Voting in Two-Crossing Elections

Andrei Constantinescu Roger Wattenhofer

Distributed Computing Group

- HHzürich

Motivation
 The Horseshoe Theory

Far Left
Far Right

Left-Right Spectrum

Left-Right Spectrum

Left-Right Spectrum

Candidates: $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{M}}$;
Left
Right

Left-Right Spectrum

Candidates: $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{M}}$; Voters: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.
Left
Right

Left-Right Spectrum

Candidates: $\mathrm{C}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}$; Voters: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.
Left

Candidate c located at $\mathrm{x}(\mathrm{c})$

Left-Right Spectrum

Candidates: $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}$; Voters: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.
Left
C_{1}
Right

Candidate c located at $\mathrm{x}(\mathrm{c})$

Left-Right Spectrum

Candidates: $\mathrm{C}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}$; Voters: $\mathrm{V}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.

Right

Candidate c located at $\mathrm{x}(\mathrm{c})$

Left-Right Spectrum

Candidates: $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{m}}$; Voters: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.

Candidate c located at $\mathrm{x}(\mathrm{c})$

Left-Right Spectrum

Candidates: $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{M}}$; Voters: $\mathrm{V}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.

Candidate c located at $\mathrm{x}(\mathrm{c})$; voter v has ideal point $\mathrm{x}(\mathrm{v})$.

Left-Right Spectrum

Candidates: $\mathrm{C}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}$; Voters: $\mathrm{V}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.

Candidate c located at $\mathrm{x}(\mathrm{c})$; voter v has ideal point $\mathrm{x}(\mathrm{v})$.

Left-Right Spectrum

Candidates: $\mathrm{C}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}$; Voters: $\mathrm{V}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.

Right

Candidate c located at $\mathrm{x}(\mathrm{c})$; voter v has ideal point $\mathrm{x}(\mathrm{v})$.

Left-Right Spectrum

Candidates: $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{M}}$; Voters: $\mathrm{V}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.

Right

Candidate c located at $\mathrm{x}(\mathrm{c})$; voter v has ideal point $\mathrm{x}(\mathrm{v})$.

Left-Right Spectrum

Candidates: $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{M}}$; Voters: $\mathrm{V}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.

Right

Candidate c located at $x(c)$; voter v has ideal point $x(v)$.
Preference by Euclidean distance

Left-Right Spectrum

Candidates: $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{M}}$; Voters: $\mathrm{V}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.

Candidate c located at $x(c)$; voter v has ideal point $x(v)$.
Preference by Euclidean distance

Left-Right Spectrum

Candidates: $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}$; Voters: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.

Candidate c located at $x(c)$; voter v has ideal point $x(v)$.
Preference by Euclidean distance

Left-Right Spectrum

Candidates: $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}$; Voters: $\mathrm{V}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.

Candidate c located at $x(c)$; voter v has ideal point $x(v)$.
Preference by Euclidean distance $\rightarrow v_{i}: c_{j}>c_{k}$

Left-Right Spectrum

Candidates: $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{M}}$; Voters: $\mathrm{V}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.

Candidate c located at $x(c)$; voter v has ideal point $x(v)$.
Preference by Euclidean distance $\rightarrow v_{i}: c_{j}>c_{k}$ iff $d\left(v_{i}, c_{j}\right)<d\left(v_{i}, c_{k}\right)$.

Left-Right Spectrum

Candidates: $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{M}}$; Voters: $\mathrm{V}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.

Candidate c located at $x(c)$; voter v has ideal point $x(v)$.
Preference by Euclidean distance $\rightarrow v_{i}: c_{j}>c_{k}$ iff $d\left(v_{i}, c_{j}\right)<d\left(v_{i}, c_{k}\right)$. i.e.

$$
\begin{aligned}
& v_{1}: c_{1}>c_{2}>c_{3} \\
& v_{2}: c_{2}>c_{3}>c_{1} \\
& v_{3}: c_{3}>c_{2}>c_{1}
\end{aligned}
$$

Left-Right Spectrum

Candidates: $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}$; Voters: $\mathrm{V}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.

Candidate c located at $x(c)$; voter v has ideal point $x(v)$.
Preference by Euclidean distance $\rightarrow v_{i}: c_{j}>c_{k}$ iff $d\left(v_{i}, c_{j}\right)<d\left(v_{i}, c_{k}\right)$. i.e.

Majority Tournament

$$
\begin{aligned}
& \mathrm{v}_{1}: \mathrm{c}_{1}>\mathrm{c}_{2}>\mathrm{c}_{3} \\
& \mathrm{v}_{2}: \mathrm{c}_{2}>\mathrm{c}_{3}>\mathrm{c}_{1} \\
& \mathrm{v}_{3}: \mathrm{c}_{3}>\mathrm{c}_{2}>\mathrm{c}_{1}
\end{aligned}
$$

Left-Right Spectrum

Candidates: $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}$; Voters: $\mathrm{V}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.

Candidate c located at $x(c)$; voter v has ideal point $x(v)$.
Preference by Euclidean distance $\rightarrow v_{i}: c_{j}>c_{k}$ iff $d\left(v_{i}, c_{j}\right)<d\left(v_{i}, c_{k}\right)$.
i.e.

$$
\begin{aligned}
& v_{1}: c_{1}>c_{2}>c_{3} \\
& v_{2}: c_{2}>c_{3}>c_{1} \\
& v_{3}: c_{3}>c_{2}>c_{1}
\end{aligned}
$$

Left-Right Spectrum

Candidates: $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}$; Voters: $\mathrm{V}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$.

