
Coupling MPARM with DOL

Kai Huang, Wolfgang Haid, Iuliana Bacivarov, Lothar Thiele

Abstract. This report summarizes the work of coupling the MPARM
cycle-accurate multi-processor simulator with the Distributed Operation
Layer (DOL) system-level MPSoC development framework. The main
contribution of this work is the runtime environment which enables the
execution of the DOL applications on top of the MPARM simulator.
The runtime environment is automatically generated in a correct-by-
construction manner from the DOL specifications by a software synthesis
procedure.

1 Introduction

Multi-Processor System-on-Chip (MPSoC) becomes prevalent for modern em-
bedded system design, which provides high computation power, lower power
dissipation, and low cost. Nevertheless, how to program an MPSoC is still an
open question. The Distributed Operation Layer (DOL) [10] framework proposes
a specific way to answer this question, i.e., adopting the Kahn process network
[5] as the model of computation and C/C++ plus XML as the programming
language.

Within the DOL framework, an MPSoC is specified separately into ap-
plication, architecture, and mapping, following the orthogonalization of con-
cerns methodology [6]. The DOL application is specified in an architecture-
independent manner for the potential design space exploration of heterogeneous
architectures. Therefore, to execute a DOL application on top of a given archi-
tecture, a run-time environment is requested to provide architecture-dependent
services, such as multi-processing of each processor core and the inter-process
communication.

In this work, we couple the DOL framework with the MPARM [1] cycle-
accurate simulator such that an application specified within the DOL can ef-
ficiently execute on top of the MPARM platform in a correct-by-construction
manner. The MPARM is a cycle-accurate simulator which consists of variable
number of ARM cores connected via a shared AMBA bus. In this report, we
focus on the run-time environment built on top of the MPARM simulator. We
develop a multi-processing implementation based on the RTEMS [9] operating
system. For the inter-process communication, four mechanisms are introduced
to exploit the potential of the MPARM architecture.

The rest of the report is structured as follows: An overview of the DOL
framework and MPARM are presented in Section 2 and 3. The details of the
run-time environment are explained in Section 4. We present experiment results
in Section 5 and conclude the report in Section 6.

2 DOL Programming Framework

The DOL follows the well-known Y-chart design methodology [?], separating the
modeling of a system into three parts, i.e., the application, the architecture, and
the mapping. A screenshot of a simple model in a graphical front-end is depicted
in Fig. 1.

Fig. 1: Screenshot of the DOL graphical front-end, showing the mapping of a simple
producer-consumer application onto MPARM.

In this section, we shortly introduce the major features of the DOL program-
ming environment. For detailed information, we refer to [2].

2.1 Application Programming Model

To model the application, we adopt the Kahn process network (KPN) model
of computation [5] that assumes a network of concurrent autonomous processes

communicating in a point-to-point fashion via FIFO software channels with
blocking read and non-blocking write semantics. The process network model of
computation is well suited to model streaming applications because it directly
exposes the available data and functional parallelism. In addition, the explicit
differentiation between computation and communication allows to separately
analyze their influence on the target systems. Furthermore, the determinism of
KPN, i.e., the result of the computation is independent on the timing, allows to
separate the functionality of the application from the underlying architectures.
Finally, the KPN model is rather general such that most of the popular analysis
models, e.g. SDF and Mark graph, can be derived by imposing certain restric-
tions. An example of a three-process network can be seen at the upper part of
Fig. 1.

To specify the application, a process-oriented programming paradigm is de-
signed in which the structure of the application and the source code are separated

as well. The structure of the process network is syntactically represented in a
customized XML format. An example is shown in Fig. 2 which represents the
process network in Fig. 1.

1 <va r i ab l e value=”3” name=”N”/>
2

3 <proce s s name=”P1”>
4 <port type=”output ” name=”10”/>
5 <source type=”c” l o c a t i o n=” generator . c”/>
6 </ proce s s>
7

8 < i t e r a t o r va r i ab l e=” i ” range=”N”>
9 <proce s s name=”P2”>

10 <append func t i on=” i ”/>
11 <port type=” input ” name=”0”/>
12 <port type=”output ” name=”1”/>
13 <source type=”c” l o c a t i o n=” square . c”/>
14 </ proce s s>
15 </ i t e r a t o r>
16

17 <proce s s name=”P3”>
18 <port type=” input ” name=”100”/>
19 <source type=”c” l o c a t i o n=”consumer . c”/>
20 </ proce s s>
21

22 < i t e r a t o r va r i ab l e=” i ” range=”N + 1”>
23 <sw channel type=” f i f o ” s i z e=”10” name=”C2”>
24 <append func t i on=” i ”/>
25 <port type=” input ” name=”0”/>
26 <port type=”output ” name=”1”/>
27 </ sw channel>
28 </ i t e r a t o r>

Fig. 2: A three-process process network where the P2 can be scaled to N processes.

