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Abstract—Social Network Analysis (SNA) has emerged as a
promising method for designing data dissemination algorithms
over Delay Tolerant Networks (DTN). These algorithms try to
identify and exploit macroscopic regular relationships between
nodes. Despite initial encouraging results, the type and complexity
of the alleged underlying social structure has not been sufficiently
studied or quantified. In this paper, we perform a systematic
study and comparison of 4 mobility traces and 3 state-of-the-art
synthetic models with respect to social properties. We represent
each model as a weighted contact graph and study community
structure, graph spectrum, inter- and intra-community weight
distributions, etc. We also discuss the implications for synthetic
mobility models. Finally, to underline the importance of these
contact graph properties, we (i) show that the delay of distributed
estimation depends on the second largest eigenvalue of the nor-
malized weighted contact graph, and (ii) express the performance
of various (random and SNA-based) DTN routing schemes as a
function of the volume of cuts between communities.

I. INTRODUCTION

The rapid proliferation of small wireless devices creates
ample opportunity for novel applications [1], [2], as well
as extending the realm of existing ones [3]. Opportunistic
or Delay Tolerant Networking (DTN) [4] is a novel net-
working paradigm that is envisioned to complement existing
wireless technologies (cellular, WiFi) by exploiting a “niche”
performance-cost tradeoff. Nodes harness unused bandwidth
by exchanging data whenever they are in proximity (in con-
tact), with the goal to forward data (probabilistically closer)
to a (set of) destination(s). Since actions of interest can only
occur during a contact, contacts and their statistical properties
are of key importance in the design and performance evalua-
tion of protocols.

To this end, a number of efforts have been made to collect
mobility traces and analyze contact patterns; this is done
either, implicitly, by looking at the access points users are
associated with over time [5], [6] or, explicitly, with exper-
iments designed to log peer contacts (e.g. Bluetooth, WiFi
ad-hoc) [7], [8], [9]. The majority of these traces reveal a
considerable heterogeneity in contact patterns, but also time-
of-day periodicity and strong location preference [10], [6].
The amount of “structure” observed implies high (statistical)
predictability of these patterns. Nevertheless, the majority of
trace analysis research has focused on the inter-contact and
contact duration statistics [11], [12], [13], [14]. Inter-contact
times and their distribution are an essential building block
for most analytical models for DTN routing [15], [16], [17].

Debate is still ongoing as to whether these are in fact power-
law distributed [12], have an exponential tail [13], [14], or
have a qualitatively different behavior from one contact pair
to another [11].

Despite their importance, inter-contact times are a micro-
scopic property of human mobility. Analysis built around them
becomes significantly involved when one departs from the
exponential assumption [12], or a small amount of hetero-
geneity is introduced [18]. More importantly, human mobility
and resulting contacts are driven by intention and location;
social relations between nodes (e.g. friendship) guide a node
to decide the destination and the timing of a mobility trip
while location dictates the path followed. This creates a rather
intricate contact structure that is not readily observable at
inter-contact level. A more abstract, macroscopic view of
mobility is needed that can better capture the set of node inter-
relations, in a tractable manner.

Social Network Analysis (SNA) [19]1 offers such a natural,
compact representation of the processes guiding human mo-
bility contacts. SNA has been used with considerable success
to model and analyze large networks ranging from citation
networks and email chains, to Internet topology and online
social networks like Facebook [19]. Recently, SNA has been
successfully used to design opportunistic routing protocols for
unicast and multicast [20], [21], [22], [23]. There, nodes and
contacts between them are represented on a contact graph,
where a link (or link weight) between two nodes indicates a
measured “strong” relationship between them (e.g. frequent or
long contacts [21], [24]). A variety of metrics and algorithms
could then be used to characterize node importance on this
graph (e.g. degree centrality), as well as to identify nodes
belonging to the same “community” via implicit [20] or
explicit [21] community detection. A “next hop” is then chosen
based on its relative centrality and similarity values. These
algorithms have been shown to outperform random [25] and
utility-based protocols [26].

Even though these protocols aim to utilize “social” proper-
ties of human mobility, the latter have not been systematically
studied. What kind of social structure characterizes the con-
tact graphs of existing traces (e.g. scale-free, small world)?
Are there strong communities, and how are these commu-
nities inter-connected? Is this structure consistent across the

1“Complex Network Analysis” or “Network Science” are other terms often
used to describe the same body of research.
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range of different environments measured? Can sophisticated
synthetic mobility models also exhibit those characteristics?
These questions are important for two reasons: first, to better
understand the underlying structure governing human mobility
and facilitate the design of improved mobility models; second,
various processes of interest (e.g. distributed estimation [27],
[28], routing [25], [26], [20], [21], etc.), taking place over an
opportunistic network, can be modeled as a random process
(e.g. random walk, diffusion) over the contact graph (and its
embedded communities).

To our best knowledge, the research thread in [21] is the
first work to have directly studied some of the social properties
of traces, and is the closest one to the first part of our
work. In [21], a community detection algorithm (k-clique [29])
is applied to different traces and results on the number of
communities, community modularity, and pair-wise contact
duration distributions are reported. In this paper, we take this
work further along a number of dimensions. First, we use a
more generic weight function for the contact graph and apply
a different community detection algorithm as well as spectral
analysis [30], [31]. Second, in addition to two traces also
studied in [21] (for which our results are mostly in agreement)
we analyze and compare the properties of two other traces
and three synthetic mobility models. Third, we focus our
attention to inter-community connections, and inter- and intra-
community weight distributions. As it turns out, these not only
reveal some limitations of state-of-the-art mobility models, but
prove to be key for the performance of distributed algorithms
over opportunistic networks.

We summarize our contributions here and outline the rest
of this paper. We study the contact graph properties of four
collected mobility traces [8], [12], [9], and three recently
proposed synthetic mobility models [10], [32], [33] (Sec-
tion II). We apply a state-of-the-art community detection
algorithm [34] and spectral analysis techniques [30] to study
community structure and modularity, the nature of inter-
community links (e.g. bridging links, bridging nodes, commu-
nity overlap), inter- and intra-community weight distributions,
and other graph characteristics (Section III). Finally, we use
our findings to (i) better understand the capabilities and limi-
tations of state-of-the-art mobility models (Section III-E), and
(ii) propose an analytical framework that links the performance
of various distributed algorithms (namely estimation and
routing) over a given opportunistic network to fundamental
properties of the respective contact graph (Section IV).

II. DATA DESCRIPTION

We define a contact as the period of time during which two
devices are within radio transmission range of each other and
can hence exchange data.

