3.1 Specification Graph

Fig. 1a) shows a task graph, and Fig. 1b) the available architecture to implement it. The four tasks of the task graph, T1 ... T4, can be executed on different components of the target architecture, as defined by Table 1.

<table>
<thead>
<tr>
<th>Component</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIPS</td>
<td>√</td>
<td>—</td>
<td>—</td>
<td>√</td>
</tr>
<tr>
<td>DSP</td>
<td>—</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>FPGA</td>
<td>—</td>
<td>√</td>
<td>√</td>
<td>—</td>
</tr>
<tr>
<td>ASIC</td>
<td>—</td>
<td>—</td>
<td>√</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 1: Possible bindings for tasks T1 ... T4.

3.1.a) Architecture Graph

Construct the problem graph for the task graph in Fig. 1a) by inserting communication nodes. Construct the architecture graph for the target architecture in Fig. 1b).

3.1.b) Specification Graph

Construct the specification graph. Which constraints for the binding and the allocation can be seen? Modify the target architecture to get more implementation alternatives.

Solution:

Binding T1 to the MIPS and T2 to the FPGA/ASIC is not feasible, since MIPS and FPGA are not directly connected in the architecture. Other pairs of bindings for which the same restriction applies are: T1 MIPS and T3 FPGA/ASIC, T2 FPGA/ASIC and T4 MIPS, T3 FPGA/ASIC and T4 MIPS. Combining the functional and connectedness restrictions, we can conclude that FPGA and ASIC can never be utilized for these settings.

A solution to resolve this problem is for instance to merge Bus 1 and Bus 2 to a common shared bus.

3.2 Clustering

Generate partitions for the graph in Fig. 3 by hierarchical clustering.

The edge weights in Fig. 3 denote the closeness between the objects. For computing the closeness values of the newly inserted edges to the hierarchical clusters use:

(a) the average value

(b) the minimum

of the closeness values before the clustering.

Solution:
Figure 1: Task graph and target architecture

Figure 2: Specification Graph
Figure 3: Graph with objects

Figure 4: Hierarchical Clustering with "average closeness"

Figure 5: Hierarchical Clustering with "minimum closeness"