HW/SW Codesign

Exercise 1: StateCharts

Pengcheng Huang
phuang@ethz.ch

Based on slides of Mirela Botezatu
StateCharts

• Specification model
 • Suitable for complex systems, since they can model hierarchy and concurrency
 • Transitions can be guarded by conditions
 • Transitions can be associated with actions
Basic States and Super-States

• **Basic States**: states not composed of other states

• **Super-States**: states containing other states

S: Super-State

E: Sub-State of S

E: Basic State

S: Ancestor State of E
Hierarchy: OR-Super-States

- **OR-Super-State:**
 - a Super-State A in which *exactly one* of its (immediate) sub-states (X, Y, Z) is active whenever A is active

Sub-states are related by "exclusive-or"
Concurrency: AND-Super-States

• **AND-Super-State:**
 • a Super-State A in which *all* its (immediate) sub-states (B, C) are active whenever A is active

```
sub-states are related by “and”
```

```
A
```

```
B
  X
```

```
C
  Y
```
Tree Representation

- **B: OR-Super-State**
- **A: AND-Super-State**
- **C: Basic State**

- Super-States have **at least one** children
- Basic States have **no** children
Set of States

• Basic States
 • State

• OR-Super-States
 • Union of children

• AND-Super-States
 • Cartesian product of children

(computed traversing the tree from leaves to root)
Edge Labels

- **Events**: exist only *until next model evaluation*
- **Conditions**: refer to values of variables that *keep their value until they are reassigned*
- **Actions**: assignments to variables or creations of events
Edge Labels: Three-phases evaluation

1. **Evaluate** effect of *external changes* on events and conditions

2. **Compute** set of transitions to be made in the *current step* and *right hand sides* of assignments

3. **Activate** transitions, assign new values to variables

```
swap

e/a:=b

e/b:=a
```

/a:=1; b:=0
Exercises 1.1.c-f

B: OR-Super-State A: AND-Super-State D1: Basic State

In the Exercise, *external* events are assumed not to occur contemporarily

b: Event [D2]: Condition c: Action (event generation)
Exercise 1.1.d

• Compute the set of states

• **Hint**: expand the final formula: it will be useful for Exercise 1.1.f, since it will list all possible states for Super-State A

• **Example**:

\[
(Q_1 \cup Q_2) \times (Q_3 \cup Q_4) = (Q_1, Q_3) \cup (Q_1, Q_4) \cup (Q_2, Q_3) \cup (Q_2, Q_4)
\]
Exercise 1.1.e

- A sequence of events a,b,e,b,d,b is applied: what is the sequence of states that are passed through?

<table>
<thead>
<tr>
<th>Event</th>
<th>State B</th>
<th>State C</th>
<th>State A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1</td>
<td>G</td>
<td>1,G</td>
</tr>
<tr>
<td>a</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>b</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>e</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>b</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>d</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>b</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Exercise 1.1.f

• Convert the StateChart to a FSM

• Hints:
 1. start from drawing all the possible states for Super-State A (computed in exercise 1.1.d)
 2. Draw all possible transitions
 3. Remove possible unnecessary states
Exercise 1.1.g

Different notation:
Action: ok
Trigger: coin_in
is equivalent to:
coin_in/ok
Exercise 1.1.c: Solution

A: AND-Super-State

B, C, D: OR-Super-States
Exercise 1.1.d: Solution

\[Z_A = Z_B \times Z_C \]
\[= (Z_1 \cup Z_2) \times (Z_G \cup Z_D) \]
\[= (Z_1 \cup Z_2) \times (Z_G \cup (Z_{D1} \cup Z_{D2})) \]
\[= (Z_1, Z_G) \cup (Z_1, Z_{D1}) \cup (Z_1, Z_{D2}) \cup (Z_2, Z_G) \cup (Z_2, Z_{D1}) \cup (Z_2, Z_{D2}) \]
Exercise 1.1.e: Solution

Assumption used in the solution:
External events can only be detected after a stable state has been reached (see lecture slide 2-46)

<table>
<thead>
<tr>
<th>Event</th>
<th>State B</th>
<th>State C</th>
<th>State A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1</td>
<td>G</td>
<td>1,G</td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td>D1</td>
<td>2,D1</td>
</tr>
</tbody>
</table>

1. Event a activates edge G->D (i.e., G->D1) in Super-State C
2. Edge G->D creates event c, that in turn activates edge 1->2 in Super-State B, which has no actions associated
3. Transitions G->D1 and 1->2 are activated, so that the global transition for Super-State A is (1,G)->(2,D1)
Exercise 1.1.e: Solution

No variables in this StateChart!
Exercise 1.1.f: Solution

From Exercise 1.1.d:

$$Z_A = Z_B \times Z_C$$

$$= (Z_1 \cup Z_2) \times (Z_G \cup Z_D)$$

$$= (Z_1 \cup Z_2) \times (Z_G \cup (Z_{D1} \cup Z_{D2}))$$

$$= (Z_1, Z_G) \cup (Z_1, Z_{D1}) \cup (Z_1, Z_{D2}) \cup (Z_2, Z_G) \cup (Z_2, Z_{D1}) \cup (Z_2, Z_{D2})$$
Exercise 1.1.f: Solution
Exercise 1.1.f: Solution
Exercise 1.1.f: Solution

[Diagram description]

- Node 1,G connected to 2,G by edge c.
- Node 1,D1 connected to 2,D1 by edge a.
- Node 1,D2.
- Node 2,G.
- Node 2,D1.
- Node 2,D2.
Exercise 1.1.f: Solution

Final FSM (non minimized)
Exercise 1.1.f: Solution

State (1,D1) is not reachable!
Exercise 1.1.f: Solution

Final FSM (minimized)
Exercise 1.1.g: Solution

"honest" trace

Two steps of the same evaluation

```
A_1.0 \rightarrow A_1.1
A_2.A \rightarrow A_2.B
A_2.B \rightarrow A_2.D
A_2.D \rightarrow A_2.A
A_1.1 \rightarrow A_1.0
```

"cheater" trace

Two steps of the same evaluation

```
A_1.0 \rightarrow A_1.1
A_2.A \rightarrow A_2.B
A_2.B \rightarrow A_2.D
A_1.1 \rightarrow A_1.0
A_2.D \rightarrow A_2.A
```

Diagram:

- **A1**
 - **0**
 - Action: ok
 - Trigger: coin_in
 - Action: coin_out; reset
 - Trigger: cancel
 - **1**
 - Action: done

- **A2**
 - **A**
 - Action: done
 - Trigger: drink_ready
 - Action: start_coffee
 - Trigger: req_coffee
 - **B**
 - Action: start_tea
 - Trigger: req_tea
 - Action: done
 - Trigger: drink_ready
Exercise 1.1.g: Solution

2: New State

block: New Event