
LAZY SCHEDULING FOR
ENERGY HARVESTING SENSOR NODES

C. Moser1, D. Brunelli2, L. Thiele1, L. Benini2

1Computer Engineering and Networks Laboratory
Swiss Federal Institute of Technology (ETH) Zurich, Switzerland

2Department of Electronics, Computer Science and Systems
University of Bologna, Italy

Abstract The paper studies the case of a sensor node which is operating with the power
generated by an environmental source. We present our model of an energy driven
scheduling scenario that is characterized by the capacity of the node’s energy
storage, the deadlines and the power dissipation of the tasks to be performed.
Since the execution of these tasks requires a certain amount of energy as well
as time, we show that the complexity of finding useful scheduling strategies is
significantly increased compared to conventional real-time scheduling. We state
online scheduling algorithms that jointly account for constraints arising from
both the energy and time domain. In order to demonstrate the benefits of our
algorithms, we compare them by means of simulation with the classical Earliest
Deadline First Algorithm.

1. Introduction

Wireless sensor networks have been the subject of intensive research over
the past several years. As for many other battery-operated embedded systems,
a sensor’s operating time is a crucial design parameter. As electronic systems
continue to shrink, however, less energy is storable on-board. Research con-
tinues to develop higher energy-density batteries and supercapacitors, but the
amount of energy available still severely limits the system’s lifespan. Recently,
energy harvesting has emerged as viable option to power sensor nodes: If nodes
are equipped with energy transducers like e.g. solar cells, the generated energy
may increase the autonomy of the nodes significantly.

In [6], technologies have been discussed how a sensor node may extract
energy from its physical environment. Moreover, several prototypes (e.g. [2,
3]) have been presented which demonstrate both feasibility and usefulness of
sensors nodes which are powered by solar or vibrational energy.

The authors of [4] propose algorithms for tuning a node’s duty cycle de-
pendent on the parameters of the energy source. Nodes switch between ac-
tive and sleep mode and try to achieve perpetual operation. Other approaches
addressed offline scheduling with regenerative energy by means of Dynamic
Voltage Scaling (DVS) [1, 7]. In contrast to this work, we present online algo-
rithms to dynamically schedule arriving tasks and thereby, we are not restricted
to a certain technique like Dynamic Voltage Scaling.

In [5], Lazy Scheduling Algorithms (LSA) have been presented for the first
time. The latter work primarily focuses on proving the optimality of LSA and
derives schedulability conditions from that proof. This paper, on the other
hand, presents a detailed description of the algorithms as well as extensive
simulative studies revealing the benefits of this new scheduling discipline.

The Earliest Deadline First (EDF) algorithm has been proven to be optimum
with respect to the schedulability of a given taskset in traditional time-driven
scheduling. The following example shows why greedy scheduling algorithms
(like EDF) are not necessary optimal in the context of this paper.

time

stored
energy

time

stored
energy

task execution

Figure 1. Greedy vs. Lazy Scheduling

Imagine a sensor node with an energy harvesting unit that replenishes a
battery with constant power. Now, this node has to perform an arriving task
that has to be finished until a given deadline. In Figure 1, the arrival time and
deadline of this task are depicted by "long" -up and down- arrows respectively.
Meanwhile, a less energy-intensive task has to be executed within a short time
interval that is again given by an arrival time and a deadline (indicated by the
"short" arrows). As depicted in the top diagram, the EDF scheduler violates
the deadline of the second task since it uses greedily the stored energy to drive
the first, energy-intensive task. When the energy is required to execute the
second task, the battery level is not sufficient to meet the deadline. In this
example, however, a scheduling strategy that hesitates to spend energy meets
both deadlines. The bottom plot illustrates how the Lazy Scheduling paradigm
described in this paper outperforms a naive, greedy approach like EDF in the
described situation.

2. Problem Statement

Let us consider a sensor node as depicted in Fig. 2. In the following, the
single components of this node will be explained in detail.

Energy Source

Energy Storage

Scheduled TasksTask Scheduler

Task

H

C

J

S

J

{J , J , ... }21

1

2

...

