Bitcoin: Synchronization and Sharing of Transactions

Roger Wattenhofer

ETH Zurich – Distributed Computing Group – www.disco.ethz.ch
Hacker stahlen ETH-Doktoranden Bitcoin für 9 Millionen

Diebstahl Hacker erbeuteten bei einem Mitarbeiter der ETH Zürich 9222 Bitcoin. Heute sind die virtuellen Münzen 9 Millionen Franken wert. Der Fall liegt nun bei der Kantonspolizei.

VON CHRISTIAN BÜTIKOFER 06.12.2013
Mt. Gox, once the world’s largest Bitcoin exchange, filed for bankruptcy in Japan saying about $480 million in Bitcoins belonging to its customers and the firm were missing.

“The company believes there is a high possibility that the Bitcoins were stolen,” Mt. Gox said in a statement.

The filing follows three weeks of speculation about the fate of the Tokyo-based exchange, which suspended withdrawals on Feb. 7. Since Bitcoins exist as bits of software, they can be stolen if a hacker gains access to the computers and servers used to run online exchanges, where the virtual currency can be traded for dollars, euros and other currencies.
What is Bitcoin?
Bitcoin Basics
The Bank of Bitcoin
The Bank of Bitcoin

<table>
<thead>
<tr>
<th>User</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
</tr>
</tbody>
</table>
The Bank of Bitcoin

<table>
<thead>
<tr>
<th>User</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
</tr>
</tbody>
</table>
The Bank of Bitcoin

<table>
<thead>
<tr>
<th>User</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2 4</td>
</tr>
<tr>
<td>B</td>
<td>5 3</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
</tr>
</tbody>
</table>

TX
B → A
Opening an Account in Bitcoin

Private Key -> Public Key -> Address
Transferring Bitcoins

TX: 41b221
Transferring Bitcoins

TX: 41b221

0.1

B
Transferring Bitcoins

TX: 41b221

Inputs

Outputs

Fee 0.001

Prev. TX: a1a53743

4.899

TX: 41b221

0.1

4.798
Transferring Bitcoins

TX: 41b221

Inputs

Outputs

Fee 0.001

Prev. TX: a1a53743

A

TX: 41b221

B

0.1

4.798

A
Transferring Bitcoins

TX: 41b221

Inputs

A

4.899

Outputs

TX: 41b221

B

0.1

4.798

A
Transferring Bitcoins

Inputs

A

4.899

TX: 41b221

Outputs

Fee

0.001

0.1

4.798

B

A
Transferring Bitcoins

Prev. TX: a1a53743

Outputs	Inputs
4.899 | 4.899

Fee: 0.001

Outputs

TX: 41b221

0.1

4.798
Distributing the Bank

<table>
<thead>
<tr>
<th>User</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
</tr>
</tbody>
</table>
Distributing the Bank
Let’s Buy a Snack

[Bamert, Decker, Elsen, W, Welten, 2013]
Doublespending

Inputs

TX

Outputs

A

B
Doublespending
Doublespending

Inputs 1

TX 1

TX' 1

Outputs

A 1

B 1
Transaction Conflicts
Transaction Conflicts
Transaction Conflicts
Resolving Conflicts
Resolving Conflicts
Resolving Conflicts
How to Choose a Leader?
Proof-of-Work

TX TX TX TX
Proof-of-Work
Proof-of-Work

Block

\[H(\text{Previous Block}) \quad \text{TX} \quad \text{TX} \quad \text{TX} \quad \text{TX} \]
Proof-of-Work

Block

\[H(\text{Previous Block}) \quad \text{TX} \quad \text{TX} \quad \text{TX} \quad \text{TX} \]

- \[H(\text{Block}) \rightarrow \text{fd2e}055\text{f}117\text{bfa}261\text{b}5\text{a}6\text{c}7\text{e}11\text{df}367\ldots \]
Proof-of-Work

Block

H(Previous Block) TX TX TX TX Nonce

- $H(\text{Block}|0) \rightarrow 094d66aa7c844a9dbb516a41259b5877\ldots$
Proof-of-Work

H(Previous Block) | TX | TX | TX | TX | Nonce

- H(Block|0) → 094d66aa7c844a9dbb516a41259b5877...
- H(Block|1) → f2496854af8bf989171587a9259f634f...
Proof-of-Work

- $H(\text{Block}|0) \rightarrow 094d66aa7c844a9dbb516a41259b5877\ldots$
- $H(\text{Block}|1) \rightarrow f2496854af8bf989171587a9259f634f\ldots$
- $H(\text{Block}|2) \rightarrow aec87c0ca2e5eb3f23111092f1089ada\ldots$
Proof-of-Work

- $H(\text{Block}|0) \rightarrow 094d66aa7c844a9dbb516a41259b5877\ldots$
- $H(\text{Block}|1) \rightarrow f2496854af8bf989171587a9259f634f\ldots$
- $H(\text{Block}|2) \rightarrow aec87c0ca2e5eb3f23111092f1089ada\ldots$
- $H(\text{Block}|3) \rightarrow 777f75b2a8ecfda8026c236fc1d2ffa0\ldots$
- \ldots
- $H(\text{Block}|961127) \rightarrow 0000014823419622d4c133672a7d657e\ldots$
The Blockchain

Time
The Blockchain
Is Bitcoin stable?
The Blockchain
The Blockchain

Time
Propagation Speed

![Block propagation graph](http://bitcoinstats.com)

[Decker, W, 2013]
Propagation Speed

Block propagation

50th perc.

