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ABSTRACT

Active learning is a machine learning paradigm designed to optimize model per-
formance in a setting where labeled data is expensive to acquire. In this work,
we propose a novel active learning method called SUPClust that seeks to identify
points at the decision boundary between classes. By targeting these points, SUP-
Clust aims to gather information that is most informative for refining the model’s
prediction of complex decision regions. We demonstrate experimentally that la-
beling these points leads to strong model performance. This improvement is ob-
served even in scenarios characterized by strong class imbalance.

1 INTRODUCTION

Progress in deep learning for classification tasks has been following an impressive pace in recent
years (Ioffe & Szegedy, 2015; Dosovitskiy et al., 2021; Srivastava & Sharma, 2024). In order to
achieve high classification accuracy on a target dataset, many of these methods necessitate a substan-
tial amount of annotated data. However, in many settings, annotating data is both time-consuming
and costly, posing a challenge to the application of these successful methods in scenarios with lim-
ited resources. One of the ways to mitigate this problem is active learning. Active learning aims to
maximize performance by selecting the most informative and valuable data points to be annotated
for model training.
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Figure 1: Decision boundary of an SVM
classifier.

But how can a model correctly classify points of differ-
ent classes? Classical support vector machines (SVMs)
search for a hyperplane that separates two classes with
the largest possible margin (see Figure 1). The points that
lie on this decision boundary are called support vectors.
In other words, these support vectors define the boundary
of all samples of a class and are critical for a model to
know in order to correctly separate the classes. We hy-
pothesize that points close to the decision boundary are
similarly relevant for neural network-based models.

In this work, we propose a novel active learning method
(SUPClust) that tries to identify these points so that they
can be annotated. Since the labels of the points are not
known a priori, we rely on self-supervised representation
learning in combination with clustering in order to break
down the high-dimensional input space. For each cluster,
we then identify the points close to a neighboring cluster,
thereby selecting potential support vector points. Thanks
to selecting points from all clusters, we ensure a broad coverage of the input space. In practice,
data distributions often include outliers and the decision boundary between different classes is not
always clearcut. For this reason, we further constrain our points to be somewhat typical according
to a typicality metric introduced by Hacohen et al. (2022).

Our experimental evaluation demonstrates the merit of sampling points closer to the decision bound-
ary, underscored by the strong performance compared to baseline active learning methods. SUPClust
manages to not only mitigate the “cold start problem (Mittal et al., 2019)”, it also shows strong
performance in datasets with strong class imbalance. In ablation experiments, we ensure that all
building blocks of SUPClust are necessary and contribute to the final result.
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2 RELATED WORK

Various active learning methods have been proposed to this end, which can be categorized in
uncertainty-based and diversity-based. Uncertainty-based approaches (Lewis & Gale, 1994; Joshi
et al., 2009; Gal et al., 2017) leverage the prediction uncertainty of the classification model un-
der training to select informative data samples for annotation. Diversity-based approaches (Sener &
Savarese, 2017; Yehuda et al., 2022; Hacohen et al., 2022) aim to annotate a diverse range of samples
spanning the complete data distribution, avoiding the selection of too similar ones. There also exist
hybrid methods (Ash et al., 2019) which try to identify samples that have high uncertainty and are
diverse at the same time. Some of these models rely on embeddings learned during self-supervised
pre-training. Self-supervised learning involves training a model on a pretext task, allowing it to learn
valuable representations without relying on explicit external labels. These representations comple-
ment the active learning task because they contain important information about the structure of the
data distribution.

We give a short summary of the most used uncertainty-based approaches. Least confidence (Lewis
& Gale, 1994), Entropy (Joshi et al., 2009), and Margin all select uncertain samples according to
an uncertainty measure based on the output logits of the trained classifier. DBAL and BALD (Gal
et al., 2017) on the other hand utilize Bayesian convolutional neural networks as a classifier and then
select samples based on the highest entropy in the classifier or largest information gain. Many of
these methods suffer from the “cold start problem”, where their performance in low-budget regimes
is worse than randomly selecting samples. This is possibly caused by the uncertainty estimates to be
bad when the underlying model is not trained sufficiently due to limited labeled samples. SUPClust
avoids this issue by selecting samples close to the decision border between clusters in the embedding
space of a self-supervised pre-trained model.

