HW/SW Codesign

Exercise 2:
Kahn Process Networks and Synchronous Data Flows

30. September 2015

Rehan Ahmed

Slides Prepared by Mirela Botezatu
Kahn Process Network (KPN)

read: destructive and blocking (reading an empty channel blocks until data is available)

write: non-blocking

FIFO: infinite size

Unique attribute: determinate
KPNs: Monotonicity

A monotonic process F generates from an ordered set of input sequences $X \subseteq X'$ an ordered set of output sequences: $X \subseteq X' \Rightarrow F(X) \subseteq F(X')$

- Ordered set of sequences $X \subseteq X'$ if for each sequence $i : X_i \subseteq X_i'$ ($[x_1] \subseteq [x_1, x_2] \subseteq [x_1, x_2, x_3, ...]$)

- Explanation:
 - Receiving more input at a process can only provoke it to send more output
 - A process does not need to have all of its input to start computing: future inputs concern only future outputs
KPNs: Determinacy

• A process network is **determinate** if histories of all channels depend **only** on histories of input channels
 – History of a channel: sequence of tokens that have been both written and read

• In a determinate process network, functional behavior is **independent** of timing

• A KPN consisting of monotonic processes is determinate
Synchronous Data Flow (SDF)

- Each process reads and writes a fixed number of tokens each time it fires.
- Scheduling in two steps:
 - Establish relative execution rates for the processes (solve a system of linear equations)
 - Determine the periodic schedule(s)
- The schedule can be repeatedly executed without accumulating tokens in the buffers.

Diagram:

```
1 1 2 3 2 7 8 7 5 1

Upsampler

Downsampler
```
Synchronous Data Flow (SDF)

- **Topology matrix** M for a SDF with n processes
 - A **connected** SDF has a periodic schedule iff M has rank $r = n-1$ (i.e., $Mq=0$ has a unique smallest integer solution $q \neq 0$)
 - For an **inconsistent** SDF, M has rank $r = n$ (i.e., $Mq=0$ has only the all-zeros solution)
 - For a **disconnected** SDF, M has rank $r < n-1$ (i.e., $Mq=0$ has two- or higher-dimensional solutions)

- **Example**

 $\begin{align*}
 a-c &= 0 \\
 a-2b &= 0 \\
 3b-c &= 0
 \end{align*}$

 \[M = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -2 & 0 \\ 0 & 3 & -1 \end{bmatrix} \]

 $n = 3$, $\text{rank}(M) = 3$ \implies$ inconsistent SDF: there exists no possible schedule to execute it without an unbounded accumulation of tokens
Exercise 2.1.a: “One Peek Merge”

• Merge process that merges data tokens from input channels L_1 and L_2 into one output channel out

• Two different algorithms are provided

• Examine determinacy
 – Is the output sequence determined regardless of the arrival order of the input sequences?

• Examine fairness
 – Does the process serve the input sequences without letting them starve, even if they have different lengths?
Exercise 2.1.a: “One Peek Merge”

Algorithm 1

loop
 X=Peek(L1)
 Y=Peek(L2)
 if \(X \neq \phi \) and \(Y \neq \phi \) then
 out\([X,Y]\), Del(L1), Del(L2)
 else if \(X \neq \phi \) and \(Y == \phi \) then
 out\([X]\), Del(L1)
 else if \(X == \phi \) and \(Y \neq \phi \) then
 out\([Y]\), Del(L2)
 else if \(X == \phi \) and \(Y == \phi \) then
 no operation
 end if
end loop
Exercise 2.1.a: “One Peek Merge”

Algorithm 2

```
loop
  X = Peek(L1)
  Y = Peek(L2)
  if X == \phi or Y == \phi then
    no operation
  else if X == Y then
    out[X,Y], Del(L1), Del(L2)
  else if X < Y then
    out[X], Del(L1), Del(L2)
  else if X > Y then
    out[Y], Del(L1), Del(L2)
end if
end loop
```
Exercise 2.1.b

• Draw a KPN that generates the sequence $n(n+1)/2$

• Use basic processes:
 a) **Sum of two numbers**: sends to the output channel the sum of the numbers received from the two input channels
 b) **Product of two numbers**: sends to the output channel the product of the numbers received from the two input channels
 c) **Duplication of a number**: sends to the two output channels the number received from the input channel
 d) **Constant generation**: sends to the output channel firstly a constant i and then the number received from the input channel
 e) **Sink process**: waits infinitely often for a number from the input channel and throw it away
Exercise 2.1.b

