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Abstract—Long-range communication systems require re-
ceivers that can detect and decode messages in spite of strong
distorting effects. However, classical decoders often fail at coping
with complex effects such as interference or multipath propaga-
tion. Deep learning has shown strong generalization and adap-
tation capabilities and is a promising approach for improving
decoding systems. In this work, we study the specific case of
aircraft communication and build a purely deep learning-based
receiver. It detects incoming messages, finds the exact starting
point and then decodes their message bits. We demonstrate the
performance of our system and show that it can decode 45%
more messages than a classical baseline decoder. Our approach
is general and can be adapted to many communication protocols.

Index Terms—Message detection, aircraft communication,
deep learning

I. INTRODUCTION

Receivers capable of detecting and decoding messages are
one of the fundamental building blocks of any communication
system. However, the task of receiving a signal and decoding
its content can be challenging due to interference, multipath
propagation and other distortions. The systems are also often
based on assumptions about the exact implementation of the
transmitter hardware and the propagation path. Despite modern
decoding systems becoming more robust against such effects,
there is still a gap that may be bridged by designing deep
learning-based decoders. By using deep learning, we can
train a receiver to robustly detect and decode messages that
suffer from strong distorting effects using labeled data from
receivers in multiple locations. We simultaneously use multiple
conventional receivers to collect training data. In this way we
train a single deep learning-based receiver which then achieves
better performance than the classical receiver used as baseline.

In this work, we apply this idea to messages transmitted by
aircraft. Aircraft regularly broadcast their position, velocity,
and other information. Nearby ground receivers and other
aircraft receive these messages and use them for situational
awareness. This communication is called ADS-B (Automatic
Dependent Surveillance - Broadcast), messages are sent in the
Mode S channel at 1090MHz.

ADS-B capable transponders are mandatory in the USA
since January 2020 in most controlled airspace [1]. Similarly,
these transponders will also be mandatory in the European
Union for large aircraft from June 2020 [2].
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ADS-B messages can also be received using software-
defined radios (SDR). Various websites exist that combine the
information from many simple SDRs to track aircraft, such
as FlightAware and Flightradar24. Most of these projects rely
on the open-source dump1090 decoder software to detect and
interpret the ADS-B messages.

Decoders such as dump1090 [3] are software decoders
specifically designed and optimized to detect these messages
using state of the art signal processing techniques. But, are
there ways to detect messages more reliably? In this work,
we answer this question by using deep learning to detect and
decode ADS-B messages.

Our receiver consists of three neural networks. The first
determines the existence of a message in a window of samples
from the SDR. Then, the exact starting point is determined.
Finally the individual bits contained in the message are de-
coded.

We use messages collected simultaneously at different
locations to generate additional training data consisting of
messages that cannot be locally decoded by dump1090. We
evaluate two different training regimes of our system; one
with exclusively locally decodable messages and one includ-
ing locally non-decodable messages. Our results show that
a decoder based on deep learning can outperform classical
decoders. Given the generality of our approach, our system can
be successfully implemented for many other communication
protocols.

II. RELATED WORK

Deep learning [4] has shown outstanding performance and
strong generalization in very complex tasks such as image
classification [5] and generation [6], natural language process-
ing [7] or audio enhancement [8].

Recently, deep learning has been adopted to improve parts
of communication systems such as modulation recognition,
channel estimation, etc. [9]. Deep learning has also been
used to decode codes, such as linear codes [10] and polar
codes [11]. Ye et al. [12] show how deep learning can be
used in OFDM systems to estimate the channel and recover
the transmitted symbols. Our work shows how deep learning
can be used for the complete detection and decoding of ADS-
B messages.

In the context of ADS-B, deep learning has been previously
used to detect anomalous messages by observing sequences of



messages [13]. Also an intrusion detection system based on re-
ceived signal strength (RSS) patterns has been proposed [14].
As ADS-B does not provide any message authentication, iden-
tifying the transmitting aircraft based on physical or software-
dependent features of the signal is also an active research
topic [15].

Autoencoders have been investigated for wireless communi-
cation and show promising results also in MIMO systems [16],
[17]. In this approach, a model comprising both sender and
receiver is trained simultaneously. Therefore, also the encoding
is learnt and does not correspond to an already existing
protocol. However, in our case we aim at decoding messages
sent with a given protocol (ADS-B) and hence, we can
only optimize the decoding system and we do not adapt the
encoding.

