HW/SW Codesign

Exercise 2: Kahn Process Networks and Synchronous Data Flows

4. October 2017

Stefan Draskovic
stefan.draskovic@tik.ee.ethz.ch
slides by: Mirela Botezatu
Kahn Process Network (KPN)

• Specification model
 – Proposed as language for parallel programming
 – Processes communicate via First-In-First-Out (FIFO) queues of \textit{infinite size}
 – \textbf{Read}: destructive and \textit{blocking}
 • A process stays blocked on a \textit{wait} until something is being sent on the channel by another process
 – \textbf{Write}: \textit{non-blocking}
 • A process can never be prevented from performing a \textit{send} on a channel
KPNs: Graphical Representation

- Oriented graph with labeled nodes and edges
 - Nodes: processes
 - Edges: channels (one-directional)
 - Incoming edges with only end vertices: inputs
 - Outgoing edges with only origin vertices: outputs
KPNs: Assumptions and Restrictions

- Processes can communicate **only** via FIFO queues
- A channel transmits information within an unpredictable but **finite** amount of time
- At any time, a process is either computing or waiting on **exactly one** of its input channels
 - (i.e., no two processes are allowed to send data on the same channel)
- Each process follows a sequential program
KPNs: Monotonicity

A monotonic process F generates from an ordered set of input sequences $X \subseteq X'$ an ordered set of output sequences: $X \subseteq X' \Rightarrow F(X) \subseteq F(X')$

- Ordered set of sequences $X \subseteq X'$ if for each sequence $i : X_i \subseteq X_i'$
 $([x_1] \subseteq [x_1, x_2] \subseteq [x_1, x_2, x_3, ...])$

Explanation:
- Receiving more input at a process can only provoke it to send more output
- A process does not need to have all of its input to start computing: future inputs concern only future outputs
KPNs: Determinacy

• A process network is **determinate** if histories of all channels depend **only** on histories of input channels
 – History of a channel: sequence of tokens that have been both written and read

• In a determinate process network, functional behavior is **independent** of timing

• A KPN consisting of monotonic processes is determinate
Synchronous Data Flow (SDF)

- Restriction of KPNs:
 - Allows *compile-time* scheduling
 - Each process reads/writes a *fixed* number of tokens at each firing (specified a priori)

- Scheduling in two steps:
 - Establish relative execution rates for the processes (solve a system of linear equations)
 - Determine the periodic schedule(s)

- The schedule can be repeatedly executed *without accumulating tokens* in the buffers
Synchronous Data Flow (SDF)

- Topology matrix M for a SDF with n processes
 - A **consisted** SDF has a periodic schedule iff M has rank $r = n-1$ (i.e., $M \cdot q = 0$ has a unique smallest integer solution $q \neq 0$)
 - For an **inconsistent** SDF, M has rank $r = n$ (i.e., $M \cdot q = 0$ has only the all-zeros solution)
 - For a **disconnected** SDF, M has rank $r < n-1$ (i.e., $M \cdot q = 0$ has two- or higher-dimensional solutions)

- Example

 \[
 a-c = 0 \\
 a-2b = 0 \\
 3b-c = 0 \\
 M = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -2 & 0 \\ 0 & 3 & -1 \end{bmatrix}
 \]

 $n = 3$, $\text{rank}(M) = 3$ \[\Rightarrow \text{inconsistent SDF: there exists no possible schedule to execute it without an unbounded accumulation of tokens} \]
Exercise 2.1.a: “One Peek Merge”

• Merge process that merges data tokens from input channels $L1$ and $L2$ into one output channel out

• Two different algorithms are provided

• Examine determinacy
 – *Is the output sequence determined regardless of the arrival order of the input sequences?*

• Examine fairness
 – *Does the process serve the input sequences without letting them starve, even if they have different lengths?*
Exercise 2.1.a: Solution Algorithm 1

• Non-determinate:
 – The output sequence depends on the arrival order of the input sequences

\[X = ([x_1, x_2], [\phi]); X' = ([x_1, x_2], [y_1]) \]
\[F(X) = ([x_1, x_2]); F(X') = ([x_1, y_1, x_2]) \]
\[X \subseteq X' \text{ but } F(X) \not\subseteq F(X') \]

