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Abstract

A fresh approach to detecting emphasised spoken words, where

the concept of one-class classification is adopted, is investigated

in this research work, such that a major difficulty – collecting

a large amount of well-annotated training data containing em-

phasis – can be avoided. The key idea, in brief, is that after

rich context-dependent phone models are trained on common,

neutrally read speech data in the HMM-based speech synthesis

framework, emphasised words are considered prosodic outliers

with respect to these “neutral” phone models and thus get de-

tected. Experiments were conducted on speech data in the Ger-

man language without any simplifying assumption (e.g. there

was only one emphasised word in each utterance). Under many

conditions this universally applicable approach was found to

outperform totally random guessing, even though the empha-

sised words constituted only a small portion (i.e. 6.28%) of the

test set.

Index Terms: emphasis detection, prosodic outlier, rich context

modelling, HMM-based speech synthesis

1. Introduction

It is no longer a major challenge to generate sufficiently natural-

sounding speech in the neutral reading style by the state-of-the-

art statistical parametric techniques of text-to-speech synthesis

[1, 2, 3]. Recently, speech scientists have been much interested

in generating expressive prosody based on this technical frame-

work of speech synthesis, for example, synthesising emotions

(happiness, sadness, anger, etc) [4, 5] as well as emphasis, the

latter being able to highlight the focus of an utterance and being

a common phenomenon in spontaneous speech.

The intention and mood of a speaker determine which

words in an utterance are emphasised. For example, any words

in the sentence “I didn’t take the test yesterday” may get empha-

sised in order to convey its speaker’s particular subtext. Thus it

is impossible for a speech synthesiser to predict when to synthe-

sise an emphasis merely based on input plain text, unless some

words are manually marked down as “to be emphasised” [6].

Speech-to-speech translation appears to be an important sce-

nario where words to be emphasised are clearly marked down:

words to be emphasised in output synthesised speech should be

the translation of emphasised words in input natural speech. As

a result, detecting emphasis in natural speech is an indispens-

able preliminary stage there.

To be clearer, emphasis in this research work only refers

to audible prominence that carries a speaker’s particular sub-

text [7]. It is distinct from other sorts of audible prominence

such as lexical stress and pitch accent. There was a great deal

of research conducted on detecting various kinds of audible

prominence [8, 9, 10, 11, 12, 13, 14, 15, 16], ranging from

simple ideas like counting the number of high-pitched frames

[8] to statistical modelling like conditional random fields [9]

and recurrent neural networks [10]. A common point amongst

all these methods is that audible prominence was detected due

to the prosodic contrast between prominence and the remain-

der within the same utterance. However, this contrast does not

well suit emphasis detection: just to give a simple counterex-

ample, words such as all, never, any generally sound prominent

compared with neighbouring words, even if they do not carry

any special subtext. Their sounding prominent is simply nor-

mal prosody. Hence emphasis detection should be based on a

different prosodic contrast – the contrast between neutral and

emphatic pronunciations of the same words. It is this contrast

that reflects the nature of emphasis and that is effectively why

humans can perceive emphasis.

Unfortunately there appears to be no big, well-annotated

corpus containing emphasis, so it is difficult to model the con-

trast between emphasised words and their neutral pronuncia-

tions for emphasis detection. Recent inspirational research pre-

sented in [17] demonstrates that neutral and emotional speech

could be classified according to their different projections onto

reference bases trained only on neutral speech. This achieve-

ment based on the concept of one-class classification [18] sug-

gests that emphasis may be detected given models trained only

on neutrally read speech. There exist large speech corpora de-

signed for speech recognition, in which many speakers were

supposed to read prompts aloud in a neutral way. Therefore, it

is expected in this research work that this kind of large corpus

can result in models that well describe neutral speech, so that

emphasised words can be viewed as outliers in prosody with

respect to these models and then get detected. To the best of

the author’s knowledge, there has not been previous research on

emphasis detection where the concept of one-class classification

was adopted.

2. Proposed Method

The basic idea of the proposed method for this research work

is to train a set of models on prosodic features extracted from

a common, large, multi-speaker speech corpus designed for

speech recognition and then to regard speech segments whose

prosodic feature vectors do not fit corresponding models as

components of an emphasised word. No big, well-annotated

corpus containing emphasis is required as training data. This

proposed method makes no simplifying assumption (for exam-

ple, there is only one emphasised word in each utterance). Any

spoken word in an utterance is considered possible to be empha-

sised. Therefore, the proposed method is universally applicable.