III. BACKGROUND

ADS-B (Automatic Dependent Surveillance - Broadcast)
is a protocol used for air traffic surveillance. The aircraft
regularly broadcasts its position, which is determined using
satellite navigation, to nearby aircraft and ground stations.
Additionally, velocity and other information is broadcast. Each
message also contains a 24-bit field that uniquely identifies the
aircraft.

Mode S has been developed as a secondary surveillance
radar technique. The aircraft responds at 1090MHz to an
interrogation sent from a ground station at 1030MHz. Two
different lengths of Mode S messages exist with 56 or 112
bits. Under good conditions, Mode S messages can travel
hundreds of kilometers as they are sent with a power of
up to 500W. The information is modulated using pulse-
position modulation (PPM) with a symbol length of 1 µs.
Additionally each transmission starts with a fixed preamble
of 8 µs containing four pulses.

The ADS-B messages are transmitted over the Mode S
extended squitter link where every message contains 112
bits. These messages are regularly broadcast by the aircraft
without interrogation from the ground. For instance, messages
containing the position of the aircraft are sent twice a second.

Since we are interested in receiving ADS-B messages, we
focus on Mode S messages with downlink format 17. ADS-
B messages are contained in these Mode S transmissions
and contain a 24-bit CRC with a Hamming distance of six.
This CRC allows the reliable correction of two bit errors or
the identification of messages with up to five errors [18].
Therefore, the goal of our deep learning-based receiver is to
decode as many messages as possible with two or fewer bit
errors.

IV. DATA COLLECTION

To generate the training, validation and test data for our deep
learning-based receiver, Mode S messages are collected using
an SDR. A USRP B200mini is used to sample the signals
at 1090MHz at 12MS/s. This stream is then downsampled
to 2.4MS/s and fed to dump1090. After a message has
been detected and decoded by dump1090, the corresponding

samples are cut out from the 12MS/s stream and saved to
a database together with the decoded message bits. Although
the message length is 1440 samples, we save windows of 2700
samples that completely contain the message with a randomly
chosen amount of additional samples before it. This way, we
can train our system to detect messages irrespective of their
position in the window.

With this setup, we can only record messages that
also dump1090 can decode. To also record messages that
dump1090 has missed due to interference or multipath propa-
gation, we also collect messages simultaneously at other loca-
tions. This allows us to exceed the performance of dump1090
with the deep learning approach.

A server collects messages from multiple receivers in a
database. The messages are detected from up to eight receivers
distributed across the northern part of Switzerland. Each
receiver consists of a Raspberry Pi 3 with an attached RTL-
SDR and runs dump1090. Based on the measured timestamps
of the received messages, the server calculates the time offsets
and drifts between the receivers and the exact send timestamps
of the messages at the aircraft, similar to [19].

Also the messages detected using the USRP are sent to
the server. Therefore, also this receiver takes part in the
synchronization and we can calculate when each message
detected by the other receivers should have arrived at the
USRP receiver.

To exactly find the position of the message in the received
signal, we compute the cross-correlation between the signal
and the ideal message that we expect. The ideal message is
constructed by modulating the message bits received from the
server with the ideal pulse shape. The maximal correlation
value provides us with a measure of the signal quality for the
messages that cannot be decoded locally. Only messages with
a correlation value above a certain threshold and arriving close
to the expected time at the USRP are accepted. Otherwise, we
would give the deep learning methods many labeled messages
that are not detectable at the location of the USRP due to
strong interference, obstructions or a too large distance. In the
following, we call these messages that we find with the help
of the distributed receivers ”low quality messages”.

In summary, we collect two kinds of messages, locally
decodable by the USRP, or high quality messages; and non-
locally decodable, or low quality messages. Furthermore, we
collect signals where no message exists that we call ”silence”.
For each of these messages we provide three labels: a binary
value for the existence of the message in the signal (and if
so), starting point within the window, and bits of the decoded
message.

V. DEEP LEARNING DECODER

The pipeline of our decoding system is based on deep neural
networks and consists of three stages: message detection,
offset calculation and bit decoding. Each of these actions is
performed with a specific neural network.



A. Message detection

Aircraft only send very short messages to limit the chance of
colliding with messages from other aircraft. Therefore, to cor-
rectly decode a message in the continuous stream of samples,
it is necessary to first determine whether a given segment of
the signal contains a message or not. For this purpose we use
a one-dimensional convolutional neural network (CNN) that
takes as an input a segment of 2700 samples and produces
a binary output, 0 if there is no message, i.e., silence, and
1 otherwise. If a message is only partly contained in the
segment, the segment is also considered as containing no
message. This network consists of seven convolutional layers
with batch normalization, kernel size of 24 and increasing
number of filters (64, 64, 128, 128, 256, 256 and 512). After
the convolutions there is a final fully connected layer with
sigmoid activation function.