Contact Traces: In order to cover a broad range of mo-
bility scenarios, we use four different contact traces with
their characteristics summarized in Table II: the MIT Reality
Mining [8] (MIT)2, the iMotes Infocom 2005 (INFO) [7],

2Despite its long duration, a lot of short contacts were supposedly not
logged in the MIT trace due to its time granularity of 5 minutes. We use 3
months of contacts between September 2004 and December 2004.

the ETH [9] (ETH), and a new trace involving 150 peo-
ple in an outdoor training scenario in the (SWISS) Alps3.
Synthetic Mobility Models: We also analyze the contact
properties of three recent synthetic mobility models [10], [32],
[33]. Synthetic models allow one to create different scenarios
at will, and examine their impact on measured properties.
Furthermore, these three models have been shown to match
various properties observed in traces (e.g. inter-contact time
distributions), so we would like to assess whether they can
also reproduce “social” properties observed in these traces.
The models chosen are representative of two different trends
in state-of-the-art mobility modeling, namely location-driven
and social network driven models.

Time-variant Community Model (TVCM): In the TVCM
model [10], each node is randomly assigned one or more home
location areas (“communities”) on the plane. Transitions in,
out, and between home locations are governed by a simple
2-state Markov Chain as illustrated in Figure 1(a) i.e., with
a probability 1 − p of roaming outside the community and a
probability p of staying or getting back in the home location.
In any case, nodes move according to a RWP. By choosing
different transition probabilities for each node, a large range
of heterogeneous node behaviors can be reproduced. We use a
simple TVCM scenario throughout our analysis, with only one
community per node (for 100 “normal” nodes), and 4 more
“gregarious” nodes covering each 1

4 of the total area as its
home community (see Figure 1(a))4.

Ghost: Ghost [35] combines both microscopic (realistic
displacements on a map) and macroscopic (preferred loca-
tions) features of mobility. We have used Ghost to reproduce
our building’s floor plan. Nodes follow a RWP model with
waypoints being discrete locations (e.g., offices) and moving
from one waypoint to another using the shortest path on
the constraint layout. Waypoints and pause times are chosen
among a node-specific ranked list of preferred destinations
(according to the Zipf law). All nodes are assigned their office
as the first ranked destination but for other ranks, nodes have
specific destinations simulating social ties (work colleague or
friend).

HCMM: The Community-based Mobility Model (CMM)
[36] was the first mobility model directly driven by a social
network. The Caveman model [19] is used to define a network
with (social) communities and each community is assigned to
a home location as shown in Figure 1(b). In contrast to TVCM,
transition probabilities are directly linked to the weights on the
overlay social network. Specifically, the probability that a node
i performs a mobility trip towards a community C depends
on his social ties (caveman graph weights) towards nodes
currently in community C. HCMM [33] adds location-driven
mobility to CMM. The transition probability to a location L
no longer depends on nodes currently at that location but on
the total weight of nodes assigned to L as their home location
(i.e., irrespective of their current position).

For the three synthetic models, we log contacts. Some model

3This trace is not public.
4TVCM supports much additional complexity (see [10]). We choose here

to use the minimum amount of complexity needed to create some non-trivial
community structure.
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Fig. 1. TCVM and HCMM models.

parameters and statistics are reported in Table I. GHOST is
configured to closely match the situation of the ETH trace,
whereas the parameters of TVCM and HCMM are chosen to
roughly match the other traces in terms of number of nodes
and average community size (see Section III).

TVCM GHOST HCMM
Nodes 104 20 100
Speed 1-3 m/s ∼ N (1.3,.25) m/s 1-3 m/s
Structure 10 Nodes per 1-3 Nodes per 10 Nodes per

Home-Location Office Community
Transm. Range 30m 5m 30m
# Contacts 100′000 9′756 100′000

TABLE I
MOBILITY MODEL PARAMETERS.

A. Contact Graph and Tie Strength

To apply social network analysis tools to each contact
dataset, we construct an appropriate graph, a Contact Graph,
out of the sequence of contacts over time in a trace. We use
a weighted graph, W = {wij}, for this task. Each node is
a vertex on this graph and a link weight wij represents the
strength of the relationship (“tie”) between nodes i and j.

A key question is how to assess the tie strength between
two nodes, i.e. what wij should be, as a function of the
contacts observed in a trace. Different metrics such as the
age of last contact [37], [26], contact frequency [38], [21]
or aggregate contact duration [21] have been used as tie
strength indicators in DTN routing protocols. These can be
seen as contact features whose importance depends on the
scenario and application. We choose to consider here two
features: contact frequency and aggregate contact duration.
We need both dimensions in order to capture different kinds of
relationships. Friends or family may have long meetings which
can be frequent or rather rare, whereas familiar strangers are
characterized by frequent short contacts. The two features are
correlated to different degrees as shown in Table III.

ETH MIT INFO SWISS TVCM HCMM GHOST
0.5 0.81 0.6 0.55 0.96 0.97 0.33

TABLE III
PEARSON CORRELATION COEFFICIENTS OF DURATION AND FREQUENCY.
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Fig. 2. Node’s degrees (ranked).

Clustering Coefficient Avg. Path Length
5% 10% 25% 50% 5% 10% 25% 50%

ETH 0.17 0.27 0.7 0.78 1.2 1.4 2.3 1.4
MIT 0.42 0.57 0.71 0.75 3.3 2.6 2.0 1.5
INFO 0.24 0.3 0.47 0.66 3.5 2.5 1.9 1.5
SWISS 0.27 0.37 0.5 1 3 2.2 2 1
TVCM 0.67 0.95 0.49 0.6 1.3 2.9 1.7 1.5
HCMM 0.67 0.82 0.62 1 1 4.4 1.8 1
GHOST 0.15 0.33 0.63 0.71 0.64 1.8 2.1 1.5

TABLE IV
CLUSTERING COEFFICIENTS AND AVERAGE PATH LENGTHS USING

DIFFERENT WEIGHT THRESHOLDS.

We first assign each pair of nodes {i, j} a two-dimensional
feature vector, zij =

(
fij−f̄
σf

,
dij−d̄
σd

)
, where fij is the number

of contacts in the trace between nodes i and j, and dij is the
sum of the durations of all contacts between the two nodes. f̄
and d̄ are the respective empirical means and σf and σf the
empirical standard deviations.

Since most social network analysis methods (e.g., state-
of-the-art community detection) require one-dimensional tie
strength metrics, we transform the two-dimensional feature
vector to a scalar feature value: We use the principal compo-
nent [39], i.e., the direction in which the data vector Z = {zij}
has the largest variance. This is the direction of the eigenvector
e1 with the largest corresponding eigenvalue. We then define
the tie strength between i and j as the projection of zij on the
principal component

wij = e1
T zij + w0,

where we add w0 = e1
T
(
− f̄
σf
,− d̄

σd

)
(the projection of

the feature value for a pair without contacts) in order to
have positive tie strengths. This is a more generic metric that
combines the frequency and duration in a scalar value and
better represents the heterogeneity of node pairs5.