Task

P (t)

E (t)

H

C

SP (t)

a , e , d1

1

22

2

2

2

1 1

1
s , f , s , f

a , e , d

Sensor Node

Figure 2. Scheduling Scenario

Energy Source

We denote PH(t) the charging power that is actually fed into the energy
storage and hence incorporates all losses due to power conversion. Next, the
corresponding energy EH scavenged in the time interval [t1, t2] is given by the
integral EH(t1, t2) =

∫ t2
t1

PH(t)dt .

Energy Storage

We assume an ideal energy storage (e.g. a battery) that may be charged up
to its capacity C , i.e., EC(t) ≤ C. According to the scheduling policy of
the sensor node, power PS(t) and the respective energy ES(t1, t2) is drained
from the storage to execute tasks. In particular, if the node decides to assign
power Pi(t) to the execution of task Ji during the interval [t1, t2], we denote
the corresponding energy Ei(t1, t2). If no tasks are executed and the storage is
consecutively replenished by the energy source, an energy overflow occurs.

Task Scheduling

As illustrated in Fig. 2, we use the notion of a task scheduler that assigns
energy EC from the storage to arriving tasks. Only one task is executed at the
same time and preemptions are allowed. For the sake of simplicity, we bound
the power consumption of all tasks to the maximum value pd. In other words,
we introduce the abstraction of a single processing device that determines how
much power PS(t) it uses at any moment in time, i.e.

0 < PS(t) < pd .

A task is characterized by its arrival time ai, its energy demand ei and its
deadline di. The effective starting time si and finishing time fi of a task are
dependent on the scheduling strategy used: A task started at time si will finish
as soon as the required amount of energy ei has been consumed by it. We can
write

fi = min {t : Ei (si, t) = ei} .

Tasks are considered to be preemptive i.e. the currently active task may be
interrupted at any time and continued at a later time. If the full processing
power pd is continuously assigned to a single task Ji, the task is finished after
a minimum execution time wi,min = ei

pd
.

3. Lazy Scheduling with pd = ∞
We start with a node that executes tasks with infinite power pd = +∞. This

theoretical model of a node which runs a task in zero time can be a good ap-
proximation for many practical scenarios. If processing times wi are negligible
compared to the time to recharge the battery (i.e. pd � PH(t)), the assumed
model can be regarded as reasonable.

Moreover, we assume the processing device on the sensor node to select
between three power modes. The node may process tasks with the maximal
power PS(t) = pd or not at all (PS(t) = 0). In between, the node may choose
to spend only the currently incoming power PH(t) from the harvesting unit on
tasks. Altogether, we consider a node that decides between PS(t) = PH(t),
PS = 0 and PS = +∞ to advance arriving tasks.

As already indicated in the introduction, the naive approach of scheduling
tasks with the EDF algorithm may result in unnecessary deadline violations.
Given a node with pd = ∞, LSA avoids spending energy on tasks too early
by executing all tasks at their deadline. At time dj , task J’s remaining amount
of unprocessed energy (ej − Ej(aj , dj)) is drained from the energy storage
with PS = ∞. Only if we hit the capacity limit (EC(t) = C) at some time t,
we execute the task with the currently earliest deadline using power PS(t) =
PH(t). The above two rules formulated as pseudo-code are shown in Alg. 1.

In the next section we will see that Alg. 1 is an optimal algorithm for re-
specting the deadlines of an arbitrary taskset. Note that it degenerates to an
earliest deadline first (EDF) policy, if C = 0. On the other hand, we find an
as late as possible (ALAP) policy for the case of C = +∞.

4. Lazy Scheduling with finite pd

Using a device with finite power consumption pd, one has to take into
account finite execution times wi, too. Obviously, starting at a task’s dead-
line dj is not appropriate anymore and also determining straightforward start-
ing times sj = dj− ej

pd
does not help: Already a second task Jn arriving shortly

Algorithm 1 (Lazy Scheduling for pd = ∞)
Require: maintain a set of indices i ∈ Q of all ready but not finished tasks Ji

PS(t) ⇐ 0;
while (true)

dj ⇐ min{di : i ∈ Q};
process task Jj with power PS(t);
t ⇐ current time;
if t = ak then add index k to Q;
if t = fj then remove index j from Q;
if t = dj then EC(t) ⇐ EC(t) − ej + Ej(aj , t);

remove index j from Q;
PS(t) ⇐ 0;

if EC(t) = C then PS(t) ⇐ PH(t);

after sj and having an earlier deadline dn < dj inevitably causes a deadline
violation. Clearly, this kind of timing conflict can be solved by starting tasks
earlier. In doing so, however, we risk to run into energy conflicts as pointed
out in the introduction. In the following, we focus on finding optimal start-
ing times sj for a task Jj that balance the time and energy constraints for our
scheduling scenario.

