Hardware-Software Codesign

4. System Partitioning

Lothar Thiele
System Design

specification → system synthesis → estimation

SW-compilation → instruction set → HW-synthesis

intellectual prop. code → machine code

intellectual prop. block → net lists
Mapping

Mapping transforms behavior into structure and execution:

- allocation: select components
- binding: assign functions to components
- scheduling: determine execution order

... finally, synthesis results into implementation
Levels of Abstractions

Mapping can be done

- **at low level:** register transfer level (RTL) or netlist level
 - e.g., split a digital circuit and map it to several devices (FPGAs, ASICs)
 - system parameters (e.g., area, delay) relatively easy to determine

- **at high level:** system level
 - comparison of design alternatives for optimality (design space exploration)
 - system parameters are unknown and difficult to determine
 → to be estimated via analysis, simulation, (rapid) prototyping
Model-Based Synthesis – Example

- considered performance
 - cost C: cost of allocated components, e.g., sum
 - latency L: due to scheduling (resource sharing)

- conflicting design goals and constraints
 - feasible schedule $L \leq L_{\text{max}}$
 - feasible allocation $C \leq C_{\text{max}}$

optimal C: N:1 mapping
optimal L: 1:1 mapping
Example – Alternatives

optimal C: N:1 mapping

optimal L: 1:1 mapping

CPU0 CPU1 CPU2 CPU3

busy

CPU0 p0 p1 p2 p3

latency

L_{MAX}

CPU0 CPU1 CPU2 CPU3

CPU0 p0

CPU1 p1

CPU2 p2

CPU3 p3

L_{MAX} latency
Cost Functions

Quantitatively measure performance of a design point

- system cost $C[\$]
- latency $L[sec]$
- power consumption $P[W]$
- ...

Estimation is required to find C, L, P values, for each design point

- example: linear cost (preference) function with penalty

$$f(C,L,P)= k_1 \cdot h_C(C,C_{max}) + k_2 \cdot h_L(L,L_{max}) + k_3 \cdot h_P(P,P_{max})$$

- h_C, h_L, h_P ... denote how strong C, L, P violate design constraints $C_{max}, L_{max}, P_{max}$
- k_1, k_2, k_3 ... weighting and normalization
The Formal Partitioning Problem

assign \(n \) objects \(O = \{ o_1, \ldots, o_n \} \) to \(m \) blocks (also called partitions) \(P = \{ p_1, \ldots, p_m \} \), such that

- \(p_1 \cup p_2 \cup \ldots \cup p_m = O \) (all objects are assigned –mapped)
- \(p_i \cap p_j = \{ \} \ \forall i, j: i \neq j \) (an object is not assigned or “mapped” twice)
- and costs \(c(P) \) are minimized

Note: in *system synthesis* (simple model)
- objects = process network graph nodes
- blocks = architecture graph nodes
- cost = measured/estimated with dedicated cost functions (e.g., latency, power, hardware cost)
Partitioning Methods

- **Exact methods**
 - enumeration
 - integer linear programs (ILP) (see next slides)

- **Heuristic methods**
 - constructive methods
 - random mapping
 - hierarchical clustering
 - iterative methods
 - Kernighan-Lin algorithm
 - simulated annealing
 - evolutionary algorithms
Integer Programming Model

Ingredients:
- objective function (cost)
- constraints

involving linear expressions of integer variables from a set X

Objective:

$$C = \sum_{x_i \in X} a_i x_i \text{ with } a_i \in \mathbb{R}, x_i \in \mathbb{N} \quad (1)$$

Constraints:

$$\forall j \in J : \sum_{x_i \in X} b_{i,j} x_i \geq c_j \text{ with } b_{i,j}, c_j \in \mathbb{R} \quad (2)$$

Integer programming (IP) problem:

minimize objective function (1) subject to constraints (2)

note: if all x_i are constrained to be either 0 or 1, the IP problem is said to be a 0/1 integer programming problem
Small Example of 0/1 IP

minimize: \[C = 5x_1 + 6x_2 + 4x_3 \]

subject to: \[x_1 + x_2 + x_3 \geq 2 \]
\[x_1, x_2, x_3 \in \{0,1\} \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

optimal (minimal)
Integer Linear Program for Partitioning

- **Binary variables** $x_{i,k}$
 - $x_{i,k} = 1$: object o_i in block p_k
 - $x_{i,k} = 0$: object o_i not in block p_k

