chip Overview

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die size</td>
<td>11.15mm x 11.15mm</td>
</tr>
<tr>
<td>Process</td>
<td>90nm LP 8M(7Cu+1Al) CMOS dual-Vth</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>1.2V(internal), 1.8/2.5/3.3V(I/O)</td>
</tr>
<tr>
<td># of TRs, gate, memory</td>
<td>181M TRs, 13.5M Gate, 20.2 Mbit mem</td>
</tr>
</tbody>
</table>
Multiprocessor systems-on-a-chip (MPSoCs)