The functionality of an application is defined by the function of each indi-
vidual process. To program processes, plain C/C++ is used whereby a set of
coding rules needs to be respected, as the example in Fig. 3 shown. In particu-
lar, a process consists of an init() and a fire() procedure, as shown in Lines
22-26, 27-43, respectively. The init() procedure is called only once during the
initialization of the application. Afterward, the fire() procedure is called re-
peatedly. For inter-process communication, dedicated communication primitives
are defined. Blocking read and blocking write can be invoked by the DOL read()

and DOL write() primitives, as shown in Lines 31 and 33, respectively.

2.2 Architecture and Mapping Modeling

The modeling of an architecture in DOL is at an abstract level, the granularity of
which depends on the refinements that take place during the software synthesis
for a specific target architecture. The DOL architecture specification consists of
basic system components, their attributes, and the way they are connected, e.g.,
computational components like programmable processors and hardware IPs, or

21 . . .
22 void P2 in i t (DOLProcess ∗p) {
23 p−>l o c a l−>index = 0 ;
24 p−>l o c a l−>l en = LENGTH;
25 }
26

27 int P2 f i r e (DOLProcess ∗p) {
28 f loat i ;
29

30 i f (p−>l o c a l−>index < p−>l o c a l−>l en) {
31 DOL read ((void ∗)PORT IN, &i , s izeof (f loat) , p) ;
32 i = i ∗ i ;
33 DOL write ((void∗)PORT OUT, &i , s izeof (f loat) , p) ;
34 p−>l o c a l−>index++;
35 }
36

37 i f (p−>l o c a l−>index >= p−>l o c a l−>l en) {
38 DOL detach (p) ;
39 return −1;
40 }
41

42 return 0 ;
43 }

Fig. 3: Code segment for the iterated P2 process in Fig 2. Every instance of this process
shares this same piece of source code.

communication components like buses and NoCs. Fig. 1, for instance, represents
a very abstract MPARM architecture, where only the processors are shown.
This specification could get more complex if further architectural features are
considered during system synthesis, e.g. several communication possibilities, like
CPU-driven transfers or transfers via a direct memory access (DMA) controller.

The mapping defines where and how the process network is executed on
a target architecture. The mapping can be classified into two parts: the spatial
domain which is referred to as binding and the temporal domain which is referred
to as scheduling. In our framework, the binding defines a mapping of processes
to processors and software channels to FIFO implementations. The scheduling
defines the scheduling policy on each resource and the according parameters, e.g.
time-division multiple access (TDMA) scheme and the associated slot length,
fixed priority scheduling and the associated priorities, or static scheduling and
the associated ordering.

Similar to the application specification, customized XML schemes are used
for the architecture and mapping specifications.

2.3 Scalability

In order to facilitate the definition of larger structures, the components of a
system in DOL environment can be specified in a scalable manner. For this
purpose, an iterator element has been introduced in the DOL XML scheme,
which allows to replicate not only a single component, e.g. processes, software
channels, processors, but also entire structures in one or more dimensions. In

the example illustrated in Fig. 2, for instance, iterator elements, e.g. Line 8-15
and 22-28, are used to create a parameterized number of processes between the
producer and the consumer process, and their corresponding interconnects.

In the case of a set of iterated processes, all processes share the same source
code. Processes can, however, read their iteration index which can be used to
adapt the behavior of a process depending on its location in the process network.

By using this parameterized constructions (i.e. with iterators), a system of
DOL can be easily scale.

3 MPARM Platform

The MPARM [1] is a reconfigurable cycle-accurate simulator for a distributed
memory architecture. The architecture of the MPARM is composed of a config-
urable number of identical ARM tiles connected by a shared bus. In addition, a
shared memory and an optional external DMA device are attached to the shared
bus. A block diagram of the MPARM architecture is shown in Fig. 4.