In order to find an optimal starting time sj for task Jj , LSA requires the
knowledge of the incoming power flow PH(t) for all future times t ≤ dj .
In addition we make the realistic assumption that PH(t) < pd, that is, the
incoming power PH(t) from the harvesting unit never exceeds the power con-
sumption pd of a busy node. Finding useful predictions for the power PH(t)
can be done for example by analyzing traces of the harvested power over a fi-
nite duration. If these measurements of the past are also representative for the
future, the prediction will be close to the real value of PH(t).

At first, we consider task Jj illustrated in Fig. 3. We calculate the starting
time s∗j as

s∗j = dj − EC(aj) + EH(aj , dj)
pd

.

Once again, we assume that a second task Jn arrives after Jj but has to finish
before Jj (dn < dj). Since at the time of its arrival task Jn has an earlier
deadline, it is reasonable to adhere to the well-known EDF policy and interrupt
execution of task Ji. At this point, we demonstrate that starting task Jj before
or after s∗j may lead to unnecessary deadline violations.

On the one hand, starting before s∗j ensures the completion of task Ji whereas
task Jn may "starve" because of missing energy and thus finishes after its dead-
line. Fig. 3 illustrates that a too early starting time may cause this conflict since
the nested task Jn has to process with the harvested power flow PH(t) instead
of pd. Note that in the diagrams also the energy/power assigned to the re-
spective tasks is displayed. On the other hand, starting after s∗j can result in
deadline violations due to lack of time while a sufficient amount of energy is

stored on the node. As depicted in Fig. 3, task Jj violates its deadline if the
complete energy EC(aj) + EH(aj , dj) is needed to process tasks Jj and Jn.

t

E

E (a)

e

e

E (a)+E (a ,d)

a a ds

execution of task n

execution of task j

C

dj j j

n

n n

j

j

j

j

j

fn
sj,early

C H

C

slope pd

slope P (t)
H

** t

E

E (a)

e

e

E (a)+E (a ,d)

a a ds

execution of task n

execution of task j

C

dj j j

n

n n

j

j

j

j

j

fj
sj,late

C H

C

slope pd

slope P (t)
H

* *

Figure 3. Starting execution of task Ji before or after s∗j

If the complete energy EC(aj)+EH(aj , dj) is available during the interval
of full utilization, the starting time s∗j is certainly optimal considering both
energy and time constraints. But what happens if the stored energy EC reaches
its maximum value C before the starting time s∗j? – Of course, the overflowing
part of the energy EH(aj , s

∗
j) is used in an EDF-manner to execute task Jj .

As a consequence, only energy C +EH(s∗j , dj) can be processed continuously
with pd and it is not possible to maintain full utilisation of the device until
the deadline dj . A better, lazier starting time s′j can be found by numerically
solving the following equation (see Fig. 4):

EH(aj , s
′
j) − C = EH(aj , dj) + (s′j − dj)pd

t

E

E (a)

E (a)+E (a ,d)

a ds

C

j j j

j

j

jj

sj

C H

C

∆E

* '

C

C

Figure 4. Recalculation of the starting time due to storage limitation

If we now choose the maximum starting time sj = max
(
s′j , s

∗
j

)
we have fi-

nally found the optimal starting time. The calculation of sj must be performed
once the scheduler selects the task with the earliest deadline. Then, LSA ei-
ther executes task Jj with power pd if the current time t ≥ sj , or it adheres to
the EDF strategy with PS(t) = PH(t) if the storage is full. Alg. 2 shows the
pseudo-code for LSA with constant power consumption pd.