B. Structural Properties

In the following we use metrics from complex (weighted)
network analysis to study some basic properties of the weight-
ed contact graphs for each mobility scenario. Figure 2 plots
the ranked node’s degrees, where the weighted degree of a
node i is di =

∑N
j=1 wij (for N total nodes). In all mobility

scenarios the degrees are heterogeneous, particularly in the
MIT and SWISS traces.

5This framework implicitly assumes stationarity of the underlying process,
something not always true in some traces. In practice (e.g., for protocol
design), one would implement some sliding window mechanism (see e.g.[24]).
An thorough time-dependent analysis of these traces can be found in [40].



4

MIT INFO ETH SWISS
Scale and context 92 campus students and staff 41 conference participants 20 lab students and staff 150 people
Period 3 months 3 days 5 days 9 hours
Scanning Interval 300s (Bluetooth) 120s (Bluetooth) 0.5s (Ad Hoc WiFi) 30s (GPS)
# Contacts total 81′961 22′459 23′000 12′875
# Contacts per dev. 890 547 1′150 85

TABLE II
MOBILITY TRACES CHARACTERISTICS.

We next examine our scenarios for small-world properties,
which according to Watts & Strogatz [19] are expressed as a
high clustering coefficient (tendency of relations to be transi-
tive) and short paths between nodes (a property of random,
Erdos-Renyi graphs). In order to compute these two metrics,
we apply a weight threshold to the weighted contact graph and
convert it to a binary graph6. For example, a threshold of 10%
means that the strongest 10% of the weights are included in
the binary graph. The clustering coefficient of node i is defined
as (e.g., [19])

Ci =
number of triangles connected to i
number of triples connected to i

,

and the average path length is the shortest path averaged over
all pairs of nodes, between which there exists a path.

Table IV shows the average clustering coefficients for dif-
ferent weight thresholds. For a random graph (Erdos-Renyi),
the clustering coefficient increases linearly from 0 to 1. Thus,
in a graph where 10% of the node pairs are connected, the
expected clustering coefficient is 0.1. The values show that all
scenarios are considerably more clustered, strongly suggesting
non-randomness. For TVCM, the clustering coefficient drops
going from 10% to 25% as this adds many random inter-
community links that form unclosed triples (the closed intra-
community triples are already present before). Such behavior
is not observed in the traces. Regarding the average path
length, we see that there are consistently short paths between
the nodes that are connected. In some cases, e.g., ETH and
TVCM, the path length is increased in the steps from 5% to
10% due to disconnected clusters merging.

III. COMMUNITY STRUCTURE ANALYSIS

Having analyzed generic characteristics of our contact data,
we now look at more “complex” structures, namely commu-
nities. Communities are (informally) defined as subsets of
nodes with stronger connections between them than towards
other nodes. They usually imply a social group (e.g. friends,
co-workers). Although a high clustering co-efficient often
correlates with existence of communities, communities often
involve more than three nodes and their interpretation is more
“subjective”. As a result, their exact number, membership, and
inter-connection may depend on the community detection al-
gorithm and various thresholds. To ensure our observations are
as generic as possible, we use two state-of-the-art community
detection methods, namely the Louvain algorithm [34] and
spectral clustering [31].

6Although average path length and clustering coefficient metrics exist for
weighted graphs, they are not as easily interpretable.

A. Community Detection Methodology

Louvain Community Detection. Finding the optimal allo-
cation of nodes to communities is a computationally hard
problem, and therefore, state-of-the-art algorithms use heuris-
tics. The Louvain [34] algorithm starts with assigning each
node its own community. It then iteratively – until no further
improvement is possible – goes through all nodes and moves
it to one of the existing communities, such that the gain
in modularity is maximal (the Q function [41] is used as a
measure for modularity, see Section III-B). In a second step,
the communities are merged, if merging increases modularity.
These two phases (moving nodes and merging communities)
are iteratively repeated until no further improvement is possi-
ble. The algorithm is fast and was reported to find communities
that are as good or better than other algorithms for a number
of different graphs [34].

Spectral Clustering. Spectral Graph Theory [30] studies the
structural properties and invariants of the weighted graph de-
fined by W, using eigenvalue decomposition of the Laplacian
L. Let us define the normalized Laplacian of the weight matrix
W as

L = I−D−
1
2WD−

1
2 , (1)

where I is the identity matrix and D is the diagonal matrix
whose (i,i)-element dii =

∑
j wij (i.e., is the degree of vertex

i on the matrix W). If W is block-diagonal (ideal case)
i.e., it consists of k connected components with all weights
0 between blocks, the eigenvalues λi, i = 1 . . . n of L are:

λ1 = · · · = λk = 0 < λk+1 · · · ≤ λn. (2)

In the non-ideal case, W is not block diagonal (i.e., is con-
nected with lower weights between clusters), and only the first
eigenvalue of L is 0. Matrix perturbation theory [31] suggests,
however, that if the clusters are compact and modular (in other
words, identifiable by a human), the eigenvalues corresponding
to these clusters will still be small. Spectral clustering [31]
uses this to identify k strongly connected components in W . It
projects the n points into the eigenspace of L consisting of L’s
first k eigenvectors, and uses common clustering techniques
like k-means [39] on this projection, to infer clusters.

B. Community Detection Results

We apply the two community detection algorithms to the
four traces and three synthetic mobility scenarios. The number
of identified communities by each method is shown in Table V.
In addition to the number of communities, we are interested in
the modularity of the resulting partition of nodes to commu-
nities. High modularity implies strong community structure,
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and high potential for node cooperation [42] and community-
based trust mechanisms [43]. Yet, it may also imply high
convergence times for distributed algorithms, as we shall see
in Section IV.

We use the following two metrics to assess modularity. The
widely used Q function, as introduced by Newman [41]:

Q =
1

2m

∑
ij

(
wi,j −

didj
2m

)
δ(ci, cj),

where ki =
∑
j wi,j is the strength of node i and m =

1
2

∑
j kj is the total weight in the network. ci denotes the

community of node i thus, the Kronecker delta function
δ(ci, cj) is one if nodes i and j share the community and
zero otherwise. Q = 0 is the expected quality of a random
community assignment and [41] reports modularities of above
Q = 0.3 for different networks (social, biological, etc.)
for state-of-the-art community detection algorithms. As our
other modularity metric, we use the second eigenvalue λ2

of the normalized Laplacian of W (often called Algebraic
Connectivity [30]), which measures how well connected a
graph is.