Candidate c located at $x(c)$; voter v has ideal point $x(v)$.
Preference by Euclidean distance $\rightarrow v_{i}: c_{j}>c_{k}$ iff $d\left(v_{i}, c_{j}\right)<d\left(v_{i}, c_{k}\right)$.
i.e.

$$
\begin{aligned}
& v_{1}: c_{1}>c_{2}>c_{3} \\
& v_{2}: c_{2}>c_{3}>c_{1} \\
& v_{3}: c_{3}>c_{2}>c_{1}
\end{aligned}
$$

Majority Tournament

Horseshoe Spectrum

Horseshoe Spectrum

Horseshoe Spectrum

Horseshoe Spectrum

Far Left
Left
Center
Right
Far Right

Horseshoe Spectrum

Horseshoe Spectrum

Horseshoe Spectrum

"Unholy Alliance"

Horseshoe Spectrum

"Unholy Alliance"

Horseshoe Spectrum

Far Left Far Right
"Unholy Alliance"

Horseshoe Spectrum

Far Left Far Right

"Unholy Alliance"

Horseshoe Spectrum

Far Left Far Right
"Unholy Alliance"

$$
\begin{aligned}
& v_{1}: c_{1}>c_{2}>c_{3} \\
& v_{2}: c_{2}>c_{3}>c_{1} \\
& v_{3}: c_{3}>c_{1}>c_{2}
\end{aligned}
$$

Horseshoe Spectrum

Far Left Far Right
"Unholy Alliance" $\quad \begin{aligned} & \mathrm{v}_{1}: \mathrm{c}_{1}>\mathrm{c}_{2}>\mathrm{c}_{3} \\ & \mathrm{v}_{2}: \mathrm{c}_{2}>\mathrm{c}_{3}>\mathrm{c}_{1} \\ & \mathrm{v}_{3}: \mathrm{c}_{3}>\mathrm{c}_{1}>\mathrm{c}_{2}\end{aligned} \quad \stackrel{\mathrm{c}_{2} \stackrel{2-1=1}{\longrightarrow} \mathrm{c}_{3}}{\left.\right|_{2-1=1} ^{2-1}}$

Horseshoe Spectrum

Far Left Far Right
"Unholy Alliance" $\begin{array}{lll}v_{1}: c_{1}>c_{2}>c_{3} \\ v_{2}: c_{2}>c_{3}>c_{1} \\ v_{3}: c_{3}>c_{1}>c_{2}\end{array} \quad \stackrel{c_{2}}{\substack{2.1=1}} c_{3}$

A More General Property

A More General Property

A More General Property

Consider candidates cand c'.

A More General Property

Consider candidates c and c^{\prime}.

A More General Property

Consider candidates cand c'.
And voters sorted by angle.

A More General Property

Consider candidates cand c'.
And voters sorted by angle.

A More General Property

Consider candidates cand c'.
And voters sorted by angle.

A More General Property

Consider candidates cand c'.
And voters sorted by angle.

A More General Property

Consider candidates c and c'. And voters sorted by angle.

A More General Property

Consider candidates c and c'. And voters sorted by angle.

A More General Property

Consider candidates c and c'. And voters sorted by angle.

A More General Property

Consider candidates c and c'. And voters sorted by angle.

A More General Property

Consider candidates c and c'. And voters sorted by angle.

A More General Property

Consider candidates c and c'. And voters sorted by angle.

A More General Property

Consider candidates c and c'. And voters sorted by angle.

A More General Property

Consider candidates cand c'.
And voters sorted by angle.

	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}
$\mathbf{c}>\mathbf{c}^{\prime}$	0	1	1	1	0	0	0	0

A More General Property

Consider candidates cand c^{\prime}. And voters sorted by angle.

	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}
$\mathbf{c}>\mathbf{c}^{\prime}$	0	1	1	1	0	0	0	0

Voters preferring c to c' form a "circular" interval!

A More General Property

Consider candidates cand c'. And voters sorted by angle.

	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}
$\mathbf{c}>\mathbf{c}^{\prime}$	0	1	1	1	0	0	0	0
$\mathbf{c}^{\prime}>\mathbf{c}$	1	0	0	0	1	1	1	1

Voters preferring c to c' form a "circular" interval!

A More General Property

Consider candidates c and c^{\prime}. And voters sorted by angle.

	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}
$\mathbf{c}>\mathbf{c}^{\prime}$	0	1	1	1	0	0	0	0
$\mathbf{c}^{\prime}>\mathbf{c}$	1	0	0	0	1	1	1	1