- **Cost** $c_{i,k}$, if object o_i is in block p_k

- **Integer linear program:**

 \[
 x_{i,k} \in \{0,1\} \quad 1 \leq i \leq n, 1 \leq k \leq m \\
 \sum_{k=1}^{m} x_{i,k} = 1 \quad 1 \leq i \leq n \\
 \text{minimize} \quad \sum_{k=1}^{m} \sum_{i=1}^{n} x_{i,k} \cdot c_{i,k} \quad 1 \leq k \leq m, 1 \leq i \leq n
 \]
Example – Partitioning

Example Table:

<table>
<thead>
<tr>
<th>Task</th>
<th>t0</th>
<th>t1</th>
<th>t2</th>
<th>t3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PE1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

e.g., optimized for a load balanced system

Task Execution Times:

<table>
<thead>
<tr>
<th>PE</th>
<th>t0</th>
<th>t1</th>
<th>t2</th>
<th>t3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE0</td>
<td>5</td>
<td>15</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>PE1</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Load Balancing:

\[
\text{load}_{PE0} = 5 + 15 \\
\text{load}_{PE1} = 10 + 10
\]
Variations in ILP

Additional constraints:
- e.g., maximum h_k objects in block k

$$\sum_{i=1}^{n} x_{i,k} \leq h_k \quad 1 \leq k \leq m$$

Maximizing the cost function:
- can be done by setting $C' = -C$ in a minimization problem
ILP for synthesis

Solving the synthesis problem with ILP is very popular:

- If not solving to optimality, runtimes are acceptable and a solution with guaranteed quality can be determined.

- Scheduling can be integrated.

- Various additional constraints can be added.

- However, finding the right equations to model the constraints is an art.
Remarks on Integer Programming

Integer programming is NP-complete

- In practice, runtimes can increase exponentially with the size of the problem.

- But problems of some thousands of variables can still be solved with commercial solvers (depending on the size/structure of the problem) or approximation algorithms (heuristics).

- IP models can be a good starting point for designing heuristic optimization methods.
Partitioning Methods

- **exact methods**
 - enumeration
 - integer linear programs (ILP)

- **heuristic methods**
 - *constructive methods* (*see next slides*)
 - random mapping
 - hierarchical clustering
 - iterative methods
 - Kernighan-Lin algorithm
 - simulated annealing
 - evolutionary algorithms
Constructive Methods

- **Examples**
 - random mapping
 - each object is assigned to a block randomly
 - hierarchical clustering
 - stepwise grouping of (e.g., two) objects
 - and evaluate closeness function (how desirable it is to group objects)

- Constructive methods are often used to generate a starting partition for iterative methods
Hierarchical Clustering Example (1)

v_5 = v_1 \cup v_3

closeness function: arithmetic mean of weights
Hierarchical Clustering Example (2)

\[v_6 = v_2 \cup v_5 \]
Hierarchical Clustering Example (3)

\[V_7 = V_6 \cup V_4 \]
Hierarchical Clustering – Summary

step 0: \{v_1,v_2,v_3,v_4\}

step 1: \{v_2,v_4,v_5\}

step 2: \{v_4,v_6\}

step 3: \{v_7\}

v_7 \{v_7\} cut lines (partitions)
Partitioning Methods

- **exact methods**
 - enumeration
 - integer linear programs (ILP)

- **heuristic methods**
 - constructive methods
 - random mapping
 - hierarchical clustering
 - iterative methods (see next slides)
 - Kernighan-Lin algorithm
 - simulated annealing
 - evolutionary algorithms
Iterative Methods (1)

Often used principle for iterative methods:

- start with some initial configuration (partitioning)
- search *neighborhood* (similar partitions) and select a *neighbor* as candidate
- evaluate *fitness (cost) function of candidate*
 - accept candidate using acceptance rule
 - if not, select another neighbor
- stop if quality is sufficiently high, if no improvement can be found, or after some fixed time

Ingrediences:

- initial configuration, function to find a *neighbor* as next candidate, cost function, acceptance rule, stop criterion
Iterative Methods (2)

Simple iterative improvement or “hill climbing”:
- candidate is always and only accepted if cost is lower (or fitness is higher) than current configuration
- stop when no neighbor with lower cost (higher fitness) can be found

Disadvantages:
- local optimum as best result
- local optimum depends on initial configuration
- generally no upper bound on iteration length
Iterative Methods – Illustration

Fitness

A

X

Hillclimb

B

C
How to Cope with Disadvantages?