The Q function and algebraic connectivity values for all
contact traces and mobility models are also given in Table V.
A first observation is that the two clustering algorithms find
different number of communities in some cases7 although
modularities are almost identical. A visual inspection reveals
that community membership is consistent for both algorithms.
Therefore, in the rest of this section, we present all results for
the Louvain algorithm since the same conclusions hold also
for Spectral Clustering. We will go back to spectral properties
and algebraic connectivity in Section IV.

Trace/Model Alg. Conn. # Comm. Q
ETH 0.49 2/2 0.22/0.21
MIT 0.081 6/6 0.52/0.5
INFO 0.66 6/4 0.12/0.11
SWISS 0.094 7/6 0.22/0.22
TVCM 0.4 10/10 0.48/0.48
HCMM 0.11 8/10 0.6/0.59
GHOST 0.42 3/2 0.21/0.2

TABLE V
ALGEBRAIC CONNECTIVITY, NUMBER OF COMMUNITIES AND

MODULARITY (Q) (THE FIRST VALUE IS USING LOUVAIN, THE SECOND
FOR SPECTRAL CLUSTERING).

A second observation is that modularity varies broadly
among the traces: the MIT trace is highly modular while
ETH and SWISS have a lower modularity and INFO a very
low modularity. Similar values for other community detection
algorithms (K-Clique and Newman), different traces and other
strength metrics (total contact duration) have already been
reported in [21], thus our findings are in agreement. Note
also the high modularity of the synthetic scenarios. This is a
first evidence that existing models can emulate highly modular
community structure with simple scenarios.

Finally, the algebraic connectivity values correlate with the
modularities (i.e., high modularities mean small algebraic con-
nectivities) for the traces. However, the algebraic connectivity

7In the case of SWISS there are 2 nodes that form communities on their
own. We excluded these from the analysis.

of the TVCM model does not. We believe this is due to
the following: while the MIT and SWISS traces are modular
(i.e. tight communities) they have very weak inter-community
connections. This results in a small algebraic connectivity.
On the other hand, the TVCM scenario is also modular,
but the 4 gregarious nodes make sure that most groups of
nodes are not very badly connected to the rest. This will
be confirmed in Section III-D, where we investigate more
closely how the inter-community weights are distributed. In
other words, algebraic connectivity and modularity sometimes
capture different qualitative characteristics.

C. Intra-Community Ties

High modularity implies that a community’s interior nodes
are “well connected”. However, it does not say anything about
how these are connected. Hence we look at the distribution of
nodes’ intra-community weighted degree. For a community
CA and a node i ∈ CA, its intra-community weighted degree
or “internal degree” is:

dint(i) =
∑
j∈CA

wij

For each community, we rank and plot the distribution of
internal degrees over all nodes of a community as shown in
Figures 3(a) and 3(b). We see that internal degrees are skewed
for the traces and slightly decreasing for models.

We further rank and plot individual link weight distribu-
tions: for all links in a community (Fig. 3(c)) and for links
of a given node inside its community (Fig. 3(d)). We observe
that the weights are strongly skewed for the traces. Although
few examples are shown, due to space limitations, this obser-
vation has been remarkably consistent across all traces and
communities. We conclude that a community can thus not be
thought of as a homogeneous group of strongly connected
nodes (like a mesh). Instead, there is strong heterogeneity
even within a community. Synthetic models reproduce this
skewed distribution to various degrees. We discuss this further
in Section III-E.

D. Inter-Community Ties

We now focus on the interface between communities. Ta-
ble VI shows how the total weight in the network is distributed
within and between the communities, for all datasets. Note that
the inter-connections of communities are weak in many cases.
For instance, in the MIT trace, communities 1 and 2 together
contain more than 50% of the weights and 50% of the nodes.
However, between them there is only 2% of the weight. How
“thick” or “thin” inter-community cuts are has an important
impact on the amount of information that can be exchanged
between two communities, and how fast this can be done (see
Section IV).

In addition to the total weight between communities, it is
important to know how this weight is distributed among nodes
and links connecting two communities. We aim to identify the
type of interface as either (i) bridging links, (ii) bridging nodes
(overlap), or (iii) hierarchical communities, defined as follows:



6

0 10 20 30 400

20

40

60

80

100

120

140

Rank

In
te

rn
al

 D
eg

re
e

 

 
SWISS (C1)
MIT (C2)

(a) Trace Intra-Degrees

0 5 10 15 200

10

20

30

40

50

60

Rank

In
te

rn
al

 D
eg

re
e

 

 TVCM (C9)

HCMM (C2)

GHOST (C1)

(b) Models Intra-Degrees

0 20 40 60
0

2

4

6

8

10

Rank

W
ei

gh
t

 

 
ETH (C2)
INFO (C3)
TVCM (C6)

(c) Intra-Weights

0 10 20 30
0

2

4

6

8

10

12

14

Rank

W
ei

gh
t

 

 
MIT (1 Node C1)
INFO (1 Node C1)
GHOST (1 Node C2)

(d) Intra-Weights per Node

Fig. 3. Ranked Intra-Community Weights and Node Degrees for both traces and synthetic models.

(a) ETH
1(10) 2(10)

1(10) 45% 26%
2(10) 26% 30%

(b) MIT
1(24) 2(23) 3(16) 4(16) 5(7) 6(6)

1(24) 25% 2.3% 0.8% 1.1% 0.034% 0.097%
2(23) 2.3% 27% 3.6% 7.6% 0.45% 1.4%
3(16) 0.8% 3.6% 9.2% 3.9% 0.19% 0.96%
4(16) 1.1% 7.6% 3.9% 9.7% 0.29% 0.94%
5(7) 0.034% 0.45% 0.19% 0.29% 3.1% 0.17%
6(6) 0.097% 1.4% 0.96% 0.94% 0.17% 2.2%

(c) INFO
1(13) 2(12) 3(6) 4(5) 5(3) 6(2)

1(13) 14% 18% 8.4% 4.3% 4.1% 2.1%
2(12) 18% 12% 8.6% 4.5% 3.7% 2.3%
3(6) 8.4% 8.6% 4% 2.2% 1.8% 1.3%
4(5) 4.3% 4.5% 2.2% 1.3% 1% 0.64%
5(3) 4.1% 3.7% 1.8% 1% 3.4% 0.6%
6(2) 2.1% 2.3% 1.3% 0.64% 0.6% 1.4%

(d) GHOST
1(9) 2(8) 3(3)

1(9) 33% 24% 6.4%
2(8) 24% 21% 9%
3(3) 6.4% 9% 6.3%

(e) TVCM (5 rand. selected communities)
1(11) 3(11) 4(11) 6(10) 9(10)