Voters preferring c to c' form a "circular" interval!
\Leftrightarrow At most 2 switches per row.
k-Crossing Elections

k-Crossing Elections

An election is k-crossing if voters can be reordered such that preference between any two candidates c, c ' changes at most k times as we sweep through the voters in order:

k-Crossing Elections

An election is k-crossing if voters can be reordered such that preference between any two candidates c, c^{\prime} changes at most k times as we sweep through the voters in order:

$$
\begin{aligned}
& \mathrm{v}_{1}: \mathrm{c}_{1}>\mathrm{c}_{2}>\mathrm{c}_{3} \\
& \mathrm{v}_{2}: \mathrm{c}_{3}>\mathrm{c}_{2}>\mathrm{c}_{1} \\
& \mathrm{v}_{3}: \mathrm{c}_{2}>\mathrm{c}_{3}>\mathrm{c}_{1} \\
& \mathrm{v}_{4}: \mathrm{c}_{3}>\mathrm{c}_{1}>\mathrm{c}_{2}
\end{aligned}
$$

k-Crossing Elections

An election is k-crossing if voters can be reordered such that preference between any two candidates c, c ' changes at most \underline{k} times as we sweep through the voters in order:

$$
\begin{aligned}
& \mathrm{v}_{1}: \mathrm{c}_{1}>\mathrm{c}_{2}>\mathrm{c}_{3} \\
& \mathrm{v}_{2}: \mathrm{c}_{3}>\mathrm{c}_{2}>\mathrm{c}_{1} \\
& \mathrm{v}_{3}: \mathrm{c}_{2}>\mathrm{c}_{3}>\mathrm{c}_{1} \\
& \mathrm{v}_{4}: \mathrm{c}_{3}>\mathrm{c}_{1}>\mathrm{c}_{2}
\end{aligned}
$$

	v_{1}	v_{2}	v_{3}	v_{4}
$\mathbf{c}_{\mathbf{1}}>\mathbf{c}_{\mathbf{2}}$	1	0	0	1
$\mathbf{c}_{\mathbf{2}}>\mathbf{c}_{\mathbf{3}}$	1	0	1	0
$\mathbf{c}_{\mathbf{1}}>\mathbf{c}_{\mathbf{3}}$	1	0	0	0

k-Crossing Elections

An election is k-crossing if voters can be reordered such that preference between any two candidates c, c ' changes at most \underline{k} times as we sweep through the voters in order:

$$
\begin{aligned}
& v_{1}: c_{1}>c_{2}>c_{3} \\
& v_{2}: c_{3}>c_{2}>c_{1} \\
& v_{3}: c_{2}>c_{3}>c_{1} \\
& v_{4}: c_{3}>c_{1}>c_{2}
\end{aligned}
$$

	v_{1}	v_{2}	v_{3}	v_{4}
$\boldsymbol{c}_{1}>\mathbf{c}_{2}$	1	0	0	1
$\boldsymbol{c}_{2}>\mathbf{c}_{3}$	1	0	1	0
$\boldsymbol{c}_{1}>\mathbf{c}_{3}$	1	0	0	0

	v_{1}	v_{3}	v_{2}	v_{4}
$\mathbf{c}_{1}>\mathbf{c}_{2}$	1	0	0	1
$\mathbf{c}_{2}>\mathbf{c}_{3}$	1	1	0	0
$\mathbf{c}_{1}>\mathbf{c}_{3}$	1	0	0	0

2.
 Recognition

Using the Consecutive Ones Problem

Recognition

Recognition

Deciding whether an election is k-crossing.

Recognition

Deciding whether an election is k-crossing.

((Single-crossing: poly-time
[Elkind et al., 2012; Bredereck et al., 2013].

Recognition

Deciding whether an election is k -crossing.
((Single-crossing: poly-time
[Elkind et al., 2012; Bredereck et al., 2013].
(o) Two-crossing: poly-time

Reduction to consecutive ones (this paper).

Recognition

Deciding whether an election is k-crossing.
((Single-crossing: poly-time
[Elkind et al., 2012; Bredereck et al., 2013].
(0) Two-crossing: poly-time Reduction to consecutive ones (this paper).
(0) k-crossing: open

We conjecture NP-complete for $\mathrm{k} \geq 4$.

Recognition for Two-Crossing

Recognition for Two-Crossing

Given candidates $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}$ and voters $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$

Recognition for Two-Crossing

Given candidates $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}$ and voters $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$

$$
\begin{aligned}
& \mathrm{v}_{1}: \mathrm{c}_{1}>\mathrm{c}_{2}>\mathrm{c}_{3} \\
& \mathrm{v}_{2}: \mathrm{c}_{3}>\mathrm{c}_{2}>\mathrm{c}_{1} \\
& \mathrm{v}_{3}: \mathrm{c}_{2}>\mathrm{c}_{3}>\mathrm{c}_{1} \\
& \mathrm{v}_{4}: \mathrm{c}_{3}>\mathrm{c}_{1}>\mathrm{c}_{2}
\end{aligned}
$$

Recognition for Two-Crossing

Given candidates c_{1}, \ldots, c_{M} and voters v_{1}, \ldots, v_{N}, build matrix with rows indexed by pairs $\left(c_{i}, c_{j}\right)$ with $i<j$

$$
\begin{aligned}
& \mathrm{v}_{1}: \mathrm{c}_{1}>\mathrm{c}_{2}>\mathrm{c}_{3} \\
& \mathrm{v}_{2}: \mathrm{c}_{3}>\mathrm{c}_{2}>\mathrm{c}_{1} \\
& \mathrm{v}_{3}: \mathrm{c}_{2}>\mathrm{c}_{3}>\mathrm{c}_{1} \\
& \mathrm{v}_{4}: \mathrm{c}_{3}^{\circ}>\mathrm{c}_{1}>\mathrm{c}_{2}
\end{aligned}
$$