B. Offset calculation

Once a given segment is identified as containing a message,
we need to calculate the actual starting point of the message.
Since the signal length we are considering in the detection
stage is 2700 samples and the actual length of the message
is 1440, the offset of the message starting point can be as
large as 1260 samples. In this stage of the pipeline we use a
Residual Network (ResNet) [20] with six convolutional layers
with residual connections and max pooling, and a final fully
connected layer. Again, batch normalization is applied and the
kernel size is 24, while the number of filters is 64, 128, 128,
256, 256 and 512. This network takes as input a signal of
length 2700 samples and outputs the position in the signal
at which the message starts. Using this information, we cut
the signal to a length of 1600 samples, giving a slack of 160
extra samples in order to correct for possible inaccuracies in
the offset calculation.

C. Bit decoding

After detecting the existence of a message and cutting the
signal to a length of 1600 samples, we pass the resulting
segment to the last stage of the pipeline, the bit decoding.
In this stage we use a neural network of the same architecture
as the message detection network except that it has an eighth
convolutional layer with 512 filters. This network is trained
to produce at the output a binary vector of length 112 where
each element corresponds to a bit of the decoded message.

VI. EVALUATION

To evaluate our decoding system, we compare it to the
classical decoder dump1090, which we use as a baseline. We
demonstrate the performance of the three stages of our pipeline
and show that our deep learning-based receiver is more robust
to low quality messages than the baseline.

A. Pipeline performance

To validate the performance of our pipeline, we first evaluate
it in the task of decoding the high quality messages that can be
decoded by the baseline decoder. This way, we build training,

TABLE I: Message Detection Confusion Matrix

Actual Message Actual Silence

Pred. Message 99.6% 0.5%

Pred. Silence 0.4% 99.5%

validation and test sets as explained in Section IV. Each one of
these sets is recorded on a different day in order to ensure that
the model does not overfit to particular environment conditions
or to the limited number of airplanes that are seen during a
single day.

With this collected data, we train and test each of the
networks separately. In Table I we report the confusion matrix
of the message detection network and observe that the message
detection network obtains a very high F1 score of 0.995. Fur-
thermore, the network for offset calculation finds the starting
point of the signal with an average deviation of ±6.52 samples,
i.e., within ±0.18% of the total signal segment length.

Finally, our experiments show that on a test set of 50,000
messages, the bit decoding network is able to decode 93.1%
of the messages with no bit errors, 4.04% with one bit error,
0.87% with two bit errors and 1.97% with more than two bit
errors. Since the protocol allows for the correction of up to
two wrong bits, our network can successfully decode 98.03%
of the messages that can be decoded by the baseline decoder.

These results show that the performance of our three staged
pipeline is comparable to that of a classical decoder. Next, we
study whether we can outperform the baseline by looking at
messages that are not decoded by dump1090.

B. Low quality samples

To evaluate whether our learning-based system can outper-
form the classical baseline decoder, we use the low quality
samples that were recorded during the data collection process.
As mentioned before, these messages were not detected and
decoded by dump1090. Unlike a classical decoder, our system
can be trained with low quality samples in order to make
it more robust against interference and improve its decoding
capabilities.

Therefore, we repeat the training procedure for all the three
stages of the pipeline but now we include low quality (LQ)
samples in the training set. We use a training set with a total
of 600,000 messages of which 400,000 are high quality (HQ)
messages and the remaining 200,000 are low quality, i.e.,
messages that are not decoded by our baseline, dump1090.

TABLE II: Message Detection Confusion Matrix

Actual Mess. Actual Sil.

HQ LQ HQ LQ

HQT-Net
P. Mess. 99.6% 99.5% 0.5% 69.5%

P. Sil. 0.4% 0.5% 99.5% 30.5%

LQT-Net
P. Mess. 99.0% 98.5% 0.7% 4.5%

P. Sil. 1.0% 1.5% 99.3% 95.5%
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Fig. 1: Performance of the bit decoding network with HQ and
LQ training and test sets.