• Fair:
 – The two input sequences are served with a First-Come-First-Serve policy: the merge process does not let any of them starve
Exercise 2.1.a: Solution Algorithm 2

• Determinate:
 – The output sequence is determined regardless of the arrival order of the input sequences

• Unfair:
 – The merge process lets a longer sequence starve while waiting for a (possibly never appearing) token from the shorter sequence to perform the comparison
Exercise 2.1.b

• Draw a KPN that generates the sequence $n(n+1)/2$

• Use basic processes:
 a) **Sum of two numbers**: sends to the output channel the sum of the numbers received from the two input channels
 b) **Product of two numbers**: sends to the output channel the product of the numbers received from the two input channels
 c) **Duplication of a number**: sends to the two output channels the number received from the input channel
 d) **Constant generation**: sends to the output channel firstly a constant i and then the number received from the input channel
 e) **Sink process**: waits infinitely often for a number from the input channel and throw it away
Exercise 2.1.b

• Hints:

• $f(n) = n(n+1)/2 = 0+1+2+3+\ldots+n$

• Transform it into a recursive expression:
 - $f(0) = 0$
 - $f(n) = n+f(n-1), \quad n \geq 1$

• Draw the KPN starting from the recursive expression
Exercise 2.1.b: Solution

• $f(n) = \frac{n(n+1)}{2} = 0+1+2+3+\ldots+n$

• $f(0) = 0, \ f(n) = n+f(n-1), \ n \geq 1$

Generate $n=1,2,3,\ldots$

Compute and store $f(n)$
At the beginning:
$f(0)=0$ without waiting for n
Exercise 2.1.b: Solution

- \(f(n) = \frac{n(n+1)}{2} = 0+1+2+3+\ldots+n \)
- \(f(0) = 0, \quad f(n) = n+f(n-1), \quad n \geq 1 \)

Generate \(n=1,2,3,\ldots \)

Compute and store \(f(n) \)

At the beginning:
\(f(0)=0 \) without waiting for \(n \)
Exercise 2.1.b: Solution

Generate \(n=1,2,3,\ldots \)

Compute and store \(f(n) \)
At the beginning: \(f(0)=0 \) without waiting for \(n \)

History of each channel

- \([1,1,1,1,\ldots]\)
- \([1,2,3,4,\ldots]\)
- \([1,3,6,10,\ldots]\)
- \([0,1,3,6,\ldots]\)
- \([1,1,1,1,\ldots]\)
- \([2,3,4,5,\ldots]\)
- \([1,2,3,4,\ldots]\)
- \([0,1,3,6,\ldots]\)
- \([0,1,3,6,\ldots]\)
- \([0,1,3,6,\ldots]\)
- \([x_1,x_2,x_3,x_4,\ldots]\)

\(C_0 \rightarrow D \rightarrow C_1 \rightarrow D \rightarrow S \)
Q:

• How does a basic process that sums two numbers look like?

• for (;;) {
 a := wait (in_1);
 b := wait (in_2);
 send (a+b, out);
}
Exercise 2.2.a

- Two SDF graphs are given:

- Determine the topological matrices
- Check their consistency (i.e., compute the rank for M)
- If consistent, determine number of firings for each node required to have a periodic execution
Exercise 2.2.a: Solution

- $n = 2, \quad \text{rank}(M) = 1$
 => consistent
- Fire numbers: a:1, b:1
- Possible schedules: (BA)*

- $n = 2, \quad \text{rank}(M) = 2$
 => inconsistent
- No schedule can prevent from an unbounded accumulation of tokens
Exercise 2.2.b

- A SDF graph is given:

- Determine the topological matrix
- Check its consistency (i.e., compute the rank for M)
- If consistent, determine number of firings for each node required to have a periodic execution
Exercise 2.2.b: Solution

\[M = \begin{bmatrix}
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -77 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -77 \\
\end{bmatrix} \]

- \(n = 6 \),
- \(\text{rank}(M) = 5 \)

\((\text{row6}=\text{row3}+\text{row4}+77*\text{row5}) \)

=> consistent

- Fire numbers:
 Quelle:77, DCT:77,
 Q:77, RLC:77, C:1, R:1