Hardware-Software Codesign

7. Design Space Exploration

Lothar Thiele
System Design

- specification
- system synthesis
- estimation
- SW-compilation
- instruction set
- instruction set
- HW-synthesis
- machine code
- intellectual prop. code
- intellectual prop. block
- net lists
Optimization-Analysis Cycle

- **decision vector X**
- **allocation**
- **binding**
- **schedule**

evaluation model
(e.g., simulation, analytic)

optimization algorithm
make decisions only by knowing (and comparing) f
Example: Simple Mapping Model

search algorithm

EA

1. selection
2. recombination
3. mutation

“chromosome” = encoded allocation + binding

solutions

allocation

binding

analysis of individual solutions

decode allocation

decode binding

scheduling

fitness evaluation

fitness

user constraints

binding β

scheduling τ

allocation α

design point (implementation)
Remember …

Definition: A specification graph is a graph $G_S=(V_S,E_S)$ consisting of a data flow graph G_P, an architecture graph G_A, and edges E_M. In particular, $V_S=V_P \cup V_A$, $E_S=E_P \cup E_A \cup E_M$.

![Diagram](image)
Definition: Given a specification graph G_S an implementation is a triple (α, β, τ), where α is a feasible allocation, β is a feasible binding, and τ is a schedule.
Challenges of EAs in DSE

- encoding allocation+binding
 - **simple encoding**
 - e.g., one bit per resource, one variable per binding
 - easy to implement
 - … however, it may lead to (many) infeasible partitioning solutions
 - **encoding + repair**
 - e.g. simple encoding AND modify
 - s.t. for each \(v_p \in V_p \) there exists at least one \(v_a \in V_a \) with \(\beta(v_p) = v_a \)
 - reduces number of infeasible partitioning solutions

- (“smart”) generation of initial population

- (“smart”) neighborhood operations, e.g., mutation, crossover
Example Network Processors - Definition

- typically, network processors serve as bridge between the network and the source/sink audio/video device (or set of devices)

- implementation: high-performance, programmable devices optimized for (real-time) network packet processing

- features: complex packet processing capabilities at high line speeds (routing; forwarding; de-/encryption; de-/compression; ...) and means to guarantee quality-of-service
Network Processor Architecture (*)

Network processor heterogeneous hardware/software architecture:

- available processing units
 - ... are described in resource set \(R = \{\text{ARM9, PowerPC, DSP, MEngine, Classifier, Cipher, LookUp, CheckSum}\} \)
 - ... have a relative implementation cost \(\text{cost}(r) \geq 0, \ r \in R \)
 - ... and are selected for a specific architecture during the allocation step
 - with \(\text{alloc}(r) = 1 \) if a resource is selected and 0 otherwise

Network Processor Task Model

- **application structure**: set of streams \(s \in S \) and set of tasks \(t \in T \)
 - each stream includes an ordered sequence of tasks \(V(s) = [t_0, \ldots, t_n] \)
- **example**: \(S = \{\text{RTSend}, \text{NRTDecrypt}, \text{NRTEncrypt}, \text{RTRecv}, \text{NRTForward}\} \)
Problem: Optimal Design of Network Processor

- **mappings** $\mathbf{M} \subseteq T \times R$: all possible bindings of tasks
 - i.e., if $(t, r) \in \mathbf{M}$, then task t could be executed on resource r
- **request** $w(r,t) \geq 0$
 - i.e., execution of one packet in t would use w computing units of r
- **resource allocation cost** $c(r) \geq 0$

→ **binding** \mathbf{Z} of tasks to resources $\mathbf{Z} \subseteq \mathbf{M}$ (*leading to actual implementation*)
 - subset of mappings \mathbf{M} s.t. every task $t \in T$ is bound to exactly one allocated resource $r \in R$ with $\text{alloc}(r) = 1$ and $r = \text{bind}(t)$
NP Design Constraints

the design of network processors typically faces conflicting goals:

- **delay constraints**
 - e.g., maximal time a packet is processed within NP

- **throughput maximization**
 - e.g., maximum throughput of NP (packets per second)