Since natural prosody varies according to different contexts,

it makes more sense to model neutral prosodic features con-

text by context. Rich context-dependent models are adopted in



HMM-based speech synthesis [1, 2] in order to reproduce ex-

tremely specific segmental and prosodic variations. Apart from

that, the output speech of an HMM-based synthesiser sounds

prosodically neutral when the training data is a large corpus

designed for speech recognition [19]. Given these two facts,

the training phase of the HMM-based speech synthesis frame-

work is taken advantage of in the proposed method for the pur-

pose of capturing the characteristics of context-dependent neu-

tral prosodic patterns of natural speech.

2.1. Prosodic Features and Normalisation

After training data is segmented by forced alignment, phone du-

ration, fundamental frequency (F0) and intensity are taken into

account for preparing feature vectors. The technique for F0 ex-

traction proposed in [20] is employed, as it provides continuous

F0 contours. Original phone duration dphone, F0 f0 and intensity

E are normalised as follows before being modelled:

d̂phone =
dphone

speaker-wise duration mean of all phones
,

f̂0 =
f0 − sentence-wise F0 mean

speaker-wise F0 standard deviation
,

Ê =
E − sentence-wise intensity mean

sentence-wise intensity standard deviation
.

Then according to the phone-level forced alignment results,

one feature vector is constructed for each phone with:

• d̂phone,

• Êmax: maximum of Ê in the period of length dphone,

• f̂mean
0 , f̂max

0 and f̂min
0 : mean, maximum and minimum of

f̂0 in the period of length dphone.

In addition, features derived from continuous wavelet trans-

formation (CWT)-based decomposition of original continuous

F0 contours are also taken into consideration. CWT has been

recently proposed to model F0 in the context of speech synthe-

sis [21]. It was shown that the systems using CWT-based F0

decomposition tended to outperform those where F0 was mod-

elled directly. According to [21], the continuous wavelet trans-

form of an F0 contour f0 is defined as

W (f0)(τ, t) = τ−1/2

∫

∞

−∞

f0(x)ψ

(

x− t

τ

)

dx (τ > 0),

where ψ(·) denotes a mother wavelet of the Mexican hat, and

the contour f0 can be reconstructed as

f0(x) =

∫

∞

−∞

∫

∞

0

W (f0)(τ, t)τ−5/2ψ

(

x− t

τ

)

dτ dt.

The decomposition and reconstruction may be approximated by

choosing 10 scales of differing frequency, one octave apart. The

10 scales as ten separate streams are calculated as follows:

W
(f0)
i (t) =W (f0)(2i+1τ0, t)(i+ 2.5)−5/2, (1)

where i = 1, 2, ..., 10 and τ0 = 5ms. The contour f0 is approxi-

mately recovered through the ad-hoc formula

f0(t) =
10
∑

i=1

W
(f0)
i (t) + ǫ(t),

where ǫ(t) is reconstruction error. Eventually as per the phone-

level forced alignment results, the feature vector for each phone

also includes:

• wmean
4 , wmax

4 , wmin
4 (i = 7 in Eq. (1)) and wmean

5 , wmax
5 ,

wmin
5 (i = 6 in Eq. (1)): mean, maximum and minimum of

the 4th and 5th scales of the CWT-based decomposition

result in the period of length dphone.

Ribeiro et al [22] discovered that the distributions of into-

national phrases and content words matched those of local max-

ima of scales 4 and 5, respectively. This is the reason why these

two scales are employed as components of the feature vectors

in the proposed method.

In summary, there are 11 dimensions in total in every

prosodic feature vector. Because of the normalisation, prosodic

feature vectors from different training speakers are treated as if

they were from the same person.

2.2. Context-Dependent Modelling of Neutral Prosody

All the contextual factors used in a typical HMM-based speech

synthesiser (see [1] and [2] for details), which involve the five

levels ranging from phones to utterances, are employed in the

proposed method. Each rich context-dependent phone model

derived from the above-mentioned, 11-dimensional prosodic

feature vectors is in effect formed by a single multivariate Gaus-

sian distribution with a diagonal covariance matrix. Owing

to the lack of sufficient training data for the huge amount of

combinations of the contextual factors’ values, decision tree-

based clustering [23] is applied so as to tie these rich context-

dependent Gaussian distributions.