Recognition for Two-Crossing

Given candidates c_{1}, \ldots, c_{M} and voters v_{1}, \ldots, v_{N}, build matrix with rows indexed by pairs $\left(c_{i}, c_{j}\right)$ with $i<j$

$$
\begin{aligned}
& \mathrm{v}_{1}: \mathrm{c}_{1}>\mathrm{c}_{2}>\mathrm{c}_{3} \\
& \mathrm{v}_{2}: \mathrm{c}_{3}>\mathrm{c}_{2}>\mathrm{c}_{1} \\
& \mathrm{v}_{3}: \mathrm{c}_{2}>\mathrm{c}_{3}>\mathrm{c}_{1} \\
& \mathrm{v}_{4}: \mathrm{c}_{3}^{\circ}>\mathrm{c}_{1}>\mathrm{c}_{2}
\end{aligned}
$$

Recognition for Two-Crossing

Given candidates c_{1}, \ldots, c_{M} and voters v_{1}, \ldots, v_{N}, build matrix with rows indexed by pairs $\left(c_{i}, c_{j}\right)$ with $i<j$

$c_{1}>c_{2}$				
$c_{2}>c_{3}$				
$c_{1}>c_{3}$				

$$
\begin{aligned}
& \mathrm{v}_{1}: \mathrm{c}_{1}>\mathrm{c}_{2}>\mathrm{c}_{3} \\
& \mathrm{v}_{2}: \mathrm{c}_{3}>\mathrm{c}_{2}>\mathrm{c}_{1} \\
& \mathrm{v}_{3}: \mathrm{c}_{2}>\mathrm{c}_{3}>\mathrm{c}_{1} \\
& \mathrm{v}_{4}: \mathrm{c}_{3}^{\circ}>\mathrm{c}_{1}>\mathrm{c}_{2}
\end{aligned}
$$

Recognition for Two-Crossing

Given candidates c_{1}, \ldots, c_{M} and voters v_{1}, \ldots, v_{N}, build matrix with rows indexed by pairs $\left(c_{i}, c_{j}\right)$ with $i<j$ and columns indexed by voters V_{k}.

$$
\begin{aligned}
& \mathrm{v}_{1}: \mathrm{c}_{1}>\mathrm{c}_{2}>\mathrm{c}_{3} \\
& \mathrm{v}_{2}: \mathrm{c}_{3}>\mathrm{c}_{2}>\mathrm{c}_{1} \\
& \mathrm{v}_{3}: \mathrm{c}_{2}>\mathrm{c}_{3}>\mathrm{c}_{1} \\
& \mathrm{v}_{4}: \mathrm{c}_{3}>\mathrm{c}_{1}>\mathrm{c}_{2}
\end{aligned}
$$

Recognition for Two-Crossing

Given candidates c_{1}, \ldots, c_{M} and voters v_{1}, \ldots, v_{N}, build matrix with rows indexed by pairs $\left(c_{i}, c_{j}\right)$ with $i<j$ and columns indexed by voters V_{k}.

$$
\begin{aligned}
& \mathrm{v}_{1}: \mathrm{c}_{1}>\mathrm{c}_{2}>\mathrm{c}_{3} \\
& \mathrm{v}_{2}: \mathrm{c}_{3}>\mathrm{c}_{2}>\mathrm{c}_{1} \\
& \mathrm{v}_{3}: \mathrm{c}_{2}>\mathrm{c}_{3}>\mathrm{c}_{1} \\
& \mathrm{v}_{4}: \mathrm{c}_{3}>\mathrm{c}_{1}>\mathrm{c}_{2}
\end{aligned}
$$

Recognition for Two-Crossing

Given candidates $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}$ and voters $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$, build matrix with rows indexed by pairs (c_{i}, c_{i}) with $i<j$ and columns indexed by voters v_{k}. Put a 1 at row (c_{i}, c_{j}), column v_{k}, iff v_{k} prefers c_{i} to c_{j}.

	v_{1}	v_{2}	v_{3}	v_{4}
$c_{1}>c_{2}$				
$c_{2}>c_{3}$				
$c_{1}>c_{3}$				

$$
\begin{aligned}
& v_{1}: c_{1}>c_{2}>c_{3} \\
& v_{2}: c_{3}>c_{2}>c_{1} \\
& v_{3}: c_{2}>c_{3}>c_{1} \\
& v_{4}: c_{3}>c_{1}>c_{2}
\end{aligned}
$$

Recognition for Two-Crossing

Given candidates c_{1}, \ldots, c_{M} and voters v_{1}, \ldots, v_{N}, build matrix with rows indexed by pairs (c_{i}, c_{i}) with $i<j$ and columns indexed by voters v_{k}. Put a 1 at row $\left(c_{i}, c_{j}\right)$, column v_{k}, iff v_{k} prefers c_{i} to c_{j}.

	v_{1}	v_{2}	v_{3}	v_{4}
$\mathbf{c}_{1}>\mathbf{c}_{2}$	1	0	0	1
$\boldsymbol{c}_{2}>\mathbf{c}_{3}$	1	0	1	0
$\boldsymbol{c}_{1}>\mathbf{c}_{3}$	1	0	0	0

$$
\begin{aligned}
& \mathrm{v}_{1}: \mathrm{c}_{1}>\mathrm{c}_{2}>\mathrm{c}_{3} \\
& \mathrm{v}_{2}: \mathrm{c}_{3}>\mathrm{c}_{2}>\mathrm{c}_{1} \\
& \mathrm{v}_{3}: \mathrm{c}_{2}>\mathrm{c}_{3}>\mathrm{c}_{1} \\
& \mathrm{v}_{4}: \mathrm{c}_{3}>\mathrm{c}_{1}>\mathrm{c}_{2}
\end{aligned}
$$

