1.1 StateCharts
The lecture has introduced Harel’s StateChart formalism. StateCharts are a popular specification model for embedded systems.

1.1.a) Advantages of StateCharts
What are the most important extensions of the StateChart model in comparison to an ordinary finite state machine (FSM)?
StateCharts can model hierarchy and concurrency. Transitions can be guarded (conditionally enabled). Furthermore, transitions can be associated with actions. Actions can perform computations on variables, as well as generate new events.

1.1.b) Disadvantages of StateCharts
What are the disadvantages of the StateChart formalism?
Although StateCharts scale better than ordinary FSMs, they grow in size for large systems and tend to be hard to understand. There is only limited potential for re-use. Actions associated with transitions provide a powerful extension, but on the other hand, the extensive use of actions moves parts of the system state information from the states themselves to the variables. This hidden state makes system analysis difficult.

1.1.c) Tree of states for StateChart
Given the StateChart in Figure 1. Draw the state space of the StateChart as a tree, which shows the hierarchy

![StateChart Diagram]

Figure 1: StateChart

of states and denotes the state types (basic state, sequential states, and parallel states).
The state space is shown in Figure 2.

1.1.d) Formal computation of state space
How would you formally compute the set of states? Compute the set of states for the hierarchical automata which is defined by the StateChart from Fig. 1.
1.1.e) Analysis

The automaton defined by the StateChart from Fig. 1 passes through a number of states, when external events are applied. Show the sequence of state that are passed through, starting from the initial state, for the following sequence of events: a,b,e,b,d,b. Use a table notation.

<table>
<thead>
<tr>
<th>Event</th>
<th>State B</th>
<th>State C</th>
<th>State A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1</td>
<td>G</td>
<td>1,G</td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td>D1</td>
<td>2,D1</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>D1</td>
<td>2,D1</td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td>D2</td>
<td>2,D2</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>D2</td>
<td>1,D2</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>G</td>
<td>1,G</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>G</td>
<td>1,G</td>
</tr>
</tbody>
</table>

1.1.f) Conversion of StateChart to a finite state machine (FSM)

Draw a finite state machine which is equivalent to the StateChart from Fig. 1. Minimize the number of states. Figure 3 show an equivalent FSM that is not minimized. Since state (1,D) is unreachable, it can be removed, and the minimized FSM in Figure 4 results.

1.1.g) StateChart model of a vending machine

The StateChart model of a simplified vending machine is shown in Figure 5.

- Describe the trace of transitions occurring when the user inserts a coin and orders a tea.
- The control of the vending machine has a bug that allows the user to cheat. Describe the trace of transitions that illustrate the bug.
- Draw the corresponding StateChart that fixes the bug.
- Optional: Extend the StateChart such that it accepts 0.05, 0.10, 0.20, and 0.50 coins. Coffee costs 0.75 and tea costs 0.50.
• $A_{1.0} \xrightarrow{\text{coin in/ok}} A_{1.1}$
$A_{2.A} \xrightarrow{\text{ok/}} A_{2.B}$
$A_{2.B} \xrightarrow{\text{req,tea/start,tea}} A_{2.D}$
$A_{1.1} \xrightarrow{\text{cancel,coin out, reset}} A_{1.0}$
$A_{2.D} \xrightarrow{\text{drink,ready/done}} A_{2.A}$

• One possible solution is shown in Figure 6.
Figure 5: Vending Machine
Input events from the environment
- coin_in
- cancel
- drink_ready
- req_coffee
- req_tea

Output events to the environment
- start_coffee
- start_tea
- coin_out

Figure 6: Fixed Vending Machine