2.3. Finding Emphasised Words in Test Data

The likelihood of each feature vector of training data given tied

rich context-dependent phone models is calculated first of all,

in order that likelihood thresholds for detecting outliers (i.e.

components of emphasised words) can be determined. Then

the likelihoods of feature vectors of test data (extracted as de-

scribed in section 2.1) given these tied rich context-dependent

phone models are calculated. Whether phones in the test data

are components of emphasised words can be decided according

to the likelihood thresholds.

Finally, whether a word is emphasised can be decided based

on the decisions at the phone level according to certain crite-

ria: for example, a word is emphasised when the vowel carry-

ing the primary lexical stress in the word is considered empha-

sised, or when there are more phones considered emphasised

than phones considered neutral in the word.

3. Experiments

3.1. Speech data

All the experiments were conducted in the German language.

The training data was corpora PHONDAT1 and PHONDAT2

[24], amounting to 18972 utterances and 217 speakers. The

test data included 130 utterances and 4 speakers, which were

selected from a pilot multilingual corpus recorded at the Uni-

versity of Geneva [25]. Details may be found in Table 1.

Table 1: Details of the test set

Speaker # of words # of emph. words Percentage

C1 12 414 30 7.25%
B1 06 260 15 5.77%
B2 11 250 14 5.60%
B1 13 238 14 5.88%

Total 1162 73 6.28%

Please note that these low percentages are not surprising,

since typically emphasis appears just a couple of times in one



utterance and does not appear in every utterance.

3.2. System Description

Since the number of tied rich context-dependent phone mod-

els can be controlled in the MDL criterion [26] in decision

tree-based clustering, 15 different speaker-independent systems

were built upon the same training data such that their tied phone

model sets reached various extent of generalisation. Only all

the 7104 rich context-dependent vowels were modelled in the

15 systems. The consonants did not contribute to the detection

of any emphasised word. Values of the MDL factor [27] cho-

sen during training and their resulting numbers of tied phone

models are listed in Table 2.

Table 2: Details of the 15 speaker-independent systems

System
MDL # of tied Compression ratio
factor phone models after clustering (rclst)

I 0.01 7104 100%
II 0.02 7092 99.83%
III 0.05 6937 97.65%
IV 0.1 6368 89.64%
V 0.2 4995 70.31%
VI 0.3 3943 55.50%
VII 0.4 3215 45.26%
VIII 0.5 2680 37.73%
IX 0.6 2281 32.11%
X 0.8 1758 24.75%
XI 1.0 1357 19.10%
XII 1.5 0827 11.64%
XIII 2.0 0560 07.88%
XIV 3.0 0297 04.18%
XV 5.0 0131 01.84%

3.3. Measures of Performance

The following measures of performance of detection of empha-

sised words were employed for assessing the 15 systems:

predicted neu. predicted emph.

true neu. a α
true emph. β b

• Recall (rec.) = b / (b+ β)

• Precision (pre.) = b / (b+ α)

• Accuracy (acc.) = (a+ b) / (a+ α+ b+ β)

In the case of totally random guessing, both recall and ac-

curacy are 50%, and precision is the percentage of emphasised

words in test data (i.e. 6.28% in this paper as per Table 1).

3.4. System Performance and Observations

German is a language where every word contains lexical stress.

Generally speaking, the vowel carrying the primary lexical

stress of a word is emphasised when one wants to emphasise

the word, although occasionally one emphasises the unstressed

negative prefixes of some words on purpose. Hence in the fol-

lowing experiments, whether a word was emphasised was de-

termined by the decision as to whether the vowel carrying the

primary lexical stress in the word was considered emphasised.

3.4.1. General performance of detection

The likelihood threshold for every tied phone model to detect

prosodic outliers amongst all its associated feature vectors can

be automatically chosen, such that certain accuracy of detection

upon the entire training data (hereafter ktrn) is achieved. In the

experiments in this research work, ktrn equalled 100%, 95%,

90%, 85%, 80%, 75%, 70% and 65% in turn. These values

of ktrn reflected various extent of supplementary generalisation

provided to the 15 tied phone model sets. Fig. 1 shows the

performance of the 15 systems in terms of recall, precision and

accuracy at the word level under different conditions.

