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◎ Two-crossing: poly-time
Reduction to consecutive ones (this paper).

◎ k-crossing: open
We conjecture NP-complete for k ≥ 4.
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3.
Majority Tournament 
Universality
And NP-Hardness of Kemeny
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Consequences: NP-hardness



Thus, NP-hardness results carry over to two-crossing:

◎ Kemeny and Slater are NP-hard.

◎ Banks, Minimal Extending Set, Tournament 
Equilibrium Set and Ranked Pairs also NP-hard.
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4.
Young's Rule
Using Total Unimodularity



The Young score of candidate c is the least number 
of voters that need to be removed to make c a 
Condorcet winner. Winners are candidates with the 
least score.

◎ NP-hard in general:
[Rothe et al., 2003; Brandt et al., 2015; 
Fitzsimmons and Hemaspaandra, 2020].

◎ Two-crossing: scores in poly-time (this paper).
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The natural LP does not have integer vertices.

By fixing the number of voters to keep we arrive at 
an LP with integer vertices, so we can solve the LP.

By reducing to negative weight cycle detection we further 
improve the running time to O((n + m2)n3/2 log n).
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5.
Chamberlin-Courant Rule
Using Dynamic Programming



Representation

In an election we need to select a committee of 
K candidates to best represent the electorate.

e.g. K = 2
      v1   :    Blue   > Yellow > Red  > Pink > Green

      v2   :   Yellow > Green  > Red  > Pink > Blue
      v3   :   Green  > Red    > Blue > Pink > Yellow
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Hardness of CC
Utilitarian-CC is NP-hard.
[Procaccia et al., 2008], [Lu and Boutilier, 2011]

Egalitarian-CC is NP-hard.
[Betzler et al., 2013]

Both polynomial for single-crossing.
[Skowron et al., 2015], [Constantinescu and Elkind, 2021]

Egalitarian-CC is NP-hard for three-crossing.
[Misra et al., 2017]

Both polynomial for two-crossing (this paper).
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Preliminaries



Say voters v1, …, vN are in a two-crossing order.

Let r : {v1, …, vN} → {c1, …, cM} be the function mapping 
voters to representatives in an optimal CC committee.

Note how candidate R is segmented. 
[Skowron et al., 2015]: there is an optimal committee 
where no candidate is segmented. This results in DP.
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R splits
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G 

v10
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v3 v4 v5

B O B

v7 v8

P P

v4

O

B splits

There exists a decomposable 
optimal committee!
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Hope you enjoyed!