1(11) 6% 1% 1% 0.94% 0.75%
3(11) 1% 6.3% 1.4% 0.85% 1.3%
4(11) 1% 1.4% 5.9% 0.95% 1.1%
6(10) 1% 0.85% 0.95% 6% 0.85%
9(10) 1.1% 1.3% 1.1% 0.85% 5.7%

(f) SWISS
1(41) 2(41) 3(38) 4(19) 5(11)

1(41) 24% 8.1% 12% 7.5% 0.064%
2(41) 8.1% 14% 11% 3.5% 0.025%
3(38) 12% 11% 11% 3.2% 0.027%
4(19) 7.5% 3.5% 3.2% 5.4% 0.04%
5(11) 0.064% 0.025% 0.027% 0.04% 0.96%

TABLE VI
PERCENTAGES OF TOTAL WEIGHT WITHIN AND BETWEEN COMMUNITIES. THE ROWS AND COLUMNS ARE COMMUNITY INDICES WITH THE NUMBER OF

NODES IN THE RESPECTIVE COMMUNITY SHOWN IN BRACKETS.

Definition 3.1: Let us look at two communities CA and CB
and identify the cut ∂(CA, CB) = {(i, j) : i ∈ CA, j ∈ CB}.
Then, we define the following three types of inter-community
connections, based on the relative weight of different links and
different nodes in ∂(CA, CB).
• (Bridging link) A link (i, j) is a bridging link if

wij � median{wkl ∈ ∂(CA, CB)}.

• (Bridging node) Define wi,Cj
=
∑
j∈CB

wij . A node i ∈
CA is a bridging node if

wi,CB
� median

k∈CA

{wk,CB
}.

• (Hierarchy) Communities A and B form a hierarchy if
there is no bridging node or bridging link between them
and

vol(∂(CA, CB))

min{|CA|, |CB |}
� median

Cj

{ vol(∂(CA, Cj))

min{|CA|, |Cj |}
}.

In other words, a bridging link implies that a node in one
community has a particularly strong link to a node in another
community (but to no other nodes in that community). A
bridging node on the other hand “knows” many nodes in
both communities (making it more useful to carry information
across communities). Finally, a hierarchy implies that most
nodes in the two communities have some ties with each other,
but not perhaps as strong as inside their own community (e.g.
two groups in the same division).

Note also that this distinction is somewhat subjective. For
example, if there are more than one bridging node we can

say that the two communities partially overlap (but do not
form a hierarchy). Furthermore, certain community detection
algorithms such as k-clique inherently identify some of these
interfaces. However, neither of them provides a distinction
between all the three types of inter-connection. We will
characterize any connection not falling into these categories
as “flat”.

There is a number of reasons why one might care about
how inter-community weight is distributed. First, it is related
to the number of links or nodes that need to be removed in
order to “disconnect” the network [44]. Even if the total inter-
community weight is large, if this is concentrated on a very
small number of nodes (links), losing these few nodes (links)
would suffice to severely hamper the capacity for sharing
information or content across communities in an opportunistic
network. This would be the case, for example, if the bridging
node runs out of battery (something not unlikely given that
this node will be overused by smart SNA-based algorithms)
or decides to not forward traffic.

In order to identify the type of inter-community conductance
we test the cut between communities according to Defini-
tion 3.1. Table VII shows for all traces the results for the
5 strongest inter-community connections (“cuts”)8, i.e., the
type of interface and – in case of bridging nodes/links –
how much of the cut strength is concentrated around them.
Note that not all community inter-connections must have a
type according to Def. 3.1. We see that different traces show

8Stronger cuts are more interesting since these contain most of the “capac-
ity” (e.g. to carry information) between communities.
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MIT ETH INFO SWISS TVCM HCMM GHOST
2 ↔ 3 Hierarchy 1 ↔ 2 flat 1 ↔ 2 flat 1 ↔ 3 Node (10.1%) 3 ↔ 4 flat 1 ↔ 7 Node (21.8%) 1 ↔ 2 flat
2 ↔ 4 Hierarchy 2 ↔ 3 flat 1 ↔ 3 Node (7.4%) 1 ↔ 10 flat 2 ↔ 8 flat 2 ↔ 3 flat
3 ↔ 4 Link (16.8%) 1 ↔ 3 flat 2 ↔ 3 flat 3 ↔ 9 flat 1 ↔ 2 flat 1 ↔ 3 flat
1 ↔ 2 Link (27.1%) 2 ↔ 4 flat 1 ↔ 2 flat 2 ↔ 6 flat 3 ↔ 7 Node (31.3%)
1 ↔ 3 Link (44.1%) 1 ↔ 4 flat 1 ↔ 4 flat 4 ↔ 9 flat 4 ↔ 5 Node (46.0%)
1 ↔ 3 Node (44.8%) 2 ↔ 4 Node (12.4%)

TABLE VII
BRIDGE TYPES. THE NUMBER IN PARENTHESIS IS THE PERCENTAGE OF THE TOTAL AMOUNT OF THE CUT THAT IS CONCENTRATED IN THE BRIDGE. WE

USE “FLAT” TO DENOTE NO PARTICULAR IDENTIFIED STRUCTURE.
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Fig. 4. Ranked Inter-Community Weights and Node Degrees for both traces and mobility models.

different behavior. For instance in MIT, there is a strong
tendency for communities to be linked by bridging links,
whereas the SWISS trace tends to have bridging nodes. As
we have already observed, the INFO trace shows relatively
less structure and Def. 3.1 does not assign any type to the
community pairs. In case of the mobility models, we do not
observe any bridging links. We discuss this in Section III-E.

Figure 4 plots the ranked inter-community weighted node
degree and inter-community weights for the traces and syn-
thetic models. For the distribution of inter-community weight-
ed degree per node (i.e., all weights of a given node i ∈ Ci
towards any node in some other Cj) we see two examples
in Figures 4(a) and 4(b). Again, we observe very skewed
distributions of weights for the traces with degrees strongly
concentrated in a few nodes (actually ETH and INFO trace
degrees). For synthetic models, behaviors are mixed ranging
from uniform to highly skewed.

Figure 4(c) and 4(d) plot the inter-community link weights
for the traces and models. For the traces, although the distribu-
tions differ, in almost all cases weights show a lot of variation
and distributions are skewed (a subset of plots are only shown,
due to space limitations). For the models, again, the behavior
differs.

E. Implications for Mobility Modeling

From the range of results presented, it is evident that there
are a number of similarities between the traces and synthetic
mobility models, but also a number of important differences.

The most important finding is that not all synthetic models
can easily reproduce the skewed distributions for inter- and
intra-community link weights (prevalent among traces). All
synthetic models tend to also produce more uniform internal
degree distributions. Finally, we did not observe a bridging link

in any of the synthetic scenarios. We present here a possible
interpretation.