- Repeat algorithm many times with different initial configurations
- Use information gathered in previous runs (example KL)
- Use a more complex “acceptance rule” to jump out of local optimum (example simulated annealing)
- Use a more complex strategy that accepts sometimes randomly generated solutions (example evolutionary algorithms)
Iterative Methods – Simple Greedy Heuristic

Iterate until no improvement in cost:
re-group the object pairs that leads to the largest cost gain

Example: cost = number of edges crossing the partitions
before re-group: 5 ; after re-group: 4 ; gain = 1
Iterative Methods – Kernighan-Lin

Improved algorithm: Kernighan-Lin:

- as long as a better partition is found
 - from all possible pairs of objects
 → *virtually* re-group the “best” (lowest cost of resulting partition)
 - from the remaining (not yet touched) objects
 → *virtually* re-group the “best” pair
- continue until all objects have been re-grouped
- from these \(n/2 \) partitions, take the one with smallest cost and *actually* perform the corresponding re-group operations
Illustration of KL Algorithm (1)

Example: partitioning of digital circuit

![Digital Circuit Diagram](image)

<table>
<thead>
<tr>
<th>cost matrix $c(x,y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c(x,y)$</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>f</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>h</td>
</tr>
</tbody>
</table>

communication cost from node x to node y
Illustration of KL Algorithm (2)

first re-group

<table>
<thead>
<tr>
<th>pair</th>
<th>$E_x - I_x$</th>
<th>$E_y - I_y$</th>
<th>$c(x, y)$</th>
<th>gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, c)</td>
<td>0.5 − 0.5</td>
<td>2.5 − 0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>(a, f)</td>
<td>0.5 − 0.5</td>
<td>1.5 − 1.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(a, g)</td>
<td>0.5 − 0.5</td>
<td>1 − 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(a, h)</td>
<td>0.5 − 0.5</td>
<td>0 − 1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(b, c)</td>
<td>0.5 − 0.5</td>
<td>2.5 − 0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>(b, f)</td>
<td>0.5 − 0.5</td>
<td>1.5 − 1.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(b, g)</td>
<td>0.5 − 0.5</td>
<td>1 − 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(b, h)</td>
<td>0.5 − 0.5</td>
<td>0 − 1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(d, c)</td>
<td>1.5 − 0.5</td>
<td>2.5 − 0.5</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>(d, f)</td>
<td>1.5 − 0.5</td>
<td>1.5 − 1.5</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>(d, g)</td>
<td>1.5 − 0.5</td>
<td>1 − 1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(d, h)</td>
<td>1.5 − 0.5</td>
<td>0 − 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(e, c)</td>
<td>2.5 − 0.5</td>
<td>2.5 − 0.5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(e, f)</td>
<td>2.5 − 0.5</td>
<td>1.5 − 1.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>(e, g)</td>
<td>2.5 − 0.5</td>
<td>1 − 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(e, h)</td>
<td>2.5 − 0.5</td>
<td>0 − 1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

some definitions

- E_i = external costs of vertex i
- I_i = internal costs of vertex i
- $D_i = E_i - I_i$ = desirability to move a vertex (x or y)
- gain = $D_x + D_y - 2c(x, y)$ = gain due to change in cut costs
Illustration of KL Algorithm (3)

second re-group

<table>
<thead>
<tr>
<th>pair</th>
<th>$E_x - I_x$</th>
<th>$E_y - I_y$</th>
<th>$c(x, y)$</th>
<th>gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, f)</td>
<td>0 - 1</td>
<td>1 - 2</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>(a, g)</td>
<td>0 - 1</td>
<td>1 - 1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(a, h)</td>
<td>0 - 1</td>
<td>0 - 1</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>(b, f)</td>
<td>0.5 - 0.5</td>
<td>1 - 2</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(b, g)</td>
<td>0.5 - 0.5</td>
<td>1 - 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(b, h)</td>
<td>0.5 - 0.5</td>
<td>0 - 1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(e, f)</td>
<td>1.5 - 1.5</td>
<td>1 - 2</td>
<td>0.5</td>
<td>-2</td>
</tr>
<tr>
<td>(e, g)</td>
<td>1.5 - 1.5</td>
<td>1 - 1</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>(e, h)</td>
<td>1.5 - 1.5</td>
<td>0 - 1</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

some definitions

- E_i = external costs of vertex i
- I_i = internal costs of vertex i
- $D_i = E_i - I_i$ = desirability to move a vertex (x or y)
- $gain = D_x + D_y - 2*c(x, y)$ = gain due to change in cut costs
some definitions