Recognition for Two-Crossing

Given candidates $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}$ and voters $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$, build matrix with rows indexed by pairs ($c_{\mathrm{i}}, c_{\mathrm{i}}$) with $\mathrm{i}<j$ and columns indexed by voters v_{k}. Put a 1 at row (c_{i}, c_{j}), column v_{k}, iff v_{k} prefers c_{i} to c_{j}.
Then, check whether columns can be permuted s.t. 1s in each row form a continuous circular run.

$$
\begin{aligned}
& v_{1}: c_{1}>c_{2}>c_{3} \\
& v_{2}: c_{3}>c_{2}>c_{1} \\
& v_{3}: c_{2}>c_{3}>c_{1} \\
& v_{4}: c_{3}>c_{1}>c_{2}
\end{aligned}
$$

	v_{1}	v_{2}	v_{3}	v_{4}
$c_{1}>c_{2}$	1	0	0	1
$c_{2}>c_{3}$	1	0	1	0
$c_{1}>c_{3}$	1	0	0	0

Recognition for Two-Crossing

Given candidates $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}$ and voters $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$, build matrix with rows indexed by pairs ($c_{\mathrm{i}}, c_{\mathrm{i}}$) with $\mathrm{i}<j$ and columns indexed by voters v_{k}. Put a 1 at row (c_{i}, c_{j}), column v_{k}, iff v_{k} prefers c_{i} to c_{j}.
Then, check whether columns can be permuted s.t. 1s in each row form a continuous circular run.
[Booth and Lueker, 1976]

$$
\begin{aligned}
& v_{1}: c_{1}>c_{2}>c_{3} \\
& v_{2}: c_{3}>c_{2}>c_{1} \\
& v_{3}: c_{2}>c_{3}>c_{1} \\
& v_{4}: c_{3}>c_{1}>c_{2}
\end{aligned}
$$

	v_{1}	v_{2}	v_{3}	v_{4}
$c_{1}>c_{2}$	1	0	0	1
$c_{2}>c_{3}$	1	0	1	0
$c_{1}>c_{3}$	1	0	0	0

Recognition for Two-Crossing

Given candidates $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}$ and voters $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$, build matrix with rows indexed by pairs (c_{i}, c_{i}) with $i<j$ and columns indexed by voters v_{k}. Put a 1 at row (c_{i}, c_{j}), column v_{k}, iff v_{k} prefers c_{i} to c_{j}.
Then, check whether columns can be permuted s.t. 1s in each row form a continuous circular run.
[Booth and Lueker, 1976]

$$
\begin{aligned}
& v_{1}: c_{1}>c_{2}>c_{3} \\
& v_{2}: c_{3}>c_{2}>c_{1} \\
& v_{3}: c_{2}>c_{3}>c_{1} \\
& v_{4}: c_{3}>c_{1}>c_{2}
\end{aligned}
$$

	v_{1}	v_{2}	v_{3}	v_{4}
$c_{1}>c_{2}$	1	0	0	1
$c_{2}>c_{3}$	1	0	1	0
$c_{1}>c_{3}$	1	0	0	0

	v_{1}	v_{3}	v_{2}	v_{4}
$\boldsymbol{c}_{1}>\mathbf{c}_{2}$	1	$\underline{\mathbf{0}}$	$\underline{\mathbf{0}}$	1
$\mathbf{c}_{2}>\mathbf{c}_{3}$	1	$\underline{1}$	$\underline{\mathbf{0}}$	0
$\boldsymbol{c}_{1}>\mathbf{c}_{3}$	1	$\underline{\mathbf{0}}$	$\underline{\mathbf{0}}$	0

Recognition for Two-Crossing

Given candidates $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}$ and voters $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$, build matrix with rows indexed by pairs (c_{i}, c_{i}) with $i<j$ and columns indexed by voters v_{k}. Put a 1 at row (c_{i}, c_{j}), column v_{k}, iff v_{k} prefers c_{i} to c_{j}.
Then, check whether columns can be permuted s.t. 1s in each row form a continuous circular run.
[Booth and Lueker, 1976]

$$
\begin{aligned}
& v_{1}: c_{1}>c_{2}>c_{3} \\
& v_{2}: c_{3}>c_{2}>c_{1} \\
& v_{3}: c_{2}>c_{3}>c_{1} \\
& v_{4}: c_{3}>c_{1}>c_{2}
\end{aligned}
$$

O(NM ${ }^{2}$)

	v_{1}	v_{2}	v_{3}	v_{4}
$c_{1}>c_{2}$	1	0	0	1
$c_{2}>c_{3}$	1	0	1	0
$c_{1}>c_{3}$	1	0	0	0

	v_{1}	v_{3}	v_{2}	v_{4}
$\boldsymbol{c}_{1}>\mathbf{c}_{2}$	1	$\underline{\mathbf{0}}$	$\underline{\mathbf{0}}$	1
$\mathbf{c}_{2}>\mathbf{c}_{3}$	1	$\underline{1}$	$\underline{\mathbf{0}}$	0
$\boldsymbol{c}_{1}>\boldsymbol{c}_{3}$	1	$\underline{\mathbf{0}}$	$\underline{\mathbf{0}}$	0

Majority Tournament Universality

And NP-Hardness of Kemeny

Weighted Majority Tournament

Weighted Majority Tournament

Weighted Majority Tournament

Single-crossing: tournament is transitive.

