HW/SW Codesign

Exercise 2:
Kahn Process Networks and Synchronous Data Flows

1. October 2014

Mirela Botezatu
bmirela@student.ethz.ch
Kahn Process Network (KPN)

• Specification model
 – Proposed as language for parallel programming
 – Processes communicate via First-In-First-Out (FIFO) queues of infinite size
 – **Read**: destructive and blocking
 • A process stays blocked on a *wait* until something is being sent on the channel by another process
 – **Write**: non-blocking
 • A process can never be prevented from performing a *send* on a channel
KPNs: Graphical Representation

- Oriented graph with labeled nodes and edges
 - Nodes: processes
 - Edges: channels (one-directional)
 - Incoming edges with only end vertices: inputs
 - Outgoing edges with only origin vertices: outputs
KPNs: Assumptions and Restrictions

- Processes can communicate *only* via FIFO queues
- A channel transmits information within an unpredictable but *finite* amount of time
- At any time, a process is either computing or waiting on *exactly one* of its input channels
 - *(i.e., no two processes are allowed to send data on the same channel)*
- Each process follows a sequential program
KPNs: Monotonicity

A monotonic process \(F \) generates from an ordered set of input sequences \(X \subseteq X' \) an ordered set of output sequences: \(X \subseteq X' \Rightarrow F(X) \subseteq F(X') \)

- Ordered set of sequences \(X \subseteq X' \) if for each sequence \(i : X_i \subseteq X_i' \)

 \([x_1] \subseteq [x_1, x_2] \subseteq [x_1, x_2, x_3, ...]\)

- Explanation:
 - Receiving more input at a process can only provoke it to send more output
 - A process does not need to have all of its input to start computing: future inputs concern only future outputs
KPNs: Determinacy

• A process network is determinate if histories of all channels depend only on histories of input channels
 – History of a channel: sequence of tokens that have been both written and read

• In a determinate process network, functional behavior is independent of timing

• A KPN consisting of monotonic processes is determinate
Adding Non-Determinacy

• Possible ways to introduce non-monotonic behavior
 – Allow processes to perform a non-blocking test for emptiness
 – Allow two or more processes to read from or to write to the same channel
 – Allow processes to share a variable
Synchronous Data Flow (SDF)

• Restriction of KPNs:
 – Allows compile-time scheduling
 – Each process reads/writes a fixed number of tokens at each firing (specified a priori)

• Scheduling in two steps:
 – Establish relative execution rates for the processes (solve a system of linear equations)
 – Determine the periodic schedule(s)

• The schedule can be repeatedly executed without accumulating tokens in the buffers
Synchronous Data Flow (SDF)

- Topology matrix M for a SDF with n processes
 - A **connected** SDF has a periodic schedule **iff** M has rank $r = n - 1$
 (i.e., $Mq = 0$ has a unique smallest integer solution $q \neq 0$)
 - For an **inconsistent** SDF, M has rank $r = n$
 (i.e., $Mq = 0$ has only the all-zeros solution)
 - For a **disconnected** SDF, M has rank $r < n - 1$
 (i.e., $Mq = 0$ has two- or higher-dimensional solutions)

- Example

 $\begin{bmatrix}
 1 & 0 & -1 \\
 1 & -2 & 0 \\
 0 & 3 & -1
 \end{bmatrix}$

 \[n = 3, \quad \text{rank}(M) = 3 \]

 \[\Rightarrow \text{inconsistent SDF: there exists no possible schedule to execute it without an unbounded accumulation of tokens} \]
Exercise 2.1.a: “One Peek Merge”

• Merge process that merges data tokens from input channels \(L1 \) and \(L2 \) into one output channel \(out \)

• Two different algorithms are provided

• Examine determinacy
 – *Is the output sequence determined regardless of the arrival order of the input sequences?*

• Examine fairness
 – *Does the process serve the input sequences without letting them starve, even if they have different lengths?*
Exercise 2.1.a: “One Peek Merge”

for (;;) {
 if (test(L1) & test(L2)) {
 X = read(L1); Y = read(L2); write(out,X); write(out,Y); }
 else if (test(L1) & !test(L2)) {
 X = read(L1); write(out,X); }
 else if (!test(L1) & test(L2)) {
 Y = read(L2); write(out,Y); }
}

L1[X]: returns true when a token X is available at channel L1
L1[∅]: returns true when no tokens are available at channel L1

Check if both channels have a token
Exercise 2.1.a: “One Peek Merge”

L1[X]: returns *the serial number* of the token X available at channel L1.