Fig. 4: Block diagram of MPARM architecture. The blocks labeled with “M” and “S”,
denote master and slave ports on the bus, respectively.

Each ARM tile contains an ARM core, a local instruction and data memory,
a cache, a scratchpad memory, and an internal direct memory access (DMA)
device. To access the local instruction and data memory, the ARM core needs to
go via the shared bus. On the contrary, the cache and the scratchpad memory
are tightly coupled within the ARM tile, the access of which does not trigger
any shared bus traffic.

The MPARM platform supports the RTEMS (real-time executive for multi-
processor systems) [9] operating system, which offers multi-tasking and message
passing between tasks. The scheduling is priority-based which supports both

preemption and non-preemption as well as time-slicing of tasks with the same
priority.

Direct Memory Access The so-called internal DMA devices found on each tile
can be used to transfer data from or to the (scratchpad) memory via a slave
port of the shared bus. DMA transfers are set up by the ARM processor and do
not require any further coordination of the ARM core while executing the data
transfer.

In Fig. 4, one can see that the DMA device is split up into a control and a
transfer module. The DMA control module has an internal memory where it is
able to store so-called objects. Objects are entities which track blocks of data
before, during, and after their transfer from one (scratchpad) memory to the
other. To transfer data, an object needs to be acquired, filled with the required
transfer information (including the size of the transfer, the source address, and
the target address), and en-queued to the list of pending transfers. Every time
the DMA transfer module is free, and this queue contains an entry, the DMA
control module asks the DMA transfer module to start a new transaction. The
object queue has a FIFO scheduling policy. Details about the DMA can be found
in [8]

4 Runtime Environment

To execute a DOL application on the MPARM simulator, the processes and
channels, i.e. the computation and the communication, of the process network
need to be carefully designed to preserve properties of the model of computation.
Applications programmed using the DOL adhere to the process network model
of computation which enables a purely data-driven execution. A global clock or
time base is thus not needed for scheduling of the application. Therefore, the
architecture-dependent runtime environment only needs to provide the multi-
processing for each core as well as the software channel implementation. In this
work, we implement the multi-processing by means of the multi-tasking provided
by the RTEMS operating system and software channel communication using
scratchpad FIFOs. The software structure is shown in Fig. 5.

Specifically, to actually execute the DOL process network, the fire function
of each DOL process is wrapped within a RTEMS task which can be scheduled
by the RTEMS operating system. A wrapper task controls the actual execution
of a process of the DOL process network. It repeatedly calls the fire function
until the DOL detach is met. The DOL read and DOL write API are refined as
scratchpad FIFO read and write routines, respectively. Depending on the speci-
fication, a concrete FIFO implementation is chosen at compile time.

A software synthesis tool has been developed to generate the source code
of the runtime environment from the standard DOL specifications, i.e., applica-
tion, architecture, and mapping specifications. As shown in Fig. 6, the generated
source code includes the RTEMS task wrappers for each process, the main file,
and the Makefile. The generated code together with the RTEMS kernel is com-
piled and linked into a single binary which will be loaded into every tile. Note

Fig. 5: The structural view of the DOL application running on top of the RTEMS OS.

that the different tiles are basically operating independently although they share
the same binary. Nevertheless, the tiles will behave differently because the in-
stantiation and initialization of DOL processes depend on the tile index in the
generated main file.

Fig. 6: Software synthesis for generating the source code for the runtime environment.

During the initialization of the system, one RTEMS task will be instantiated
for each process in order to initialize the connected FIFO as well as the wrapper
task. These initialization tasks have a higher priority than all wrapper tasks such
that the process network can be guaranteed to start only after the initialization
phase. After the initialization phase, this task will be deleted.

4.1 Inter-process Communication

In the runtime environment, four different mechanisms are provided as alterna-
tives for FIFO communication of the DOL process network. They are differing
with respective to the location of the FIFO buffer, as shown in Fig. 7. Besides
the classical message passing approach where the FIFO buffer is allocated to

the shared memory as shown in Fig. 7(a), we present three other alternatives,
i.e., local scratchpad FIFOs. In Fig. 7(b) and Fig. 7(c), the FIFO buffer is al-
located into the local scratchpad memory of the sender and receiver processors,
respectively. In Fig. 7(d), the FIFO buffer is split into two parts allocated to
the local scratchpad of both the sender and receiver processors. Therefore, both
the read and write FIFO routines copy data within an ARM tile. To transfer
data between scratchpads of different tiles, a dedicated ARM tile is assigned to
coordinate the transmission.