First of all, it can be observed in Fig. 1 that ktrn needed

to remain in a narrow range roughly from 90% to 95% in or-

der that most of the 15 systems outperformed totally random

guessing. In other words, this range of ktrn could help to lead

to the best generalisation of the tied model sets. Furthermore,

for the purpose of achieving relatively good performance, Fig.

1 indicates that the number of the tied phone models should

be reduced to around 20% to 30% of that of the original rich

context-dependent phone models (this region of rclst is denoted

by vertical dashed black lines in Fig. 1). In other words, the

MDL factor ought to be set to around 0.6 to 1.0. These two

ranges, unsurprisingly, may not be used directly in a detector

to be trained on other speech data and to be applied to other

test set, but would be capable of serving as a sensible frame of

reference for building such a detector.

Compared with the recall in Fig. 1(a) and the accuracy in

Fig. 1(c), the precision in Fig. 1(b) was indeed low. However,

the precision always remained above the chance level except a

handful of extreme cases. This is a signal that the proposed

method rests upon an idea on the right track. Apart from that,

the relative increment of precision from the chance level could

reach 110.0% to 155.3% (see systems IX, X and XI with ktrn =
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Figure 1: Word-level recall, precision and accuracy of the 15 systems obtained upon the test data, the horizontal solid black lines

denoting the case of totally random guessing



90% and 95%), which were effectively substantial amounts.

3.4.2. Impact of individual components of feature vectors

As per the findings in section 3.4.1, only three (IX, X, XI) out

of the 15 systems with ktrn = 90% and 95% were taken a closer

look at so as to investigate the individual impact of each compo-

nent of the feature vectors. To be more specific, the tied phone

models of systems IX, X and XI as well as the 11-dimensional

feature vectors of the training and test data were used dimen-

sion by dimension to calculate all the likelihoods required for

detecting outliers in the proposed method. Results showing this

component-specific impact are presented in Tables 3, 4 and 5.

The maximum in each column is marked in bold type.

Table 3: Performance of system IX (in percentage)

ktrn = 90% ktrn = 95%
rec. pre. acc. rec. pre. acc.

d̂phone 47.95 12.11 72.40 42.47 13.72 77.60

Êmax 82.19 11.63 55.67 79.45 12.86 61.44

f̂mean
0 54.79 13.29 72.21 50.68 16.89 79.40

f̂max
0 61.64 14.80 72.87 50.68 17.29 79.87

f̂min
0 52.05 12.84 72.31 46.58 14.78 77.79

wmean
4

42.47 12.02 74.57 28.77 12.28 80.91
wmax

4
36.99 10.67 74.29 28.77 12.21 80.81

wmin
4 36.99 10.80 74.57 23.29 10.30 80.72

wmean
5

47.95 14.29 76.56 39.73 18.47 83.74

wmax
5

52.05 15.64 77.32 35.62 16.05 82.70

wmin
5

42.47 14.16 78.26 32.88 17.39 84.59

all 82.19 13.19 61.44 65.75 14.29 70.42

Table 4: Performance of system X (in percentage)

ktrn = 90% ktrn = 95%
rec. pre. acc. rec. pre. acc.

d̂phone 45.21 12.22 73.79 41.10 14.63 79.38

Êmax 82.19 11.76 56.24 76.71 12.56 61.53

f̂mean
0 53.42 13.73 73.63 49.32 17.31 80.25

f̂max
0 60.27 15.28 74.20 49.32 18.37 81.38

f̂min
0 50.68 13.17 73.53 42.47 15.05 79.49

wmean
4

41.10 12.10 75.33 28.77 12.50 81.19
wmax

4
36.99 11.02 75.05 28.77 12.80 81.57

wmin
4 35.62 10.92 75.52 23.29 10.30 80.72

wmean
5

46.58 14.53 77.41 39.73 18.59 83.84

wmax
5

49.32 15.38 77.79 36.99 16.56 82.80

wmin
5

41.10 14.22 78.83 30.14 16.30 84.50

all 80.82 13.53 63.04 65.75 14.86 71.64

Table 5: Performance of system XI (in percentage)

ktrn = 90% ktrn = 95%
rec. pre. acc. rec. pre. acc.

