ETH zürich

KDSalBox:

A toolbox of efficient knowledge-distilled saliency models

Ard Kastrati 1&2, Zoya Bylinskii 2, Eli Schechtman 2

1: ETH Zurich, Department of Electrical Engineering, Distributed Computing Group, 2: Adobe Research

Motivation

Dozens of saliency models have been designed over the last few decades, targeted at diverse applications ranging from image compression and retargeting to robot navigation, surveillance, and distractor detection. Barriers to their use include the different and often incompatible software environments that they rely on, as well as the computational inefficiency of older implementations. To facilitate the evaluation and selection of saliency models for different applications, we present KDSalBox - a toolbox of 10 knowledge-distilled saliency models. KDSalBox allows these 10 models to be efficiently run, compared, and be practically applied.

Results:

KDSalBox

Compute Saliency

Upload an image to compute the saliency.

You can use the graphical user interface to compute the saliency of any image for all 10 knowledgedistilled models, you can perform histogram matching and other post-processing operations. You may also provide ground truth saliency data for the image to get each of the models scored.

Task Evaluation

Which of the saliency models is best suited for your computer vision task?

You can use our toolbox to upload

User Interface

DA KDS	SalBox
Task Evaluation	
You wonder which of the saliency models	s is more appropriate for your computer vision task?
Let's use our toolbox for this. In the following please upload the original	l image and the image with annotations (in greyscale).
Choose the image	
Drag and drop file here Limit 200MB per file - JPG, PNG	Browse files
example.jpg 182.2XB	×
Choose the annotations	
Drag and drop file here Limit 200MB per file - JPG, PNG	Browse files
example_a.png 8.1×8	×
Original Image	Annotation Image

Figure: The performance of ten knowledged-distilled models in our KDSalBox shown for a sample image from both datasets: SALICON and CAT2000

Model	Origi	Original implementation			(Dis)similarity between student & original models			
				Natural Images (SALICON)		Patterns (CAT2000)		
	Codebase	Size	Time (CPU)	CC↑	$KL\downarrow$	CC ↑	$KL\downarrow$	
AIM	Matlab	24MB	10sec	0.99 ± 0.00	0.00 ± 0.00	0.96 ± 0.04	0.18 ± 0.23	
IKN	Matlab	1MB	6.0sec	0.97 ± 0.01	0.02 ± 0.01	0.78 ± 0.09	0.14 ± 0.06	
GBVS	Matlab	1MB	6.1sec	0.98 ± 0.01	0.01 ± 0.01	0.75 ± 0.09	0.17 ± 0.07	
BMS	Matlab	5MB	0.4sec	0.89 ± 0.07	0.05 ± 0.02	0.78 ± 0.11	0.30 ± 0.26	
IMSIG	Matlab	20KB	5.7sec	0.96 ± 0.04	0.02 ± 0.02	0.71 ± 0.15	0.16 ± 0.13	
RARE2012	Matlab	20KB	6.3sec	0.87 ± 0.10	0.10 ± 0.06	0.76 ± 0.12	0.30 ± 0.16	
SUN	Matlab	1MB	12sec	0.94 ± 0.04	0.02 ± 0.01	0.95 ± 0.02	0.21 ± 0.25	
UniSal	Python	30MB	0.4sec	0.92 ± 0.05	0.11 ± 0.06	0.68 ± 0.14	0.46 ± 0.36	
SAM	Python	561MB	7.3sec	0.82 ± 0.13	0.28 ± 0.17	0.48 ± 0.15	0.87 ± 0.40	
DGII	Python	330MB	4.8sec	0.90 ± 0.08	0.14 ± 0.09	0.68 ± 0.16	0.48 ± 0.42	

Outlook

an image and corresponding annotations (as a mask). KDSalBox will evaluate the given models for the task in terms of Precision, Recall, Accuracy and Fl score. Use this to find which of the saliency models does best at detecting the main subject, image distractors, etc.

Knowledge-Distillation

How close are the knowledge distilled versions to the original models? We knowledge distilled the models using the SALICON dataset. However, you might want to check how your model performs on the target domain.

AM	IMSIG	SUN	RARE2012	BMS				
ICN	GBVS	SAM	DGII	UniSal				
Evaluate Knowle But how close are the	KDSalBox Evaluate Knowledge-Distillation Process But how close are the knowledge distilled models to the original model?							
this. In the following please upload t Choose an image to test KD	he original image.		,					
Drag and drop file here Limit 200MB per file - JPG, PNG				Browse files				
COCO_val2014_00000000	0133.jpg 163.6KB			×				
Original image								
Choose the image of the original model (A	M)			Browse files				
Limit 200MB per file - JPG, PNG	133.jpg 12.4K8			×				
AIM	Orig	nal AIM	Evaluation Sco	re				
			CC- SIM 0 0.9931 0.98188	97247314453				

Table(left): The ten models currently part of the KDSalBox. We include scores comparing the knowledge-distilled student models to the original saliency model implementations. We report the average inference time by using the SMILER (Wloka et al. (2018)) framework and 640×480 sample images. We note that in comparison to the original implementations, all our resulting student models are 41.2 MB in size with an average inference time of 0.4 sec on CPU and 0.01 sec on GPU.

In our work, we have used a unified architecture for all models for simplicity and easier maintainability. The current limitation is that our models are trained only on natural images of the SALICON dataset, and the included technical report provides an analysis of how they perform on out-of-distribution datasets, including 20 different image categories from CAT2000 and 5 graphic design categories from ImpIK. We recommend referring to these results before applying a model to a new task/dataset. Extensions of this work call for training on other domains and with larger datasets.