- **cost minimization**
 - implementation with small amount of resources (e.g., processing units, memory, and communication networks)

- ... and conflicting usage scenarios
 - usually, a packet processor is used in several different systems (e.g., router or consumer multimedia processing device) and might have different implementations with different throughput/delay requirements
NP Design Space Exploration

issues to be considered during system-level design (and synthesis):

- **allocation**
 - determine hardware components of the network processor

- **binding**
 - for each process of the software application choose an allocated hardware unit which executes it

- **scheduling**
 - for the set of tasks mapped onto a specific resource choose scheduling policy/parameters – from available run-time environment, e.g., a fixed priority for each stream s: $\text{prio}(s) > 0$
Design Space Exploration Flow

- Hardware Architecture Template
- Software Application
- Run-Time Environment
- Application Scenarios

Allocation
- $\text{alloc}(r) = 0/1$
- $r = \text{bind}(t)$

HW Architecture

Binding
- $\text{prio}(s) > 0$

Scheduling

HW/SW Architecture

Performance Analysis

Multiobjective Evolutionary Selection

HW/SW Architectures Cost and Performance

Selected Architectures

C_{MAX} W_{MAX}

Constraints Opt. Criteria

VARIATION

$\text{c(all } r)$ $\text{w(all } t)$

SELECTION
Tools and a Small Demo
... Some Results

![Diagram showing performance of encryption/decryption and RT voice processing.](image)

- **Performance of Encryption/Decryption**
 - **DSP**
 - NRT: 64%
 - RT: 39%
 - **Cipher**
 - NRT: 71%
 - RT: 0%
- **Performance of RT Voice Processing**
 - **DSP**
 - NRT: 35%
 - RT: 39%
 - **LookUp**
 - NRT: 15%
 - RT: 6%
 - **Classifier**
 - NRT: 27%
 - RT: 11%
Example: Wave Field Synthesis

What is wave field synthesis (WFS)?

- high quality spatial sound reproduction system for huge listening areas
- 32 sound sources and 300 loudspeakers for medium sized reproduction rooms
System Specification: WFS Application

Parallel application modeled as Kahn process network

structure: XML

functionality: ANSI C & DOL(*) API

System Specification: Architecture

- Architecture is modeled at abstract level in XML format
- Modeled elements:
 - processors, buses, memories
 - communication paths between these elements
 - … parameters are included in the model
Application-to-Architecture Mapping

parallel application

microphones convolution sum loudspeakers

heterogeneous architecture

SSC SREG DXM

DSP DDM DMA RDM

AHB2 AHB1 AHB0

design space exploration (performance analysis & mapping optimization)

software synthesis
Simple Analysis Model

\[\text{max processor load} \]

\[\text{number of activations of process } p \]

\[\text{runtime of process } p \text{ on processor } c \]

\[\text{max bus load} \]

\[\text{communication link with worst load} \]

\[\text{communication request from channel } s \]

\[\text{bandwidth of communication link } g \]
Where Are Data Obtained From?

- **Static parameters**: bandwidth of buses $t(g)$
- **Functional simulation**: number of activations for each process $n(p)$, amount of data for each channel $b(s)$
- **Instruction-set simulation**: runtime of each process on different processors $r(p,c)$ by using benchmark mappings
Design Space Exploration Cycle – An Example

- Instruction-level simulation
- Functional simulation
- Designer's data sheet

- Annotated application XML
- Annotated architecture XML

- EXPO application
- EXPO architecture

- Mapping generation & variation (mutation/crossover)

- EXPO mapping

- Mapping XML

- Evaluation
- Analysis model
- Performance numbers
- System description

- Multi-objective optimization
- Evolutionary algorithm
- PISA interface
EXPO: Example

- microphones
- convolution
- sum
- loudspeakers

max. bus load

search direction

single processor mapping

max. processor load

current population

ETH
Swiss Federal Institute of Technology

Computer Engineering and Networks Laboratory