Consistent Updates in Software Defined Networks: On Dependencies, Loop Freedom, and Blackholes

Klaus-Tycho Förster, Ratul Mahajan, and Roger Wattenhofer
Consistent Updates in Software Defined Networks: On Dependencies, Loop Freedom, and Blackholes

Consistent Updates in Software Defined Networks: On Dependencies, Loop Freedom, and Blackholes

Klaus-Tycho Förster, Ratul Mahajan, and Roger Wattenhofer
“some switches can ‘straggle,’ taking substantially more time than average (e.g., 10-100x) to apply an update”
Jin et al., SIGCOMM 2014
“Tree Ordering”
"Tree Ordering"
“Tree Ordering”
Software-Defined Networking

Centralized controller updates networks rules for optimization

Controller (control plane) updates the switches/routers (data plane)
old network rules

network updates

new network rules
old network rules

network updates

new network rules
old network rules

network updates

new network rules

possible solution: be fast!

e.g., B4 [Jain et al., 2013]
old network rules

network updates

new network rules

possible solution: be consistent!

e.g.,
• per-router ordering [Vanbever et al., 2012]
• two phase commit [Reitblatt et al., 2012]
• SWAN [Hong et al., 2013]
• Dionysus [Jin et al., 2014]
•
possible solution: be consistent!
Dynamic Updates

Idea: Update as many routers as you can
Dynamic Updates

Dashed lines represent network updates.
Dynamic Updates
Dynamic Updates

network updates
Dynamic Updates
Dynamic Updates

Network updates
Dynamic Updates

network updates

greedy **maximum** update
a & b update → all others wait
2 nodes update
Dynamic Updates

- **greedy maximum** update: a & b update → all others wait
 2 nodes update

- **maximal** update: a waits → all others update
 all but 1 update
Dynamic Updates

Maximize \#routers updated \approx Feedback Arc Set
\Rightarrow \text{Approximate within } O(\log n \log \log n)
Dynamic Updates

But how long until all routers updated?
Dynamic Updates vs Tree Ordering

Worst case? Identical to Tree Ordering
Dynamic Updates vs Tree Ordering

But in practice?
Dynamic updates vs. Tree Ordering?

#updates on Tier 1 ISP [single-link failure]

Tree Ordering: \(\leq 14 \) updates [FB, 2007]
Dynamic Updates: \(\leq 7 \) updates
Beyond a Single Destination

But what about prefix routing rules?
Beyond a Single Destination

Split into single destination rules? (Memory...)
Beyond a Single Destination

Fewest #updates: NP-hard to approximate
Beyond a Single Destination

Reduction from 3-Satisfiability

1. Maximizing #rules per update is NP-hard
2. Fewest #updates NP-hard to approximate
3-Satisfiability
3-Satisfiability

- $\neg X_1 \land Y_1 \land \neg X_2 \land Y_2 \land \neg X_3 \land Y_3$

Diagram:

- Node X_1 connected to Y_1 by a purple dashed arrow.
- Node X_2 connected to Y_2 by a purple dashed arrow.
- Node X_3 connected to Y_3 by a purple dashed arrow.

Red arrows indicate the presence of an X variable.
3-Satisfiability

\[C = X_1 \lor X_2 \lor \neg X_3 \]
3-Satisfiability

\[C = X_1 \lor X_2 \lor \neg X_3 \]
3-Satisfiability

3-Satisfiable \iff Update each variable*

(and all rules outside the variables)
Shortest Sequence

Also: Shortest sequence NP-hard to approximate
Shortest Sequence

Also: Shortest sequence NP-hard to approximate
Shortest Sequence

Also: Shortest sequence NP-hard to approximate
Blackholes
Blackholes
Blackholes
Blackholes
Blackholes
Blackholes

No rule? Drop packet
Blackholes

Idea 1: Keep old rule in memory
Blackholes

Idea 2: Send somewhere else?
Blackholes

Respect memory limits and no loops?
Blackholes

Fastest method: NP-hard to approximate!
Proof Idea

A cycle can be used for loop-free routing
Proof Idea

With cycle: fast change; else slow...
Proof Idea

But Hamiltonian Cycle problem is NP-complete!
Conclusion

greedy maximum update
a & b update → all others wait
2 nodes update

maximal update
a waits → all others update
all but 1 update
Consistent Updates in Software Defined Networks: On Dependencies, Loop Freedom, and Blackholes

Klaus-Tycho Förster, Ratul Mahajan, and Roger Wattenhofer
“Data plane updates may fall behind the control plane acknowledgments and may be even reordered.”
Kuzniar et al., PAM 2015

“...the inbound latency is quite variable with a [...] standard deviation of 31.34ms...”
He et al., SOSR 2015

“some switches can ‘straggle,’ taking substantially more time than average (e.g., 10-100x) to apply an update”
Jin et al., SIGCOMM 2014
How to proceed in practice?
Consistent Updates in Software Defined Networks: On Dependencies, Loop Freedom, and Blackholes

Klaus-Tycho Förster, Ratul Mahajan, and Roger Wattenhofer