d̂phone 43.84 12.96 75.78 41.10 16.39 81.46

Êmax 80.82 12.02 57.84 75.34 13.10 63.80

f̂mean
0 52.05 14.02 74.67 46.58 18.78 82.42

f̂max
0 57.53 15.44 75.33 50.68 20.67 83.18

f̂min
0 47.95 13.21 74.67 35.62 14.21 80.72

wmean
4

39.73 12.08 75.90 24.66 11.46 81.66

wmax
4

32.88 10.53 76.09 24.66 12.08 82.42

wmin
4

31.51 10.41 76.56 19.18 09.09 81.19
wmean

5
41.10 14.42 79.11 34.25 18.66 85.16

wmax
5

42.47 14.83 79.21 32.88 16.67 84.03

wmin
5

32.88 12.90 80.06 26.03 16.81 86.01

all 75.34 13.89 66.07 63.01 16.03 74.67

The most noticeable thing in these three tables would be the

high recall that Êmax led to in all the six cases. It is therefore

clear that Êmax is a distinctive feature of emphasised words in

German. This makes sense since the stressed syllable of an em-

phasised word typically sounds louder, if lexical stress exists in

the language. However, Êmax is merely discriminative to an ex-

tent – the precision was 5.35 to 6.82 percentage points higher

than the chance level 6.28% though it was roughly doubled.

The three tables show that wmean
4 , wmax

4 and wmin
4 were the

least useful amongst the pitch-related feature vector compo-

nents. f̂mean
0 , f̂max

0 and f̂min
0 led to much higher recall thanwmean

5 ,

wmax
5 and wmin

5 , while wmean
5 , wmax

5 and wmin
5 produced compara-

ble precision and slightly higher accuracy. Even though scales

4 and 5 of the CWT-based F0 decomposition result had certain

physical meanings [22], they didn’t appear to be helpful individ-

ually as expected. f̂max
0 was arguably the best amongst the pitch-

related feature vector components in this proposed method.

d̂phone actually obeyed the gamma distribution rather than

the Gaussian distribution. The Gaussian distribution is em-

ployed in HMM-based speech synthesis to model every kind of

feature (including duration), so modelling d̂phone by the Gaus-

sian distribution was tried in this research work. According to

Tables 3, 4 and 5, no evidence indicates that this approximation

was unfavourable.

4. Discussion

The previous analysis focused on the combinations of rclst and

ktrn that resulted in all the three measures of performance (re-

call, precision and accuracy) being above the chance level. Dur-

ing the practical use of a speech-to-speech translator that can

transfer emphasis across languages, not conveying a (correct)

subtext could be preferable to conveying a wrong subtext. In

other words, recall may be sacrificed for precision (and accu-

racy). According to Fig. 1, rclst should be very small and ktrn

should fall into the range of 95% to 100% in order to fulfil this

practical requirement. In this case, the precision may be ex-

pected to be around 4.3 times as high as the chance level 6.28%.

Each sentence in PHONDAT1 and PHONDAT2 was read

by quite a few speakers. This is advantageous to training re-

liable rich context-dependent phone models, but the number

of different contexts is relatively limited (compared with En-

glish corpora like WSJ0 and WSJCAM0), which is disadvanta-

geous to capturing the characteristics of context-dependent neu-

tral prosodic patterns of natural speech. However, given the

aforementioned performance, it would be reasonable to antici-

pate better performance produced by the proposed method when

training data with much more prosodic contexts is available.

5. Conclusions

The detection of emphasised words is investigated in this re-

search work from a fresh angle in order to avoid the difficulty

in collecting a large, well-annotated corpus containing empha-

sis. The proposed method is based on the concept of one-class

classification and the intrinsic prosodic contrast between neu-

tral and emphatic pronunciations of the same words. Dura-

tion, F0, intensity and CWT-based decomposition of F0 con-

tours contribute to the construction of feature vectors. Rich

context-dependent modelling and decision tree-based cluster-

ing are employed to model the “neutral feature space” such that

emphasised words can be found as prosodic outliers. The exper-

imental results show that the proposed method outperformed to-

tally random guessing under many conditions, even though the

emphasised words constituted only 6.28% of the test set. This is

a clear sign that the proposed method rests upon an idea on the

right track. Since no simplifying assumption is involved, the

proposed method is applicable to any scenario of emphasised

word detection.
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