Fig. 7: Four different communication mechanisms: (a) Channel buffer in shared memory.
(b) Channel buffer in sender processor. (c) Channel buffer in receiver processor. (d)
Channel buffer is split into two, distributed in both sender and receiver processors.

The FIFO communication is packet-based. Each write/read operation trans-
fers N packets where N > 0. The size of a packet and the length of a FIFO is
set at compile time in the application specification.

A pair of semaphores is used for the access control of a FIFO, namely
sem:used and sem:space. The sem:space semaphore located in the local scratch-
pad of the sender processor indicates how many packets a FIFO can still contain.
Initially, it is set to the size of the software channel. Upon writing or reading a
packet, it decreases and increases by one, respectively. When it is 0, the write
routine will stall until it becomes larger than 0 again. On the contrary, the
sem:used semaphore located at the local scratchpad of the receiver processor
is used for the blocking read operation. Initially, it is set to 0. Upon writing or
reading a packet, it increases and decreases by one, respectively. The flowcharts
of the write/read routines for the four mechanisms are described below.

Shared memory FIFO. The flowcharts for the write and read routines of this
approach are shown in Fig. 8. Since the shared memory is connected to a slave
port of the shared bus, both the write and read routines will trigger data trans-
fers on the shared bus. Therefore, they have to compete for the shared bus with
other data-copy routines issued by other processes. Furthermore, the remote
semaphore notification at the end of a data-copy operation will introduce addi-
tional shared bus traffic. In this case, the shared bus is the potential bottleneck
of the system.

start write

sem:space>0

task suspend()

write to shared mem

signal sem:used

end

no
yes

(a) Write operation

start read

sem:used>0

task suspend()

read from shared mem

signal sem:space

end

no
yes

(b) Read operation

Fig. 8: The flowcharts of writing and reading one packet for the shared memory FIFO.

Local scratchpad FIFOs. The goal of using local scratchpad memory is to reduce
the shared bus traffic. Two implementations are presented in which the FIFO
buffer can be allocated to the local scratchpad memory of either the sender
or receiver processors. In the former case, only the read routine issued by the
receiver triggers data transfers on the shared bus. The write routine copies data
from the cache to the scratchpad memory within one tile. In the latter case, the
write routine copies data from local cache to the remote scratchpad memory in
the receiver tile. The read routine is thereby a local behavior within a tile. The
flowcharts of the write and read routines are similar to Fig. 8. We omit them here
due to the similarity. By means of the local scratchpad FIFOs, half of the shared
bus traffic for the data transfer is avoided, compared to the shared bus FIFO.
Note that the remote semaphore notification still triggers shared bus traffic.

Split FIFO. Although the previous two local scratchpad FIFOs avoid half of the
shared bus traffic, the traffic itself is not manageable in the sense that the shared
bus arbiter schedules the traffic at the tile level. To coordinate the traffic at the
software channel level, we introduce the third scratchpad FIFO mechanism. The
FIFO buffer is split into two halves, located at the scratchpad memory of both
the sender and receiver processors. The write and read routines now copy data to
and from local scratchpads, respectively. A control process located at an isolated
tile is responsible for coordinating the data transfer between these split FIFO
buffers located in two different scratchpad memories. In this manner, the shared
bus traffic is fully decoupled from the write and read routines. The write and read
routines return immediately after data are copied to and from local scratchpad
memory, respectively. In this manner, although the amount of traffic via the
shared bus is still the same, the traffic itself can be orchestrated by the control
process which can provide different kinds of scheduling polices at the software
channel level.