In TVCM, destinations are chosen uniformly inside a home
community (and outside). This results in relatively uniform
weights as, in the long run, every node will see every other
node in a given “class” (e.g. “nodes with same home loca-
tion”, “nodes only met randomly”) equally often. Multi-tier
communities can be introduced [10] with skewed transition
probabilities to emulate the skewed location preference ob-
served in WLAN traces. These could also be tuned to emu-
late observed weight distributions, yet only through detailed
“model fitting”. Ghost on the other hand uses a detailed map
and allows defining destinations with a finer granularity. This,
together with the use of a skewed destination preference (Zipf)
better reproduces skewed distributions at the intra and inter-
community levels. Although the skewed location preference is
well-motivated and matches our intuition, it is essentially hard-
wired, with no clear process driving it per node. Nevertheless,
both TVCM and Ghost are location-driven models and thus
destinations can only be locations.

HCMM takes a different approach. Although it is ultimately
location-driven, as TVCM, individual behaviors (i.e. transi-
tion probabilities between communities) are more naturally
derived, through an overlay social network. Without explicitly
reverse-fitting any trace, this simple transformation of social
weights to transition probabilities [33] seems to be equally
successful at capturing microscopic (e.g. weight distributions)
and macroscopic (e.g. modularity) behaviors. Nevertheless,
closer observation reveals that HCMM also falls short. Internal
degree distributions are also more uniform than traces. In fact,
since destinations are ultimately home/remote communities
most nodes in a visited remote community are expected to
become familiar strangers. Much of the difference observed,
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is only due to the varying amount of time each node stays in
its community.

Further consideration of the mechanisms behind the three
models suggests that they also all suffer from the same
limitation. Although they are more or less able to capture
contact related phenomena arising from location-driven mo-
bility actions they are less ready to capture mobility driven
by explicitly social intentions. All three models ultimately see
locations as destinations, fixed and decided at the beginning.
They do not see other nodes as destinations. Experience tells
us that our intention to see node X, will guide us to go to the
location where X is, at the time that X is there. [36] does seem
to want to capture this, but fails in the implementation [33].
We suspect that social intention is one of the reasons behind
the consistently skewed weight distributions in traces, as
nodes go to meet other nodes selectively, not necessarily
contacting other nodes in the destination’s home community9.
Furthermore, meetings between nodes with social relations do
not necessarily occur in one’s home community.

Concluding, we believe that models should put more empha-
sis on the social aspects of mobility. Capturing both location-
driven mobility decisions and social relationship driven ones
seems necessary to accurately reproduce the social properties
observed in real traces. Furthermore, it seems that group
mobility primitives (i.e. biasing the decision of node X based
on what his friend Y is doing, perhaps in a time-dependent
manner) could still be relevant.

IV. DISTRIBUTED ALGORITHMS

Community structure, strength, and type of community
inter-connections are also important for various distributed
algorithms, e.g. distributed estimation and gossip-based dif-
fusion [27], [45], [28], load balancing and congestion con-
trol [46], [47], and DTN routing [21], [20], [25], that could run
over opportunistic networks. In this section, we show that the
performance of these processes is directly linked to properties
of the contact graph, such as its algebraic connectivity,
the conductance of the cut between communities, and the
distribution of weights across a cut, studied in Section III.

A. Distributed Estimation

Distributed estimation of network parameters or global
network state is a key component for the correct and efficient
operation of numerous DTN algorithms. For example, in [25],
an estimate of the network size is needed in order to tune the
number of copies used by the protocol. Furthermore, optimal
buffer management protocols such as [48], [47] require an
estimate of the total number of existing message replicas.
[28] argues for the systematic study of distributed estimation
problems in DTNs, and examines pair-wise and population
methods. Nevertheless, no analytical treatment of the conver-
gence of these algorithms is available.

9A note is due here: Eventually traces themselves are also limited in
capturing “everything going on” since (i) WiFi and bluetooth based logging
have their own pitfalls, and (ii) the resulting contact traces using these
technologies jointly aggregate the effect of two processes, mobility and radio
propagation.

Distributed estimation and gossip-based diffusion, on the
other hand, have been extensively studied in the context of dis-
tributed databases and systems [27], [45]. There, a connected
network is considered, such as a social network, a peer-to-peer
network, or a (connected) ad hoc network, with applications
being rumor spreading, estimation, distributed data fusion, etc.
Time is counted in rounds, and in each round, one or more
links are chosen, with some probability, over which content
is shared/fused to estimate some aggregate parameter (e.g.
average, cardinality, min, max). This probability matrix defines
a randomized gossip algorithm. The number of rounds needed
for convergence is found to be linked to the second largest
eigenvalue of the expectation of this matrix.

Here, we will use the framework of [27] as it can treat non-
complete graphs and asynchronous rounds. However, in our
case, the network is not connected and link activation depends
only the mobility model. We need to modify the proposed
framework accordingly. Specifically, we assume that the clock
ticks at consecutive contact intervals (i.e. a contact between
any nodes). We discuss how this translates into real time, later
in this section.

Let us assume that each node i possesses a value xi and
we want all nodes to calculate the average value over all
xi (this process can be used to calculate other aggregate
parameters such as cardinality, min/max, etc.). If x(k) =
{x1(k), . . . , xi(k), . . . , xN (k)} is the current (N-dimensional)
vector value at clock tick k, then in the next tick

x(k + 1) = Rx(k),

where R is an N × N random matrix. If the next contact is
between nodes i and j (with some probability pij), then the
matrix R is equal to

Rij = I − (ei − ej)(ei − ej)T

2
, (3)

where ei is an N × 1 vector with the ith component equal to
1, and all other components zero.

We therefore need to define these probabilities pij in our
context. In lack of other information, it is reasonable to assume
that the probability pij that the next contact is between nodes
i and j is proportional to the edge weight wij in the contact
graph W10:

pij =
wij∑

(k,l) wkl
(4)

Let us define the volume of a subset of vertices S ⊆ G as
vol(S) =

∑
i∈S di =

∑
i∈S wij . It is easy to see then that

E[R] =
2W

vol(W)
. (5)

We are now ready to connect the convergence results of [27]
to the contact graph of a given mobility scenario. Let us denote
the target vector x(k) as xave1, where xave =

∑
i xi(0). We

define the ε-averaging time (0 < ε < 1), as in [27], with the
difference that, instead of an asynchronous gossip algorithm

10See also [22], [23] for more rigorous arguments.
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Fig. 5. Average relative estimation error.

A(P), we now have an opportunistic network with weighted
contact graph W. Then,

Tave(ε,W ) = sup
x(0)

inf

{
k : Pr

(
‖x(k)− xave1‖
‖x(0)‖ ≥ ε

)
≤ ε

}
.