for (;;) {
 if (test(L1) & test(L2)) {
 s1 = getSerial(L1);
 s2 = getSerial(L2);
 if (s1 == s2) {
 X = read(L1); Y = read(L2);
 write(out, X); write(out, Y);
 } else if (s1 < s2) {
 X = read(L1);
 write(out, X);
 } else if (s1 > s2) {
 Y = read(L2);
 write(out, Y);
 }
 } else if (s1 < s2) {
 X = read(L1);
 write(out, X);
 } else if (s1 > s2) {
 Y = read(L2);
 write(out, Y);
 }
}
Exercise 2.1.b

• Draw a KPN that generates the sequence $n(n+1)/2$
• Use basic processes:

a) **Sum of two numbers**: sends to the output channel the sum of the numbers received from the two input channels

b) **Product of two numbers**: sends to the output channel the product of the numbers received from the two input channels

c) **Duplication of a number**: sends to the two output channels the number received from the input channel

d) **Constant generation**: sends to the output channel firstly a constant i and then the number received from the input channel

e) **Sink process**: waits infinitely often for a number from the input channel and throw it away
Exercise 2.1.b

• Hints:
 • $f(n) = \frac{n(n+1)}{2} = 0+1+2+3+\ldots+n$
 • Transform it into a recursive expression:
 – $f(0) = 0$
 – $f(n) = n+f(n-1), \quad n \geq 1$
 • Draw the KPN starting from the recursive expression
Exercise 2.2.a

- Two SDF graphs are given:

 - Determine the topological matrices
 - Check their consistency (i.e., compute the rank for M)
 - If consistent, determine number of firings for each node required to have a periodic execution
Exercise 2.2.b

- A SDF graph is given:

- Determine the topological matrix
- Check its consistency (i.e., compute the rank for M)
- If consistent, determine number of firings for each node required to have a periodic execution
Exercise 2.1.a: Solution

- **Non-deterministic:**
 - The output sequence depends on the arrival order of the input sequences

- **Fair:**
 - The two input sequences are served with a *First-Come-First-Serve* policy: the merge process does not let any of them starve

Algorithm 1

```plaintext
if L1[X], L2[Y] then
    del(X), del(Y), out[X,Y]
else if L1[X], L2[φ] then
    del(X), out[X]
else if L1[φ], L2[Y] then
    del(Y), out[Y]
else if L1[φ], L2[φ] then
    no operation
end if
```
Exercise 2.1.a: Solution

Algorithm 2

if \(L_1[X] = L_2[Y] \) then
 del(X), del(Y), out[X,Y]
else if \(L_1[X] < L_2[Y] \) then
 del(X), out[X]
else if \(L_1[X] > L_2[Y] \) then
 del(Y), out[Y]
end if

- **Deterministic:**
 - The output sequence is determined regardless of the arrival order of the input sequences

- **Unfair:**
 - The merge process lets a longer sequence starve while waiting for a (possibly never appearing) token from the shorter sequence to perform the comparison
Exercise 2.1.b: Solution

- \(f(n) = \frac{n(n+1)}{2} = 0+1+2+3+\ldots+n \)
- \(f(0) = 0, \quad f(n) = n+f(n-1), \quad n \geq 1 \)

Generate \(n=1,2,3,\ldots \)

Compute and store \(f(n) \)
At the beginning:
\(f(0)=0 \) without waiting for \(n \)
Exercise 2.1.b: Solution

• \(f(n) = \frac{n(n+1)}{2} = 0 + 1 + 2 + 3 + \ldots + n \)
• \(f(0) = 0, \quad f(n) = n + f(n-1), \quad n \geq 1 \)

Generate \(n=1,2,3,\ldots \)

Compute and store \(f(n) \)
At the beginning:
\(f(0)=0 \) without waiting for \(n \)
Exercise 2.1.b: Solution

Generate \(n=1,2,3,\ldots \)

Compute and store \(f(n) \)
At the beginning: \(f(0)=0 \) without waiting for \(n \)

\[x_1, x_2, x_3, x_4, \ldots \]: history of each channel
Exercise 2.2.a: Solution

\[M = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \]

- \(n = 2, \quad \text{rank}(M) = 1 \)
 \(\Rightarrow \) consistent
- Fire numbers: a:1, b:1
- Possible schedules: (BA)*

\[M = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix} \]

- \(n = 2, \quad \text{rank}(M) = 2 \)
 \(\Rightarrow \) inconsistent
- No schedule can prevent from an unbounded accumulation of tokes
Exercise 2.2.b: Solution

\[M = \begin{bmatrix}
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -77 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & -77 & 0
\end{bmatrix} \]

- \(n = 6, \)
- \(\text{rank}(M) = 5 \)
 \((\text{row6=row3+row4+77*row5}) \)
 \(\Rightarrow \) consistent
- Fire numbers:
 Quelle:77, DCT:77, Q:77, RLC:77, C:1, R:1