Weighted Majority Tournament

Single-crossing: tournament is transitive.

General elections: any (weighted) tournament can be obtained.
[McGarvey, 1953; Debord, 1987]

Weighted Majority Tournament

Single-crossing: tournament is transitive.

Two-crossing: also any (weighted) tournament can be obtained!

General elections: any (weighted) tournament can be obtained.
[McGarvey, 1953; Debord, 1987]

Proof

Proof

Construct the "Double-BubbleSort" profile.

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}
1
2
3
4

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}	v_{2}
1	2
2	1
3	3
4	4

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}	v_{2}	v_{3}
1	2	2
2	1	3
3	3	1
4	4	4

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}	v_{2}	v_{3}	v_{4}
1	2	2	2
2	1	3	3
3	3	1	4
4	4	4	1

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}
1	2	2	2	3
2	1	3	3	2
3	3	1	4	4
4	4	4	1	1

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}
1	2	2	2	3	3
2	1	3	3	2	4
3	3	1	4	4	2
4	4	4	1	1	1

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}
1	2	2	2	3	3	4
2	1	3	3	2	4	3
3	3	1	4	4	2	2
4	4	4	1	1	1	1

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}
1	2	2	2	3	3	4	4
2	1	3	3	2	4	3	3
3	3	1	4	4	2	2	1
4	4	4	1	1	1	1	2

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}
1	2	2	2	3	3	4	4	4
2	1	3	3	2	4	3	3	1
3	3	1	4	4	2	2	1	3
4	4	4	1	1	1	1	2	2

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}
1	2	2	2	3	3	4	4	4	1
2	1	3	3	2	4	3	3	1	4
3	3	1	4	4	2	2	1	3	3
4	4	4	1	1	1	1	2	2	2

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}
1	2	2	2	3	3	4	4	4	1	1
2	1	3	3	2	4	3	3	1	4	4
3	3	1	4	4	2	2	1	3	3	2
4	4	4	1	1	1	1	2	2	2	3

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}
1	2	2	2	3	3	4	4	4	1	1	1
2	1	3	3	2	4	3	3	1	4	4	2
3	3	1	4	4	2	2	1	3	3	2	4
4	4	4	1	1	1	1	2	2	2	3	3

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}	v_{13}
1	2	2	2	3	3	4	4	4	1	1	1	1
2	1	3	3	2	4	3	3	1	4	4	2	2
3	3	1	4	4	2	2	1	3	3	2	4	3
4	4	4	1	1	1	1	2	2	2	3	3	4

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}	v_{13}
1	2	2	2	3	3	4	4	4	1	1	1	1
2	1	3	3	2	4	3	3	1	4	4	2	2
3	3	1	4	4	2	2	1	3	3	2	4	3
4	4	4	1	1	1	1	2	2	2	3	3	4

This profile is two-crossing!

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}	v_{13}
1	2	2	2	3	3	4	4	4	1	1	1	1
2	1	3	3	2	4	3	3	1	4	4	2	2
3	3	1	4	4	2	2	1	3	3	2	4	3
4	4	4	1	1	1	1	2	2	2	3	3	4

$$
1 \xrightarrow{1} 3
$$

This profile is two-crossing!

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}	v_{13}
1	2	2	2	3	3	4	4	4	1	1	1	1
2	1	3	3	2	4	3	3	1	4	4	2	2
3	3	1	4	4	2	2	1	3	3	2	4	3
4	4	4	1	1	1	1	2	2	2	3	3	4

$$
1 \xrightarrow{1} 3
$$

This profile is two-crossing!

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}	v_{13}
1	2	2	2	3	3	4	4	4	1	1	1	1
2	1	3	3	2	4	3	3	1	4	4	2	2
3	3	1	4	4	2	2	1	3	3	2	4	3
4	4	4	1	1	1	1	2	2	2	3	3	4

This profile is two-crossing!

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}	v_{13}
1	2	2	2	3	3	4	4	4	1	1	1	1
2	1	3	3	2	4	3	3	1	4	4	2	2
3	3	1	4	4	2	2	1	3	3	2	4	3
4	4	4	1	1	1	1	2	2	2	3	3	4

Vhis profile is two-crossing!
The

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

Proof

Construct the "Double-BubbleSort" profile. e.g. $M=4$ candidates.

Consequences: NP-hardness

Consequences: NP-hardness

Thus, NP-hardness results carry over to two-crossing:

Consequences: NP-hardness

Thus, NP-hardness results carry over to two-crossing:
(0) Kemeny and Slater are NP-hard.

Consequences: NP-hardness

Thus, NP-hardness results carry over to two-crossing:
(0) Kemeny and Slater are NP-hard.
(0) Banks, Minimal Extending Set, Tournament Equilibrium Set and Ranked Pairs also NP-hard.

4.
 Young's Rule

Using Total Unimodularity

Young's Rule

Young's Rule

The Young score of candidate c is the least number of voters that need to be removed to make ca Condorcet winner.

Young's Rule

The Young score of candidate c is the least number of voters that need to be removed to make ca Condorcet winner. Winners are candidates with the least score.

Young's Rule

The Young score of candidate c is the least number of voters that need to be removed to make ca Condorcet winner. Winners are candidates with the least score.
() NP-hard in general:
[Rothe et al., 2003; Brandt et al., 2015;
Fitzsimmons and Hemaspaandra, 2020].