(6)
Hence, Tave(ε,W ) denotes the time at which all nodes in our
opportunistic network will have converged close to the desired
average value, with high probability. The following Lemma is
the direct application of Theorem.3 of [27] to our modified
framework, and is presented without proof11.

Lemma 4.1: The averaging time Tave(ε,W ) over an oppor-
tunistic network with weighted contact graph W (in terms of
number of contacts) is bounded as follows:

0.5 log ε−1

log
(

vol(W )
2

λ2(W )−1
) ≤ Tave(ε,W ) ≤ 3 log ε−1

log
(

vol(W )
2

λ2(W )−1
) ,
(7)

where λ2(W ) is the 2nd largest eigenvalue of W .
The eigenvalues of W and of the Laplacian L(W ), calcu-

lated in Section III, are connected through Eq.(1).
To validate this result, we run an averaging process over

the real and synthetic mobility traces studied in Section III.
Fig. 5 relates the convergence time for the averaging process
on each scenario and the respective algebraic connectivity. As
can be seen there, scenarios like MIT and SWISS with small
λ2(L(W )) (i.e., large λ2(W ) in Lemma 4.1), also take more
time to converge.

Cheeger’s inequality [30] further connects the speed of
the averaging algorithm with inter-community cut weights,
measured in Section III. To see this, let us isolate two
communities of graph W, say CA and CB , and consider the
subgraph WA,B = {VA,B , EA,B}, where VA,B = CA ∪ CB
and EA,B = {(i, j) : i, j ∈ CA ∪ CB}. Let us further define
the conductance of the cut ∂(A,B)12, as

φA,B =
vol(∂(CA, CB))

min{vol(CA), vol(CB)}
.

Then, we can use Cheeger’s inequality to connect the weight
of the inter-community cut and the second eigenvalue of the
Laplacian of WA,B , λ2(L(WA,B)) as follows:

Lemma 4.2: If WA,B denotes the subgraph defined by two
communities CA and CB , and φA,B is the conductance of the

11In [27] both the random averaging matrix and its expectation are denoted
as W . To avoid confusion, we denote the former as R.

12Often called “sparsity”, with conductance being the minimum sparsity
for the whole graph. In the case of WA,B it coincides.

inter-community cut, then

φ2
A,B

2
≤ λ2(L(WA,B)) ≤ ∈φA,B. (8)

Lemmas 4.1 and 4.2 together imply that the speed by which
two communities in a given opportunistic network can share
information or fuse data, spread in both communities, strongly
depends on the conductance (i.e. the percentage of total contact
weight) of the cut between the communities.

1) From Contact Times to Link Weights and Back: We
would like here to discuss some of our assumptions and their
implications. Through Eq.(4), we are essentially assuming that
the number of contacts until (i, j) happens (starting from
the stationary distribution) is geometrically distributed with
parameter pij . The geometric assumption is in accordance
with [27], yet one might question to what extent this is
applicable for the opportunistic networks at hand.

In this direction [22] assumes that individual contact pairs
can be modeled as independent Poisson processes with rates
equal to the respective link weight (it easy to check that this
assumption maps to our discrete, contact-driven framework).
The authors there validate this assumption on two popular
traces (INFO and MIT, also studied here), and find it to hold
for a significant percentage of contact pairs. [49] also studies
inter-contact time distributions of traces and reports that a
subset of them are exponentially distributed (in accordance
with [22]) but most of them can also be fit with a lognormal
(perhaps somewhat contradicting [22]).

Finally, it is important to note that, in our framework, we
are only interested in first contact times and not inter-contact
times. These are more commonly referred to, in the theory of
Random Walks on Graphs [50], as hitting times and first return
times, respectively. While the latter are often not memoryless
(this is easy to see for a random walk on a 2D lattice), hitting
times on subsets of graph vertices often have an exponential
tail [50], [13], [14]. We believe that these observations provide
sufficient support for the applicability of this framework in
Sections IV-A and IV-B. Results in Section IV-B give further
validation.

As a final step, we discuss how one could go back from
“contact clock ticks” to actual time. The authors of [27]
assume exponential clock ticks and use the law of large
numbers to show that the exact time of the n-th tick is highly
concentrated around its average. A slightly more generic
statement can be maded based on Renewal Theory and Wald’s
equation [51]. Let the times of consecutive contact events be
renewals. If time is counted at renewal times (contact times),
it is easy to see that k in Eq.(6) and delay quantities derived
in Section IV-B, are stopping times. We can apply Wald’s
equation [51] to get the following Lemma.

Lemma 4.3: Let the average time between consecutive con-
tact events be E[C]. Let further Tst denote the delay or
convergence time of a given process over an opportunistic
contact graph W, in terms of number of contacts. Then, the
expected delay of this process is equal to E[C] · E[Tst].
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Fig. 6. Avg. Delivery Ratio as a function of TTLs (in % of trace duration)
according to Eq. 9.

B. Random and SNA-based DTN Routing

In this section, we are interested in predicting the perfor-
mance of DTN routing over different opportunistic networks
as a function of the properties of its weighted contact graph.
Due to space limitations, we only provide sketches of proofs
wherever needed. In light of Lemma 4.3, all time quantities
are measured in number of contacts.

1) Performance of Direct Transmission: In Direct Trans-
mission the source holds on to a message until it encounters
the destination itself [52]. Its performance has been studied for
simple synthetic mobility models [17]. Theorem 4.4 derives
the delivery probability for Direct Transmission on a generic
opportunistic network13, as a function of the weighted graph
matrix W.

Theorem 4.4: Let Tttl denote the time-to-live for a packet.
Then, the expected delivery ratio for direct transmission is

Pdeliver = 1− 1

N2

∑
i,j

(
1− 2wij

vol(W )

)(Tttl+1)

. (9)

Proof: Let us pick uniformly a random source destination
pair (i, j). Then, according to Eq.(4) and Eq.(5) the number
of contacts until i and j meet for the first time is geomet-
rically distributed with probability pij =

2wij

vol(W ) . Thus, the
probability of delivery for this pair is

Pdeliver(i, j) = 1−
(

1− 2wij
vol(W )

)Tttl+1

.

Averaging over all source-destination pairs gives us Eq.9.
Fig. 6 compares analytical and simulation results for the

delivery delay of Direct Transmission on some of the mobility
scenarios. As can be seen there, despite the simplicity of the
framework and the assumptions discussed in Section IV-A1 the
analytical formula of Eq.(9) follows the observed simulation
values well.