To study how training on low quality data can improve the
performance of our system, we compare each of the three
networks in both configurations, trained only with high quality
training data (HQT) and trained with high and low quality
training data (LQT). In Table II we split the results between
high quality and low quality samples and show the confusion
matrix for each configuration. We observe that while both
configurations obtain good results in HQ samples, the LQT
configuration obtains a much higher F1 score of 0.970 on
the low quality messages in comparison to the HQT network,
which reaches only a F1 score of 0.467 due to a low true
negative rate of only 30.5%.

Similarly, the offset calculation networks perform very well
on high quality messages: 6.5 samples mean deviation for
the HQT network and 8.1 for the LQT network; but they
differ significantly on low quality messages. Specifically, the
HQT network finds the starting point of the message with a
mean deviation of 114.3 samples for low quality messages
whereas the LQT network suffers from a deviation of only
15.0 samples.

Finally, the decoding performance of our system is shown in
Figures 1a and 1b. These figures show the number of messages
with 0, 1, 2 and 3 or more bit errors for two test sets, one
with 50,000 HQ messages and the other one with 50,000 LQ
messages. We see in Figure 1a that the decoding network with
HQT configuration can only decode 27.0% of the low quality
messages (less than 3 bit errors). Conversely, Figure 1b shows
that using the LQT regime improves the decoding rate by
almost 20% and succeeds at decoding 45.3% of the messages.
Furthermore, training with LQ messages slightly improves the
ability to correctly decode high quality messages, i.e., the LQT
network fails to decode only 0.4% while the HQT network
fails for 2.0% of the HQ messages.

C. Deep learning vs. classical baseline

Despite the improvement achieved by using LQ samples
during training, a significant amount of low quality messages
cannot be recovered.
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Fig. 2: Mean number of errors vs. message quality (correlation
value)

To understand which low quality messages can be decoded
by our system, we plot in Figure 2, for both the HQT and
the LQT networks, the number of decoding errors against the
correlation values of the samples as obtained from the cross-
correlation during the data collection stage. These results show
that, for both networks, below a certain correlation value,
the quality of the messages is not enough to be decoded
reliably. After that point, the number of bit errors grows almost
exponentially until it reaches randomness, that is, 56 bit errors
on average.

It is easy to see that the number of errors in the LQT
network is clearly shifted to the left in comparison to the
HQT network. This implies that the LQT network can decode
messages with lower correlation value, i.e., lower quality. In
particular, on average it can correctly decode (less than 3
errors) messages down to a correlation value of 0.67.

To quantify the amount of messages that can be decoded by
our LQT network and that cannot be decoded by the classical
baseline, we analyze the distribution of messages as a function
of the correlation value, i.e., signal quality. Figure 3 shows
the distributions of HQ messages (decodable by the classical
baseline) and LQ messages (non-decodable by the baseline).
We normalize the area of both distributions and then calculate
the area under the curve (AUC) of the HQ distribution and
the AUC of the LQ distribution for correlation values larger
than 0.67, i.e., the area of the LQ data to the right of the
dashed line in Figure 3. This second AUC corresponds to the
additional messages that our system in LQT configuration can
decode with respect to dump1090. This calculation shows that
assuming the same arrival rate for LQ and HQ messages, our
system can decode 45.1% more messages than the classical
baseline.
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VII. CONCLUSION

In this work we have presented a deep learning-based
decoding system for ADS-B aircraft messages. We break down
the decoding task in three parts: message detection, offset
calculation and bit decoding. Thus, our system consists of a
three-stage pipeline with a specific neural network to solve
each of the subtasks.

To collect the data needed to train this system, we use SDRs
in several different locations. In this way, we have collected
high quality data and low quality data that cannot be decoded
locally by a classical decoder, dump1090, which we use as a
baseline for evaluating the performance of our system.

Our results show that the performance of our deep learning-
based decoder is on par with dump1090 when decoding local,
high quality messages. Furthermore, we have shown that
including low quality messages in the training data of our
system is very effective and allows us to decode 45% more
messages than the classical baseline.

While our receiver has been trained to detect messages in
one location, in the future it would be interesting to generalize
the receiver to many reception conditions. An ADS-B receiver
on an aircraft or mobile receivers for other protocols would
largely benefit from such a generalized receiver.

The possibility of enhancing learning-based systems by
using low quality data in the training phase permits improve-
ments that can hardly be matched by classical decoders. Our
system is tailored to decoding aircraft messages used for
air traffic control. However, given the excellent performance
of our system, we are positive that our approach would be
successful if adapted for other communication protocols.
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