• Hints:
• \(f(n) = \frac{n(n+1)}{2} = 0+1+2+3+\ldots+n \)
• Transform it into a recursive expression:
 – \(f(0) = 0 \)
 – \(f(n) = n+f(n-1), \, n \geq 1 \)
• Draw the KPN starting from the recursive expression
Exercise 2.2.a

• Two SDF graphs are given:

- Determine the topological matrices
- Check their consistency (i.e., compute the rank for M)
- If consistent, determine number of firings for each node required to have a periodic execution
Exercise 2.2.b

- A SDF graph is given:

- Determine the topological matrix
- Check its consistency (i.e., compute the rank for M)
- If consistent, determine number of firings for each node required to have a periodic execution
Exercise 2.1.a: Solution

- **Non-deterministic:**
 - The output sequence depends on the arrival order of the input sequences

 \[
 I = ([x_1, x_2], [\emptyset]); \\
 I' = ([x_1, x_2], [y_1])
 \]

 \[
 F(I) = (x_1, x_2); \\
 F(I') = (x_1, y_1, x_2)
 \]

 \(I \subseteq I' \) but \(F(I) \not\subseteq F(I') \)

- **Fair:**
 - The two input sequences are served with a *First-Come-First-Serve* policy: the merge process does not let any of them starve

```
Algorithm 1

    loop
        X = Peek(L1)
        Y = Peek(L2)
        if X \neq \emptyset and Y \neq \emptyset then
            out[X, Y], Del(L1), Del(L2)
        else if X \neq \emptyset and Y == \emptyset then
            out[X], Del(L1)
        else if X == \emptyset and Y \neq \emptyset then
            out[Y], Del(L2)
        else if X == \emptyset and Y == \emptyset then
            no operation
        end if
    end loop
```
Exercise 2.1.a: Solution

- **Deterministic:**
 - The output sequence is determined regardless of the arrival order of the input sequences

- **Unfair:**
 - The merge process lets a longer sequence starve while waiting for a (possibly never appearing) token from the shorter sequence to perform the comparison

Algorithm 2

```
loop
    X = Peek(L1)
    Y = Peek(L2)
    if X == φ or Y == φ then
        no operation
    else if X == Y then
        out[X, Y], Del(L1), Del(L2)
    else if X < Y then
        out[X], Del(L1), Del(L2)
    else if X > Y then
        out[Y], Del(L1), Del(L2)
    end if
end loop
```
Exercise 2.1.b: Solution

• \(f(n) = n(n+1)/2 = 0+1+2+3+\ldots+n \)
• \(f(0) = 0, \quad f(n) = n+f(n-1), \quad n \geq 1 \)

Generate \(n=1,2,3,\ldots \)

Compute and store \(f(n) \)
At the beginning:
\(f(0)=0 \) without waiting for \(n \)
Exercise 2.1.b: Solution

- \(f(n) = \frac{n(n+1)}{2} = 0+1+2+3+\ldots+n \)
- \(f(0) = 0, \quad f(n) = n+f(n-1), \quad n \geq 1 \)

Generate \(n=1,2,3,\ldots \)

Compute and store \(f(n) \)
At the beginning: \(f(0)=0 \) without waiting for \(n \)
Exercise 2.1.b: Solution

Generate $n=1,2,3,...$

Compute and store $f(n)$
At the beginning: $f(0)=0$ without waiting for n
Exercise 2.2.a: Solution

• $n = 2$, r
• Fire numbers: $a:1$, $b:1$
• Possible

\[
M = \begin{bmatrix}
1 & -1 \\
1 & -1
\end{bmatrix}
\]

• $n = 2$, $\text{rank}(M) = 2$
 => inconsistent

• No schedule can prevent from an unbounded accumulation of tokens
Exercise 2.2.b: Solution

\[M = \begin{bmatrix}
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -77 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -77 \\
\end{bmatrix} \]

- \(n = 6 \),
- \(\text{rank}(M) = 5 \) \((\text{row}6 = \text{row}3 + \text{row}4 + 77 \times \text{row}5) \) => consistent
- Fire numbers:
 Quelle: 77, DCT: 77,
 Q: 77, RLC: 77, C: 1, R: 1