The flowcharts for transmitting one packet for this FIFO are shown in Fig. 9.
Beside the pair of semaphores sem:space and sem:used, two new semaphores,

namely sem:s used and sem:s space, are introduced for flow control of the
split FIFO, indicating data availability in the sender buffer and the space in
the receiver buffer. They are located in semaphore memory of the tile running
the control process. Only when there is at least one data packet in the sender
buffer (sem:s used > 0) and there is space in the receiver buffer (sem:s space

> 0), the control process will conduct a packet transfer. To orchestrate the
data transfer for different FIFOs, a packet-based round-robin policy is used to
schedule among all software channels. Other kinds of priority-based or time-
slicing based scheduling can be implemented without any difficulty.

start write

sem:space>0

task suspend()

write to local scratchpad

signal sem:s used

end

no
yes

(a) Write operation

start transfer

sem:s used≤0
or

sem:s used≤0

task suspend()

data transfer

signal sem:used

signal sem:space

end

no

yes

(b) Data transfer

start read

sem:used>0

task suspend()

read from scratchpad

signal sem:s space

end

no
yes

(c) Read operation

Fig. 9: The flow-charts of writing and reading one packet for the split scratchpad FIFO.

Using DMA. To actually transfer the data from/to a FIFO buffer, two ap-
proaches are provided. The first approach is direct memory copy by the ARM
core. Since the memory address of the shared memory and all scratchpad mem-
ories are globally visible, each ARM core can directly access the shared memory
as well as remote scratchpad memories located at other tiles. The second ap-
proach is the DMA transfer by using the internal DMA device of each tile. The
DMA device can transfer data:

– from the cache to the local scratchpad within a tile, and vice verse;
– from local scratchpad memory to remote scratchpad memory located in an-

other tile, and vice verse;
– from local cache to remote scratchpad memory.

The cases (a), (b), and (c) in Fig. 7 support both approaches. In the case
of (d), since a dedicated ARM tile is assigned to coordinate the data transfer

and no process of the process network is attached, the DMA approach has no
advantage and is thereby not supported. In Fig. 10, the flowchart of the write
routine is depicted.

Note in the current implementation, write and read routines perform a busy
wait to check whether the DMA operation finishes or not. The write and read
routines themselves will not give up the CPU control unless a higher priority
process becomes ready and preempts the current one.

start write

sem:space>0

task suspend()

write to shared mem

signal sem:used

end

acquire DMA object

setup DMA object

start transfer
busy wait for completion

free DMA object

no
yes

Fig. 10: Flowchart of the implementations of read operation using the DMA device.

5 Experiments

In principle, an application that can run through the DOL functional simulation
can execute (correctly) in the MPARM. We conduct two case studies: a pipelined
MPEG-2 decoder and a SDF [7] like MJPEG decode. The MPARM simulations
execute on a 2 GHz AMD Athlon 2800+ Linux machine.

5.1 MPEG-2 Decoder

We present an MPEG-2 decoder in this section. The simulated MPEG-2 clip
has a frame-rate of 25 fps, bit-rate of 8Mbps, and resolution of 704× 576 pixels.
For our experiments, we use a video clip with a duration of just 4 frames. We
chose the shared memory FIFO for software channel communication. The the
frequency of the ARM cores and shared bus is set to 200 MHz.

We measure two different timings:

1. Simulation runtime (Sim.), corresponding to the time elapsed from the start
of a simulation until it completes. This indicates how long the simulation
needs (wall-clock time) .

2. Estimated execution time (Est.), indicating how fast an application executes
on a target architecture, i.e., the time of decoding an the MPEG-2 video clip
on the MPARM.

dispatch
macroblock

dispatch
gop

dispatch
block

transform
block

collect
block macroblock

collect collect
gop

dispatch
macroblock

dispatch
gop

dispatch
block

transform
block

collect
block macroblock

collect collect
gop

dispatch
macroblock

dispatch
gop

dispatch
block

transform
block

collect
block macroblock

collect collect
gop

dispatch
macroblock

dispatch
gop

dispatch
block

transform
block

collect
block macroblock

collect collect
gop

dispatch
macroblock

dispatch
gop

dispatch
block

transform
block

collect
block macroblock

collect collect
gop

dispatch
macroblock

dispatch
gop

dispatch
block

transform
block

collect
block macroblock

collect collect
gop

dispatch
macroblock

dispatch
gop

dispatch
block

transform
block

collect
block macroblock

collect collect
gop

Fig. 11: 7 different mappings of the pipelined MPEG-2 decoder. From top to bottom,
the process network is mapped to 1 until 7 different processors.