2) Delay of Spray and Wait: Spray and Wait [25] is
a “random” DTN routing scheme that distributes a limited
number of message copies to the first few nodes encountered.
When all copies are distributed, each of the relays with
one performs Direct Transmission. Spray and Wait has been
found to perform favorably compared to epidemic-based DTN
routing schemes (in terms of the delay-resources tradeoff), but
only in homogeneous scenarios. Its delay for environments
with skewed node degree distributions is studied in [18].

13The observed skewed weight distributions make an average deliver delay
expression less useful.

Theorem 4.5 provides a closed-form lower bound for the basic
Spray and Wait scheme in a generic opportunistic network.

Theorem 4.5: Let M be the number of copies used by
Spray and Wait. Consider two communities, Ci and Cj , and
let M ≤ |Ci|. Then, the expected delay of Spray and Wait
between nodes i ∈ CA and j ∈ Cj is

ETSW (Ci → Cj) ≥
vol(W )|Ci||Cj |

2M

1

vol(∂(Ci, Cj))
, (10)

Proof: (This is a sketch of proof ) The delay of Spray and
Wait consists of two components, the delay of the spray phase,
ETspray, plus the delay of the wait phase, ETwait. Since the
destination is in a different community and M ≤ |Ci|, the
probability that the destination is found during the spray phase
is negligible [25]. Consequently,

ETSW (Ci → Cj) = ETspray + ETwait ≥ ETwait.

If a contact graph is highly modular and community cuts small,
then the above bound is tight.

Let’s denote the set of relays with a copy, after the spray
phase finishes, as Li = {i1, i2, . . . , iL}. Then, the expected
remaining delay, ETwait|Li

is

ETwait|Li
=

1
2vol(W )

wi1j + wi2j + · · ·+ wiLj
. (11)

Since the set Li is random, we need to calculate the expecta-
tion over all Li, ETwait = E[ETwait|Li].
ETwait|Li

is a convex function of wi1j , wi2j , . . . . We can
thus use Jensen’s inequality to get

E

[ 1
2
vol(W )

wi1j + wi2j + · · ·+ wiLj

]
≥

1
2
vol(W )

M · E[wij |i ∈ Ci, j ∈ Cj ]
.

This bound holds independent of the choice of node i. Further-
more, E[wij |i ∈ Ci, j ∈ Cj ] can be written as vol(∂(Ci,{j}))

|Ci| .
Finally, we average over all destinations j ∈ Cj , using the

same argument (Jensen’s inequality and the convexity of the
function with respect to the choice of j) to get

ETSW (Ci → Cj) ≥
1
2vol(W )

M
vol(∂(Ci,Cj))
|Ci||Cj |

.

It is clear that the delay of Spray and Wait between two
communities is inversely proportional to the volume of the
cut between the communities. Furthermore, the above bound
is tighter the more evenly distributed the total cut weight
is among nodes in the two communities. In the presence of
strong bridging nodes it becomes less tight. Fig. 7 shows the
computed bound and the simulated delay, for inter-connections
of communities with at least M nodes. Observe that the
bound is followed more closely for traces that have less strong
bridging elements (i.e., TVCM and SWISS).

3) Delay of Social Routing Schemes: In this last part, we
analyze a simple generic SNA-based routing scheme in order
to get a feel of their performance advantage in the presence
of strong social structure14. Let us consider again the random

14The complexity of full-fledged SNA-based DTN protocols like [21], [20]
does not permit us their detailed analytical treatment here, which we defer
for future work.
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Fig. 7. Avg. Delivery Delay of Spray & Wait (M = 5) for different
community pairs related to Eq. 10.

spraying scheme of Theorem 4.5, but now assume that a relay
in the wait phase is able to recognize a node belonging to the
same community as the destination; the relay then hands over
its copy to that node as it has a higher delivery probability.
This could be done, for example, with a community detection
algorithm as in [21] or using similarity as in [20]. It is a
hybrid scheme using random replication at the beginning, but
allowing some SNA-based forwarding in the “wait” phase
(similar to the multi-copy scheme proposed in [53], without
the centrality part).

Theorem 4.6: Let M be the number of copies used by
Spray and Wait with Community Detection (CD). Consider
two communities, Ci and Cj , and let M ≤ |Ci|. Then, the
expected delay of Spray and Wait (CD) between nodes i ∈ CA
and j ∈ Cj is

ETSW−CD(Ci → Cj) ≥
vol(W )|Ci|

2M

1

vol(∂(Ci, Cj))
. (12)

Proof: (This is a sketch of proof ) We can perform the
same analysis as in Theorem 4.5. The only difference is that
in the wait phase, we only need to encounter any node in
community Cj , instead of a specific node j as in the Spray
and Wait case. Thus,

ETwait ≥
vol(W )|Ci|

2M

1

vol(∂(Ci, Cj))
.

The last leg of the delivery process, from the relay found in
community Cj to the destination, incurs additional delay. This
delay doesn’t change the direction of the inequality.

Eq.(10) and Eq.(12) imply that Spray and Wait (CD) can
be up to a factor of |Cj | faster than simple Spray and Wait.
Clearly, we are comparing bounds here, and such conclusions
should be considered only as hints and not solid evidence.
Although it is not difficult to derive more detailed expression
to account for all components of the the above delays, this is
beyond the scope of this paper. Table 4.6 show the actual
performance gain between the two schemes for different
scenarios, as a function of message copies used.

V. CONCLUSIONS

In this paper, we study the “social” properties of four
mobility traces and three synthetic mobility models. We use
Social Network Analysis and Spectral Analysis to compare
various properties of interest with a special focus on commu-
nity structure and inter-community connections. Our findings

TVCM HCMM GHOST MIT ETH
M = 2 2.80 1.77 2.36 1.63 1.55
M = 4 1.97 2.06 1.72 1.53 1.28
M = 8 1.48 1.79 - 1.39 1.02

TABLE VIII
AVERAGE PERFORMANCE GAIN OF SPRAY & WAIT (CD) VS. SPRAY &
WAIT. GHOST HAS NO COMMUNITY PAIR WITH MORE THAN M = 8

NODES IN THE COMMUNITIES.

suggest not only that collected traces differ qualitatively from
each other, but also that state-of-the-art synthetic models fail
to capture some behaviors consistently appearing in traces.
Finally, we propose a framework to analyze the performance of
various distributed algorithms (such as distributed estimation
and routing) over an opportunistic network. We prove that this
performance strongly depends on key properties of the contact
graph such as its algebraic connectivity and conductance.

In future work, we plan to look deeper into modeling various
distributed processes of interest over opportunistic networks as
a random process over the respective contact graph. We also
plan to explore how to adapt or amend existing mobility mod-
els to be able to emulate social properties more realistically.
Finally, the presence of bridging links and bridging nodes raise
some interesting issues related to congestion control, power
management, and incentives.
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