PDF

Time since first observation [s]

http://bitcoinstats.com

[Decker, W, 2013]
Propagation Speed

Block propagation

50th perc.

95th perc.

Time since first observation [s]

PDF

http://bitcoinstats.com

[Decker, W, 2013]
Propagation Speed

Block propagation

PDF

Time since first observation [s]

http://bitcoinstats.com

[Decker, W, 2013]
Blockchain Forks

[Decker, W, 2013]
Aside: Mining Evolution

Hashrate evolution

Hashrate PH/s

2010 2011 2012 2013 2014 2015
Aside: Mining Evolution

Hashrate evolution

2010 2011 2012 2013 2014 2015
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101
102
103
Hashrate PH/s
Aside: Mining Evolution

Hashrate evolution

Hashrate PH/s

2010 2011 2012 2013 2014 2015

10^10 10^9 10^8 10^7 10^6 10^5 10^4 10^3 10^2 10^1 10^-1 10^-2 10^-3 10^-4 10^-5 10^-6 10^-7 10^-8 10^-9 10^-10

CPU → GPU → ASIC
How to Lose $500M
Addressing Transaction Malleability: MtGox has detected unusual activity on its Bitcoin wallets and performed investigations during the past weeks.
The MtGox Incident

- July 2010: First trade on MtGox
- May 2011: Transaction malleability identified as low priority issue
- February 7, 2014: MtGox halts withdrawals
- February 10, 2014: MtGox announces loss of 850,000 bitcoins (620 millio USD) and cites transaction malleability as root cause
- February 28, 2014: MtGox files for bankruptcy
- March 7 2014: MtGox finds 200,000 bitcoins
- August 2015: MtGox CEO is arrested
Signatures

61 af bb 4d e9 f8 b8 74 86 1e
Signatures

```
00 00 61 af bb 4d e9 f8 b8 74 86 1e
```

There are multiple ways to serialize a signature:

- Multiple push operations (1 byte, 2 byte, 4 byte)
- Non-canonical DER encodings
- Padding
- ...
Transaction Malleability Attack

MTGox
Transaction Malleability Attack

Refund

MT.GOX
Incident Timeline

[Decker, W, 2014]
Incident Timeline

Feb 01 2014
Feb 04 2014
Feb 07 2014
Feb 10 2014
Feb 13 2014
Feb 16 2014
Feb 19 2014
Feb 22 2014
Feb 25 2014
Feb 28 2014

0
50000
100000
150000
200000
250000
300000

bitcoins

0
5000
10000
15000
20000
25000
30000

transactions

Cumulative malleable doublespends

1st Press Release
2nd Press Release

386 BTC

[Decker, W, 2014]
Is Bitcoin Secure?
Securing Your Bitcoins

[Bamert, Decker, W, 2013]
Does Bitcoin Scale?
The Bitcoin Ecosystem is Growing
Scalability Limits

- Disk space: < 500 transactions per second
Scalability Limits

- Disk space: < 500 transactions per second
- Processing power: < 200 transactions per second
Scalability Limits

- Disk space: < 500 transactions per second
- Processing power: < 200 transactions per second
- Network bandwidth: < 100 transactions per second
Scalability Limits

- Disk space: < 500 transactions per second
- Processing power: < 200 transactions per second
- Network bandwidth: < 100 transactions per second
- Artificial 1MB limit: < 3 transactions per second
Scalability Limits

- Disk space: < 500 transactions per second
- Processing power: < 200 transactions per second
- Network bandwidth: < 100 transactions per second
- Artificial 1MB limit: < 3 transactions per second

Today:
- Bitcoin: 1 transaction per second
- Credit Cards: > 10,000 transactions per second
Payment Network
Payment Network
Payment Network
Micropayment Channels
Atomic Multiparty Opt-In
Atomic Multiparty Opt-In
Invalidating Transactions

T=100
Invalidating Transactions

T=100

T=99
Bidirectional Transfers
Bidirectional Transfers
Duplex Micropayment Channels
Duplex Micropayment Channels

\[T = 100 \]

\[T = 100 \]

\[T = 100 \]

\[T = 99 \]

\[T = 100 \]

\[T = 99 \]
Duplex Micropayment Channels

\[T = 100 \]
\[T = 99 \]
\[T = 100 \]
\[T = 100 \]
Duplex Micropayment Channels

Setup

Invalidation Tree

Micropayment Channels
Duplex Micropayment Channels

Setup

Invalidation Tree

Micropayment Channels

$T = 100$

$T = 99$

$T = 100$

$T = 99$

$T = 100$

$T = 99$

$T = 100$

$T = 99$
Thank you, questions?

Thanks to Christian Decker
Securing Fast Payments
Transaction Confidence

\[\text{TX confidence} (\text{TX}) = \]
Transaction Confidence

\[\text{confidence}(TX) = \square \]
Transaction Confidence

\[\text{confidence}(TX) = \text{[value]} \]
Transaction Confidence

\[\text{confidence}(TX) = \text{[Diagram]} \]
Transaction Confidence

\[\text{confidence}(TX) = \text{\textcolor{green}{green}} \]
Doublespend Detection

[Bamert, Decker, Elsen, W, Welten, 2013]
Time to Detection

[Bamert, Decker, Elsen, W, Welten, 2013]
Successful Doublespend

[Probability of successful double spend vs. Node sample size]

[Bamert, Decker, Elsen, W, Welten, 2013]
Successful Doublespend

[Probabilities of successful double spend]

0.088%

[Bamert, Decker, Elsen, W, Welten, 2013]