In the realm of diversity-based methods, Coreset (Sener & Savarese, 2017) queries diverse samples
through the selection of points that form a minimum radius cover of the remaining samples in the
unlabeled pool. To do this, Coreset works on the embeddings generated by the penultimate layer
of the classifier. In comparison, ProbCover (Yehuda et al., 2022) and TypiClust (Hacohen et al.,
2022) rely on the embeddings of a self-supervised pre-trained model. ProbCover selects a maximum
cover set for fixed-sized balls in this pre-trained embedding space. Typiclust builds clusters in the
embedding space. From each cluster, it then selects the most typical sample. This combination
ensures both broad coverage of the input space as well as selecting informative points, which shows
in its strong performance in low-budget regimes. Typicality is measured in the following way:

Typicality(x) =

 1

K

∑
xn∈K−NN(x)

∥x− xn∥

−1

(1)

Here, K−NN(x) is a set of K nearest neighbors of x in an embedding space. SUPClust also relies
on typicality in order to ensure that the selected points are still representative of the cluster they
come from.

3 SUPCLUST

SVM classifiers are defined by a few key points located at the decision boundary between the cate-
gories. Our querying strategy selects instances situated near the decision boundary, as they provide
a strong signal to the learning process of neural network based models too. Traditional active learn-
ing methods have approached this problem by using model uncertainty as an indication for samples
at the decision boundary. However, these methods suffer from the cold-start problem, where in
low-budget scenarios, the model uncertainty is unable to identify hard instances. In this work, we
introduce a novel method to find such samples by exploiting pre-trained representations. We can
see in Figure 2 on the example of CIFAR-10 that similar categories are clustered together in the
representation space. As category boundaries align with cluster boundaries, we use clustering to
identify samples of interest. To quantify proximity to the decision boundary, we compute, for each
sample, the weighted mean distance to all other cluster centers. The weights are the same for all
samples within a cluster and are dependent on the distance of the cluster center to all other cluster
centers. Clusters positioned at the “edge” of the data distribution select an instance that is close to
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Figure 2: Distribution of classes
within each cluster on SimCLR
embeddings for CIFAR-10. Clus-
ter boundaries align with category
boundaries.

TypiClust SUPClust

Figure 3: t-SNE plots of 100 queried instances by TypiClust
and SUPClust (ours) in the CIFAR-10 embedding space. Col-
ors represent the categories. For clusters on the “edge” of the
data distribution, SUPClust tends to select samples that are
closer to other clusters in the embedding space.

the nearest cluster. Conversely, clusters in the “middle” of the distribution do not select instances
that are close to just one of the clusters. To normalize the weights to 1, we use the softmax function
with the negative L2 distance as the logits and the temperature parameter T . For a point in cluster i,
the weight to the cluster j is given by

wj
i =

exp
(
−∥ci−cj∥

T

)
∑

k∈C\{i} exp
(
−∥ci−ck∥

T

) , (2)

where ci, cj and ck are the centers of cluster i, j and k respectively, and C is the set of all clusters.
For cluster i, we select the sample x, that has the minimum distance, or maximum SUP to the
decision boundary computed by Equation 3.

SUP (x) =

 ∑
j∈C\{i}

wj
i ∥x− cj∥

−1

(3)

Real data distributions are noisy, contain outliers, and can not be separated by a hyperplane, thus
sampling only based on SUP leads to subpar performance. To avoid outliers on the decision bound-
ary we combine typicality with SUP . Typicality and SUP are not correlated, see Figure 4, thus
using both metrics for sample selection can improve performance.

Figure 4: Relationship between typicality and SUP on CIFAR-10 on 4 randomly selected clusters,
with temperature 1. Typicality and SUP have no strong correlation, using both metrics to select
instances can improve the querying strategy.
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Our proposed strategy SUPClust consists of 4 parts. 1) Train a self-supervised model on the unla-
beled pool. 2) Partition the data into N clusters, where N is the number of labeled samples after
the end of the current step. Excluding clusters that contain samples from the already labeled pool,
selecting as many of the biggest clusters as samples are queried. 3) In each cluster filter the top 10%
of samples based on typicality. 4) Select the sample with the highest SUP . In Figure 3 we compare
samples queried by TypiClust and and SUPClust. Notably, TypiClust chooses more samples from
the “edge” of the data distribution, whereas SUPClust prioritizes samples that lie closer to other
categories.