- E_i = external costs of vertex i
- I_i = internal costs of vertex i
- $D_i = E_i - I_i$ = desirability to move a vertex (x or y)
- gain = $D_x + D_y - 2 * c(x, y)$ = gain due to change in cut costs

third re-group

<table>
<thead>
<tr>
<th>pair</th>
<th>$E_x - I_x$</th>
<th>$E_y - I_y$</th>
<th>$c(x, y)$</th>
<th>gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, f)</td>
<td>0 - 1</td>
<td>1.5 - 1.5</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(a, h)</td>
<td>0 - 1</td>
<td>0.5 - 0.5</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(e, f)</td>
<td>0.5 - 2.5</td>
<td>1.5 - 1.5</td>
<td>0.5</td>
<td>-3</td>
</tr>
<tr>
<td>(e, h)</td>
<td>0.5 - 2.5</td>
<td>0.5 - 0.5</td>
<td>0</td>
<td>-2</td>
</tr>
</tbody>
</table>
Illustration of KL Algorithm (5)

... and final re-group

(a) (b)
Illustration of KL Algorithm (6)

- Two best solutions found:

<table>
<thead>
<tr>
<th>i</th>
<th>pair</th>
<th>$gain(i)$</th>
<th>$\sum gain(i)$</th>
<th>cutsizel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>(d, c)</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>(b, g)</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>(a, f)</td>
<td>-1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>(e, h)</td>
<td>-1</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

- Start from one of these solutions the whole process again … .
Simulated Annealing – Underlying Philosophy

- Inspired from the physical process of annealing (from metallurgy), where a “structured” lattice structure of a solid is achieved by
 1. *heating up* the solid to its melting point
 2. … and then *slowly cooling down* until it solidifies to a low-energy state
Simulated Annealing – Underlying Philosophy (2)

- Solids take on a **minimal-energy state** during cooling down *if the temperature is decreased sufficiently slowly*

- There is a non-zero probability that a particle “jumps” to a higher-energy state ($e_{i+1} > e_i$):

 $$P(e_i, e_{i+1}, T) = e^{\frac{e_i - e_{i+1}}{k_B T}}$$

 - k_B = Boltzmann constant
 - T = temperature
 - e_i = current energy state
 - e_{i+1} = next energy state
Simulated Annealing Applications

Application to combinatorial optimization:

- energy = cost of a solution (partition)

- cost decreases with temperature (a global parameter)

- increases in cost are accepted with a certain *probability* (that depends both on the *difference between cost values* and also on “*temperature*”)

Simulated Annealing Algorithm

By analogy with the physical process:

- replace existing solutions by (randomly generated) new feasible solutions from a neighborhood
- improve a solution by always accepting better-cost neighbors (if selected) but allow for a (*stochastically*) guided acceptance of worse-cost neighbors
- gradual cooling: gradually decrease the probability of accepting worse-cost solutions
 - selecting solutions is almost random when T is large
 - … but increasingly selects the better cost solution as T goes to zero

Advantage

- allowance for “uphill” moves potentially avoids local optima
Simulated Annealing – Possible Coding

\[
\text{temp} = \text{temp}_\text{start}; \\
\text{cost} = c(P); \\
\text{while (Frozen() == FALSE) } \{ \\
 \text{while (Equilibrium() == FALSE) } \{ \\
 P' = \text{RandomMove}(P); \\
 \text{cost}' = c(P'); \\
 \text{deltacost} = \text{cost}' - \text{cost}; \\
 \text{if (Accept(} \frac{\text{deltacost}}{k\cdot\text{temp}} \text{, temp} \text{) > random}[0,1]) } \{ \\
 P = P'; \\
 \text{cost} = \text{cost}' ; \\
 \} \\
 \}
\]

Accept(\frac{\text{deltacost}}{k\cdot\text{temp}}, \text{temp}) = e^{-\frac{\text{deltacost}}{k\cdot\text{temp}}}

\text{temp} = \text{DecreaseTemp}(\text{temp});

\]
Simulated Annealing – Possible Coding (contn.)

- **RandomMove**(P)
 - choose a random solution in the neighborhood of P

- **DecreaseTemp()**, **Frozen()**
 - cooling down; there are many different choices, for example:
 - initially: \(\text{temp} := 1.0; \)
 - in any iteration: \(\text{temp} := \alpha \times \text{temp} \) \((\text{typ.}: 0.8 \leq \alpha \leq 0.99)\)
 - frozen after a certain time or if there is no further improvement

- **Equilibrium()**
 - usually after a defined number of iterations

- **Complexity**
 - from exponential to constant, depending on the choice of the functions **Equilibrium()**, **DecreaseTemp()**, and **Frozen()**