If the scheduler is not energy-constraint, i.e. if the available energy is more
than the device can consume with power pd within [aj , dj], the starting time sj

Algorithm 2 (Lazy Scheduling with pd = const.)
Require: maintain a set of indices i ∈ Q of all ready but not finished tasks Ji

PS(t) ⇐ 0;
while (true)

dj ⇐ min{di : i ∈ Q};
calculate sj ;
process task Jj with power PS(t);
t ⇐ current time;
if t = ak then add index k to Q;
if t = fj then remove index j from Q;
if EC(t) = C then PS(t) ⇐ PH(t);
if t ≥ sj then PS(t) ⇐ pd;

will always be before the current time t. Then, the resulting scheduling policy
is EDF, which is reasonable, because only time-constraints have to be satisfied.
On the other hand, whenever the sum of stored energy EC and generated en-
ergy EH is small, the scheduling policy changes towards an ALAP policy. In
doing so, LSA avoids spending scarce energy on the "wrong" tasks too early.
In summary, LSA can be regarded as an adaptive, energy-clairvoyant algorithm
that schedules tasks in an Earliest Deadline First fashion.

Theorem 1 (Optimality of Lazy Scheduling, PS = const.) If the
Lazy Scheduling Algorithm cannot schedule a given taskset, then no other
scheduling algorithm can. This holds even if the other algorithm knows the
complete taskset in advance.

The proof of Theorem 1 is omitted due to space constraints, but can be found
in [5]. As a direct consequence of its optimality, LSA successfully schedules a
taskset with the minimum possible capacity C.

5. Simulation Results

We implemented the Lazy Scheduling Algorithm LSA as well as the Earliest
Deadline First EDF algorithm in a simulation framework. Since LSA and EDF
may exhibit identical behaviour for a taskset in dependency of pd, we run all
simulations in this section with power pd = ∞. Figure 5 shows the harvested
power PH(t) generated by a random number generator for 1000 time units.

Since the performance of a given algorithm will be severely affected by the
properties of the arriving tasks, we performed all simulations in this section for
two different tasksets: Taskset T1 consists of 30 periodic tasks with a common
period of 300 time units. Initial phases, energy demands and relative deadlines
of the tasks are randomly assigned by a random number generator. Taskset T2

consists of 8 periodic tasks, also with a common period of 300 time units. In
contrast to taskset T1, phases, energies and deadlines of taskset T2 are manu-
ally assigned. Figure 5 displays the respective values of taskset T2 within one
period.

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

P (t)
H

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8

9

10

t

e i

Figure 5. Randomly generated power curve PH(t) and taskset T2

Time until First Deadline Violation

We are now interested in the first deadline that cannot be hold with a cer-
tain scheduling strategy. With the help of some offline analysis, we tuned the
amplitude of the power source PH(t) to enforce early deadline violations of
tasksets T1 and T2 respectively. We assume EC(0) = C, i.e. at the begin-
ning of the simulation the battery is fully charged. After a deadline violation
is detected, the simulation terminates.

A first simulation result is depicted in Fig. 6 for taskset T1. Obviously, both
curves are monotonically increasing since a longer time is needed to deplete
the battery if the initial energy EC(0) = C is higher. Due to the optimality of
LSA, the time of the first deadline violation with EDF is always earlier than
with LSA. Though, for some values of the capacity C, the difference between
LSA and EDF is very low.

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

EDF
LSA

t

C
0 20 40 60 80 100

0

200

400

600

800

1000

1200

1400

1600

1800

2000

EDF
LSA

t

C

1
taskset T

2
taskset T

Figure 6. Time t until the first deadline of taskset T1/T2 is violated

The same simulations have been repeated for taskset T2 (see Fig. 6). For
values of the capacity over 60, both algorithms schedule taskset T2 without
deadline violations in the simulated time (t < 2000). For capacities between

40 and 60, however, we find significant differences between LSA and EDF.
Clearly, taskset T2 is tailored to the weak points of EDF. But the principal
arrangement of taskset T2 is not unreasonable if tasks for radio communication,
sensor activity or data processing have to be executed on the same device.
Large differences of the tasks’ energy demands and overlapping arrival times
and deadlines are the ideas underlying taskset T2.

