Worst-Case Optimal and Average-Case Efficient Geometric Ad-Hoc Routing

Fabian Kuhn
Roger Wattenhofer
Aaron Zollinger
Geometric Routing
Greedy Routing

- Each node forwards message to “best” neighbor
Greedy Routing

- Each node forwards message to “best” neighbor

- But greedy routing may fail: message may get stuck in a “dead end”
- Needed: Correct geometric routing algorithm
What is Geometric Routing?

• A.k.a. location-based, position-based, geographic, etc.

• Each node knows its own position and position of neighbors
• Source knows the position of the destination
• No routing tables stored in nodes!

• Geometric routing is important:
 – GPS/Galileo, local positioning algorithm,
 overlay P2P network, Geocasting
 – Most importantly: Learn about general ad-hoc routing
Related Work in Geometric Routing

<table>
<thead>
<tr>
<th>Name</th>
<th>Venue</th>
<th>Algorithm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kleinrock et al.</td>
<td>Various 1975ff</td>
<td>MFR et al.</td>
<td>Geometric Routing proposed</td>
</tr>
<tr>
<td>Kranakis, Singh, Urrutia</td>
<td>CCCG 1999</td>
<td>Face Routing</td>
<td>First correct algorithm</td>
</tr>
<tr>
<td>Bose, Morin, Stojmenovic, Urrutia</td>
<td>DialM 1999</td>
<td>GFG</td>
<td>First average-case efficient algorithm (simulation but no proof)</td>
</tr>
<tr>
<td>Karp, Kung</td>
<td>MobiCom 2000</td>
<td>GPSR</td>
<td>A new name for GFG</td>
</tr>
<tr>
<td>Kuhn, Wattenhofer, Zollinger</td>
<td>DialM 2002</td>
<td>AFR</td>
<td>First worst-case analysis. Tight $\Omega(c^2)$ bound.</td>
</tr>
<tr>
<td>Kuhn, Wattenhofer, Zollinger</td>
<td>MobiHoc 2003</td>
<td>GOAFR</td>
<td>Worst-case optimal and average-case efficient, percolation theory</td>
</tr>
</tbody>
</table>
Overview

• Introduction
 – What is Geometric Routing?
 – Greedy Routing

• Correct Geometric Routing: Face Routing

• Efficient Geometric Routing
 – Adaptively Bound Searchable Area
 – Lower Bound, Worst-Case Optimality
 – Average-Case Efficiency
 – Critical Density
 – GOAFR

• Conclusions
Face Routing

- Based on ideas by [Kranakis, Singh, Urrutia CCG 1999]
- Here simplified (and actually improved)
Face Routing

- Remark: Planar graph can easily (and locally!) be computed with the Gabriel Graph, for example

Planarity is NOT an assumption
Face Routing
Face Routing Properties

• All necessary information is stored in the message
 – Source and destination positions
 – Point of transition to next face

• Completely local:
 – Knowledge about direct neighbors’ positions sufficient
 – Faces are implicit

• Planarity of graph is computed locally (not an assumption)
 – Computation for instance with Gabriel Graph

“Right Hand Rule”
Overview

• Introduction
 – What is Geometric Routing?
 – Greedy Routing

• Correct Geometric Routing: Face Routing

• Efficient Geometric Routing
 – Adaptively Bound Searchable Area
 – Lower Bound, Worst-Case Optimality
 – Average-Case Efficiency
 – Critical Density
 – GOAFR

• Conclusions
Face Routing

- Theorem: Face Routing reaches destination in $O(n)$ steps
- But: Can be very bad compared to the optimal route
Bounding Searchable Area
Adaptively Bound Searchable Area

What is the correct size of the bounding area?

- Start with a small searchable area
- Grow area each time you cannot reach the destination
- In other words, adapt area size whenever it is too small

→ Adaptive Face Routing AFR

Theorem: AFR Algorithm finds destination after $O(c^2)$ steps, where c is the cost of the optimal path from source to destination.

Theorem: AFR Algorithm is asymptotically worst-case optimal.

[Kuhn, Wattenhofer, Zollinger DIALM 2002]
Overview

• Introduction
 – What is Geometric Routing?
 – Greedy Routing

• Correct Geometric Routing: Face Routing

• Efficient Geometric Routing
 – Adaptively Bound Searchable Area
 – Lower Bound, Worst-Case Optimality
 – Average-Case Efficiency
 – Critical Density
 – GOAFR

• Conclusions
GOAFR – Greedy Other Adaptive Face Routing

- AFR Algorithm is not very efficient (especially in dense graphs)
- Combine Greedy and (Other Adaptive) Face Routing
 - Route greedily as long as possible
 - Overcome “dead ends” by use of face routing
 - Then route greedily again
- Similar as GFG/GPSR, but adaptive
Early Fallback to Greedy Routing?

- We could fall back to greedy routing as soon as we are closer to t than the local minimum.
- But:

 - “Maze” with $\Omega(c^2)$ edges is traversed $\Omega(c)$ times $\rightarrow \Omega(c^3)$ steps.
GOAFR Is Worst-Case Optimal

• GOAFR traverses complete face boundary:

Theorem: GOAFR is asymptotically worst-case optimal.

• Remark: GFG/GPSR is not
 – Searchable area not bounded
 – Immediate fallback to greedy routing

• GOAFR’s average-case efficiency?
Average Case

- Not interesting when graph not dense enough
- Not interesting when graph is too dense
- **Critical density range** ("percolation")
 - Shortest path is significantly longer than Euclidean distance
Critical Density: Shortest Path vs. Euclidean Distance

- Shortest path is significantly longer than Euclidean distance

\[\frac{|p^*|}{|st|} \]

- Critical density range mandatory for the simulation of any routing algorithm (not only geometric)
Randomly Generated Graphs: Critical Density Range

Network Density [nodes per unit disk] vs. Shortest Path Span

Connectivity
Greedy success
Shortest Path Span

\[\frac{|p^*|}{|st|} \]

Critical density range

MobiHoc 2003
Average-Case Performance: Face vs. Greedy/Face

Network Density [nodes per unit disk] vs. Frequency

- Face Routing
- Greedy/Face Routing

Performance: better → worse

Critical point at 5 nodes per unit disk
Simulation on Randomly Generated Graphs

Network Density [nodes per unit disk]

Performance

GFG/GPSR

GOAFR+

better

worse

Critical

Frequency
Conclusion

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Correct Routing</th>
<th>Worst-Case Optimal</th>
<th>Avg-Case Efficient</th>
<th>Comprehensive Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greedy Routing (MFR)</td>
<td>![checkmark]</td>
<td></td>
<td>![checkmark]</td>
<td></td>
</tr>
<tr>
<td>Face Routing</td>
<td>![checkmark]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFG/GPSR</td>
<td>![checkmark]</td>
<td></td>
<td>![checkmark]</td>
<td></td>
</tr>
<tr>
<td>AFR</td>
<td>![checkmark]</td>
<td>![checkmark]</td>
<td>![checkmark]</td>
<td></td>
</tr>
<tr>
<td>GOAFR</td>
<td>![checkmark]</td>
<td>![checkmark]</td>
<td>![checkmark]</td>
<td>![checkmark]</td>
</tr>
</tbody>
</table>
Questions?
Comments?
Demo?