Young's Rule

The Young score of candidate c is the least number of voters that need to be removed to make ca Condorcet winner. Winners are candidates with the least score.
(0) NP-hard in general:
[Rothe et al., 2003; Brandt et al., 2015;
Fitzsimmons and Hemaspaandra, 2020].
(0) Two-crossing: scores in poly-time (this paper).

Young's Rule

Young's Rule

The natural LP does not have integer vertices.

Young's Rule

The natural LP does not have integer vertices.

By fixing the number of voters to keep we arrive at an LP with integer vertices, so we can solve the LP.

Young's Rule

The natural LP does not have integer vertices.

By fixing the number of voters to keep we arrive at an LP with integer vertices, so we can solve the LP.

By reducing to negative weight cycle detection we further improve the running time to $0\left(\left(n+m^{2}\right) n^{3 / 2} \log n\right)$.

5. Chamberlin-Courant Rule

Using Dynamic Programming

Representation

Representation

In an election we need to select a committee of K candidates to best represent the electorate.

Representation

In an election we need to select a committee of K candidates to best represent the electorate.

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{1}}: \text { Blue }>\text { Yellow }>\text { Red }>\text { Pink }>\text { Green } \\
& \mathbf{v}_{\mathbf{2}}: \text { Yellow }>\text { Green }>\text { Red }>\text { Pink }>\text { Blue } \\
& \mathbf{v}_{\mathbf{3}}: \text { Green }>\text { Red }>\text { Blue }>\text { Pink }>\text { Yellow }
\end{aligned}
$$

Representation

In an election we need to select a committee of K candidates to best represent the electorate.

$$
\begin{aligned}
& \text { e.g. K }=2 \\
& \mathbf{v}_{\mathbf{1}}: \text { Blue }>\text { Yellow }>\text { Red }>\text { Pink }>\text { Green } \\
& \mathbf{v}_{2}: \text { Yellow }>\text { Green }>\text { Red }>\text { Pink }>\text { Blue } \\
& \mathbf{v}_{3}: \text { Green }>\text { Red }>\text { Blue }>\text { Pink }>\text { Yellow }
\end{aligned}
$$

Representation

In an election we need to select a committee of K candidates to best represent the electorate.

$$
\text { e.g. K = } \mathbf{2}
$$

$\mathbf{v}_{\mathbf{1}}:$	$>$ Yellow	$>$	
$\mathbf{v}_{\mathbf{2}}:$ Yellow	$>$	$>$	
$\mathbf{v}_{\mathbf{3}}:$	$>$	$>P i n k>$	

Representation

In an election we need to select a committee of K candidates to best represent the electorate.

$$
\begin{aligned}
& \text { e.g. } K=2 \\
& v_{1}: \\
& >\left\{\begin{array}{l}
\text { Yellow } \\
\text {, }
\end{array}\right. \\
& \text { > Pink > } \\
& \mathbf{v}_{\mathbf{2}}:\left(\begin{array}{c}
\text { Yellow }
\end{array}\right) \\
& > \\
& \text { > Pink > } \\
& \mathbf{v}_{\mathbf{3}}: \ggg \text { iPinki> Yellow }
\end{aligned}
$$

Representation

In an election we need to select a committee of K candidates to best represent the electorate.
e.g. $K=2$

Q: How to compare K-committees?

The Chamberlin-Courant Rule

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate.

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate.

	0		1		5		8		9
v_{1}	Blue	>	Yellow	>	Red	>	Pink		Green
	0		3		3		4		8
v_{2}	Yellow	>	Green	>	Red	>	Pink		Blue
	0		1		1		2		3
v_{3}	Green	>	Red	>	Blue	>	Pink		ow

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate. Pick the K-committee that minimizes the total/maximum dissatisfaction.

	0		1		5		8		9
v_{1}	Blue	$>$	Yellow	>	Red	$>$	Pink	>	Green
	0		3		3		4		8
v_{2}	Yellow	>	Green	>	Red	>	Pink	>	Blue
	0		1		1		2		3
v_{3}	Green		Red	>	Blue	>	Pink	>	Yellow

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate. Pick the K-committee that minimizes the total/maximum dissatisfaction.

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate.
Pick the K-committee that minimizes the total/maximum dissatisfaction.

Total $=\mathbf{3}$ (Utilitarian-CC) - in this talk.

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate.
Pick the K-committee that minimizes the total/maximum dissatisfaction.

Total = $\mathbf{3}$ (Utilitarian-CC) - in this talk.
Maximum = 2 (Egalitarian-CC) [Betzler et al.; 2013]

Hardness of CC

Hardness of CC

Utilitarian-CC is NP-hard.
[Procaccia et al., 2008], [Lu and Boutilier, 2011]

Hardness of CC

Utilitarian-CC is NP-hard.
[Procaccia et al., 2008], [Lu and Boutilier, 2011]
Egalitarian-CC is NP-hard.
[Betzler et al., 2013]

Hardness of CC

Utilitarian-CC is NP-hard.
[Procaccia et al., 2008], [Lu and Boutilier, 2011]
Egalitarian-CC is NP-hard.
[Betzler et al., 2013]
Egalitarian-CC is NP-hard for three-crossing.
[Misra et al., 2017]

Hardness of CC

Utilitarian-CC is NP-hard.
[Procaccia et al., 2008], [Lu and Boutilier, 2011]
Egalitarian-CC is NP-hard.
[Betzler et al., 2013]
Egalitarian-CC is NP-hard for three-crossing. [Misra et al., 2017]
Both polynomial for single-crossing.
[Skowron et al., 2015], [Constantinescu and Elkind, 2021]

Hardness of CC

Utilitarian-CC is NP-hard.
[Procaccia et al., 2008], [Lu and Boutilier, 2011]
Egalitarian-CC is NP-hard.
[Betzler et al., 2013]
Egalitarian-CC is NP-hard for three-crossing. [Misra et al., 2017]
Both polynomial for single-crossing.
[Skowron et al., 2015], [Constantinescu and Elkind, 2021]
Both polynomial for two-crossing (this paper).