Number of violated deadlines

Another approach is to disregard missed deadlines and to count only the
number of violations. We decided to use an extended version of the LSA algo-
rithm that continues task execution even after a deadline violation. To this end,
the scheduler drains PH(t) from the storage until the task is finally finished.

Fig. 7 presents the number of recorded deadline violations that occurred dur-
ing a period of 3000 time units for taskset T1. Since Lazy Scheduling makes
the best use of the scavenged energy, it outperforms EDF for all capacities. The
difference between LSA and EDF is varying between 0 and 9 deadline viola-
tions in the considered interval. For high values of C, no deadline violations
could be detected for both algorithms because of the high energy availability.

0 50 100 150 200 250
0

20

40

60

80

100

120

EDF
LSA

C

n

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

EDF
LSA

C

n

1
taskset T

2
taskset T

Figure 7. Number n of violated deadlines of taskset T1/T2

For taskset T2, LSA performs significantly better in terms of violated dead-
lines than EDF. Especially for values of C between 10 and 20, LSA’s energy
management pays off. On the other hand, for a given number n of violated
deadlines, a much higher capacity C is necessary under EDF scheduling. For
example, to obtain n = 0 deadline violations, LSA requires a capacity C = 24
while EDF needs a 25% higher capacity (C = 30) to respect all deadlines.

6. Conclusion

In this paper, we studied the case of an energy harvesting sensor node that
has to schedule a set of real-time tasks. These tasks require a certain amount
of energy as well as time to complete. We have discussed Lazy Schedul-
ing Algorithms for online scheduling. However, LSA algorithms are energy-
clairvoyant, i.e., the profile of the energy generated in the future has to be
known to the scheduler in advance. Finally, simulation results demonstrate
how LSA outperforms the Earliest Deadline First Algorithm and that signifi-
cant reductions of the battery size are possible when running LSA.

Acknowledgments

The work presented in this paper was partially supported by the National
Competence Center in Research on Mobile Information and Communication
Systems (NCCR-MICS), a center supported by the Swiss National Science
Foundation under grant number 5005-67322. In addition, this research has
been founded by the European Network of Excellence ARTIST2.

References
[1] A. Allavena and D. Mosse. Scheduling of frame-based embedded systems with recharge-

able batteries. In Workshop on Power Management for Real-Time and Embedded Systems
(in conjunction with RTAS 2001), 2001.

[2] Y. Ammar, A. Buhrig, M. Marzencki, B. Charlot, S. Basrour, K. Matou, and M. Renaudin.
Wireless sensor network node with asynchronous architecture and vibration harvesting
micro power generator. In sOc-EUSAI ’05: Proceedings of the 2005 joint conference on
Smart objects and ambient intelligence, pages 287–292, New York, NY, USA, 2005. ACM
Press.

[3] X. Jiang, J. Polastre, and D. E. Culler. Perpetual environmentally powered sensor net-
works. In Proceedings of the Fourth International Symposium on Information Processing
in Sensor Networks, IPSN 2005, pages 463–468, UCLA, Los Angeles, California, USA,
April 25-27 2005.

[4] A. Kansal, D. Potter, and M. B. Srivastava. Performance aware tasking for environmen-
tally powered sensor networks. In Proceedings of the International Conference on Mea-
surements and Modeling of Computer Systems, SIGMETRICS 2004, pages 223–234, New
York, NY, USA, June 10-14 2004. ACM Press.

[5] C. Moser, D. Brunelli, L. Thiele, and L. Benini. Real-time scheduling with regenerative
energy. In 18th Euromicro Conference on Real-Time Systems, ECRTS 2006, Dresden,
Germany, July 5-7 2006.

[6] S. Roundy, D. Steingart, L. Frechette, P. K. Wright, and J. M. Rabaey. Power sources for
wireless sensor networks. In Wireless Sensor Networks, First European Workshop, EWSN
2004, Proceedings, Lecture Notes in Computer Science, pages 1–17, Berlin, Germany,
January 19-21 2004. Springer.

[7] C. Rusu, R. G. Melhem, and D. Mosse. Multi-version scheduling in rechargeable energy-
aware real-time systems. In 15th Euromicro Conference on Real-Time Systems, ECRTS
2003, pages 95–104, Porto, Portugal, July 2-4 2003.