4 RESULTS

4.1 EXPERIMENTAL SETUP

All strategies are evaluated on image classification tasks using CIFAR-10, CIFAR-100 (Krizhevsky,
2009), CIFAR-10-LT (Cao et al., 2019), and ISIC-2019 (Kassem et al., 2020). CIFAR-10 and
CIFAR-100 consist of 60k natural images of size 32x32 with 10/100 classes. CIFAR-10-LT is a
class-imbalanced subset of CIFAR-10. We apply an imbalanced factor of 50, meaning a 50-fold
difference in the number of images between the most and least frequent class. ISIC-2019 consists
of 25331 skin cancer images with 8 imbalanced classes. To standardize the image dimensions, all
images are resized to 224x224 pixels. In alignment with TypiClust, we adopt tiny and small budget
sizes, involving querying step sizes 1 and 5 times the number of classes respectively.

We evaluate AL strategies in the following two frameworks. 1) Fully supervised (FSL): training a
deep neural network, ResNet18 (He et al., 2015), exclusively on the labeled set which is acquired by
active queries. 2) Fully supervised with self-supervised embedding (SSL): training a linear classifier
on the labeled embeddings obtained by active queries. These self-supervised embeddings for the
classifier are obtained from a pre-trained SimCLR (Chen et al., 2020). Within these frameworks,
we compare SUPClust to nine baseline strategies: Random, Margin, Least confidence, Entropy,
BALD, Coreset, DBAL, TypiClust, ProbCover. For the clustering and sampling with TypiClust and
SUPClust, we use SimCLR representations, namely the ResNet18 backbone for CIFAR-10, CIFAR-
10-LT50 and ISIC-2019, and the ResNet34 for CIFAR-100.

4.2 ABLATION STUDY
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Figure 5: Ablation study on ISIC-2019 with
budget=8 and with self-supervised embed-
dings

To assess the significance of individual components
within SUPClust, we conduct ablation experiments
for each component. We display the results in Fig-
ure 5. When leaving out our SUP-based acquisi-
tion metric (SUPClust w/o SUP) and instead select-
ing a sample randomly from the top 10% typical
samples within each cluster, the performance notice-
ably declines, falling below that of TypiClust. Simi-
larly, relying solely on SUP without considering typ-
icality for sample selection (SUPClust w/o typical-
ity) fails to achieve the performance levels observed
with other querying strategies. As a comparison,
we also show the default TypiClust (typiclust-rp),
which always selects the most typical sample of a
cluster. Our results showcase that all components of
SUPClust are necessary and contribute to its perfor-
mance.

4.3 MAIN RESULTS

We present the main results of our evaluation in Figure 6 for the tiny and the small budget regime.
We can see that SUPClust performs well on all evaluated datasets, especially in imbalanced settings.
On CIFAR10-LT50 and ISIC2019, SUPClust demonstrates a strong performance gain compared
to TypiClust. We hypothesize that by selecting points according to maximum SUP , SUPClust is
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Figure 6: Results in the tiny (top) and small (bottom) budget regime. Solid lines represent results
with the SSL setting, and dotted lines represent results with the FSL setting. The mean and the
standard error with 10 different random seeds are shown. Our method (SUPClust) shows robust
performance compared to other baselines, across all datasets and both data regimes.

able to select more informative points relevant for distinguishing the classes, irrelevant of imbal-
ance. In our low-budget regimes, diversity-based methods such as TypiClust, Coreset and Prob-
Cover generally perform better than their uncertainty-based counterparts. This is to be expected, as
uncertainty-based methods bring stronger benefits only in higher budget regimes. Building on the
self-supervised pre-trained embeddings improves performance across all datasets. The performance
of Coreset on CIFAR10-LT50 in the SSL setting is surprising. The embeddings of the pre-trained
backbone allow Coreset to select very informative samples. Unfortunately, when training in the
FSL setting or on any other dataset, the performance of Coreset is diminished compared to other
algorithms.

5 DISCUSSION

Active learning can bring performance benefits to settings where acquiring labeled data is expensive.
Samples close to the decision boundary between categories provide a strong training signal. The
introduction of the novel SUP metric provides a non-label-based means of quantifying the distance
of each sample to the decision boundary. Utilizing SUP , when selecting which samples to label
for classifier training improves sample efficiency, especially in the low data budget regime. Our
findings contribute to the broader understanding of active learning dynamics, shedding light on the
relationship between the SUP metric, typicality, and diversity. Exploring the changing relationship
between diversity, typicality and the SUP metric across various data regimes remains future work.
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