Preliminaries

Preliminaries

Say voters $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ are in a two-crossing order.

Preliminaries

Say voters $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ are in a two-crossing order.

Let $r:\left\{v_{1}, \ldots, v_{N}\right\} \rightarrow\left\{c_{1}, \ldots, c_{M}\right\}$ be the function mapping voters to representatives in an optimal CC committee.

Preliminaries

Say voters $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ are in a two-crossing order.

Let $\mathrm{r}:\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}\right\} \rightarrow\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{M}}\right\}$ be the function mapping voters to representatives in an optimal CC committee.

v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}
$\mathrm{r}(\mathrm{v})$	\mathbf{B}	R	\mathbf{R}	V	\mathbf{R}	P	P	G

Decomposition For Two-Crossing

Decomposition For Two-Crossing

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}
\mathbf{G}	\mathbf{R}	\mathbf{B}	$\mathbf{0}$	\mathbf{B}	R	P	P	R	V

Decomposition For Two-Crossing

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}
\mathbf{G}	\mathbf{R}	\mathbf{B}	$\mathbf{0}$	\mathbf{B}	R	P	P	R	V

R splits

Decomposition For Two-Crossing

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	0^{0}
G	R	B	0	B	R	P	P	R	Y	

V_{1}
G

Decomposition For Two-Crossing

v_{1}	v_{2}	v_{3}	V_{4}	V_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	R splits
G	R	B	0	B	R	P	P	R	Y	

v_{1}			
G			
	v_{3}	v_{4}	v_{5}
\mathbf{B}	$\mathbf{0}$	\mathbf{B}	

Decomposition For Two-Crossing

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}
\mathbf{G}	\mathbf{R}	\mathbf{B}	$\mathbf{0}$	\mathbf{B}	\mathbf{R}	\mathbf{P}	\mathbf{P}	R	V

R splits

v_{1}						
G						
\mathbf{B}	$\mathbf{0}$	\mathbf{B}	\quad	v_{3}	v_{4}	v_{5}
:---	:---	:---	\quad	7		
:---						
v_{8}						

Decomposition For Two-Crossing

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}
\mathbf{G}	\mathbf{R}	\mathbf{B}	$\mathbf{0}$	\mathbf{B}	\mathbf{R}	\mathbf{P}	\mathbf{P}	\mathbf{R}	V

R splits

| v_{1} | | |
| :--- | :--- | :--- | :--- |
| G | | |
| v_{3} | v_{4} | v_{5} |
| B | O | B |
| P | P | |
| V | | |

Decomposition For Two-Crossing

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}
\mathbf{G}	\mathbf{R}	\mathbf{B}	$\mathbf{0}$	\mathbf{B}	\mathbf{R}	\mathbf{P}	\mathbf{P}	\mathbf{R}	V

R splits

v_{1}			
G			
B	v_{3}	v_{4}	v_{5}
\mathbf{B}	$\mathbf{0}$	\mathbf{B}	
P	P		
V			

B splits

Decomposition For Two-Crossing

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}
\mathbf{G}	\mathbf{R}	\mathbf{B}	$\mathbf{0}$	\mathbf{B}	\mathbf{R}	\mathbf{P}	\mathbf{P}	\mathbf{R}	V

R splits

| v_{1} | | |
| :--- | :--- | :--- | :--- |
| G | | |
| v_{3} | v_{4} | v_{5} |
| \mathbf{B} | O | B |
| P | P | |
| V | | |

v_{4}
0

B splits

Decomposition For Two-Crossing

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}
\mathbf{G}	\mathbf{R}	\mathbf{B}	$\mathbf{0}$	\mathbf{B}	\mathbf{R}	\mathbf{P}	\mathbf{P}	\mathbf{R}	V

R splits

v_{1}					
G					
B	v_{3}	v_{5}			
\mathbf{B}	$\mathbf{0}$	\mathbf{B}	\quad	v_{7}	v_{8}
:---	:---				
P	P				
Y					

B splits
There exists a decomposable optimal committee!

Future Directions

Future Directions

1. Try two-crossing on PrefLib.

Future Directions

1. Try two-crossing on PrefLib.
2. Hardness of recognizing k-crossigness.

Future Directions

1. Try two-crossing on PrefLib.
2. Hardness of recognizing k-crossigness.
3. Hardness of Dodgson's rule for two-crossing.

Future Directions

1. Try two-crossing on PrefLib.
2. Hardness of recognizing k-crossigness.
3. Hardness of Dodgson's rule for two-crossing.
4. Hardness of Young's rule for three-crossing.

Future Directions

1. Try two-crossing on PrefLib.
2. Hardness of recognizing k-crossigness.
3. Hardness of Dodgson's rule for two-crossing.
4. Hardness of Young's rule for three-crossing.

Three-crossing and above in general?

Hope you enjoyed!