Fig.12 illustrates the simulation runtime and estimated execution time, re-
spectively, for the mappings in Fig. 11. As the figure shown, a simulation of de-
coding 4 MPEG-2 frames takes at least hours. The simulation runtime increases
linearly as more cores are simulated. We can also find out that the estimated exe-
cution time for all cases is far too slow with respect to the real-time requirement,
i.e., 25 fps. The extremely slow execution time is due to:

– All data transfers between processes use FIFO communication, resulting in
a triple buffering for any communication data – data in sender processor
cache, FIFO buffer, and receiver processor cache. This is a typical problem
of a process network system. Using a more efficient FIFO mechanism [?,?]
could significantly reduce the runtime overhead.

– The major artifact of the runtime overhead comes from the packet-based
FIFO communication. In our pipelined MPEG-2 decoder, the size of data
transferred via a software channel is variable during the execution. As shown
in Fig. 11, there is only one software channel between two processes, trans-
mitting both control signal and data packets. However, the packet size for

S
im

.
ti

m
e
(h

o
u
rs

)

Number of processors

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8

ut ut ut

ut

ut

ut

ut

E
st

.
ti

m
e
(s

)

Number of processors

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8

ut

ut

ut
ut ut ut

ut

Fig. 12: Simulation runtime (left) and estimated execution time (right) for 7 different
systems, with 1 up to 7 processors.

each FIFO has to be fixed at the compile time. Therefore, the greatest com-
mon factor of the sizes of all possible data will transfer through a software
channel is used as the packet size of the corresponding FIFO, which in this
case is 32 bits. This small packet size results in an inefficient communication
that incurs a huge amount of packet transmission and remote semaphore
notifications. Note this fact also slows down the simulation runtime.

5.2 MJPEG Decoder

In this section, we present another case study, i.e., a gray-scale MJPEG decoder.
we show the impact of different FIFO implementations for a given mapping.
The process network and the mapping are shown in Fig. 13. Comparing to the
previous case, each software channel in this process network transfers data of
fixed length which is known at compile time. Therefore, the packet size of a
chosen FIFO is set to the actual length of the data, not 32 bits. We exploit the
performance of different frequency settings. The video clip used consists of 31
frames with 320× 240 pixels per frame.

The simulation results are shown in Table 1. Given the same frequency set-
ting, the shared memory FIFO cases have the worst performance due to the
double accesses of the shared bus. The receiver scratchpad FIFO performs best
for all cases. The reason could be that the push semantic of the receiver scratch-
pad FIFO can better utilize the shared bus for this system. In the case of sender
scratchpad FIFO, the request for data transfer is invoked when the receiver pro-
cess asks for data. The actual transfer will be possibly deferred if the shared
bus is currently busy. However, further investigation is needed to identify the
potential of each FIFO mechanism.

ARM 0

ms

ms

ARM 1

mf

sf

ARM 2

sf

Fig. 13: The 3-ARM MJPEG system.

Table 1: Estimated runtimes (second) for different frequency combinations of the ARM
processors and the shared bus.

p200,b100 p200,b200 p200,b400

shared mem. 7.807 5.252 3.526
sender scratchpad 7.758 5.229 3.522
receiver scratchpad 7.439 5.171 3.376
split scratchpad 7.751 5.245 3.385

Another observation is that the execution time still does not fulfill the real-
time requirement, i.e., 25 fps. However, there is still large space to improve the
execution runtime. By a deeper probe of the system, we found out the workload
of the three processor cores are not balanced. The workloads imposed on ARM 1

and ARM 2 are 1% and 50% of that on ARM 3. Large speedup can be expected if
the process network is remapped in more load-balanced manner.

The third observation is the shared bus is indeed the bottleneck. As the table
shown, varying the frequency of the shared bus significantly changes the system
performance.

6 Conclusion

We have successfully coupled the DOL framework with the MPARM cycle-
accurate simulator. We developed a software synthesis procedure to automat-
ically generate the source code of the runtime environment for the MPARM
in a correct-by-construction manner. The efforts to inspect new mappings are
thereby minimal, and several mapping possibilities can easily be inspected.

References

1. L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri. MPARM:
Exploring the Multi-Processor SoC Design Space with SystemC. VLSI Signal
Processing Systems, 41(2):169–182, Sept. 2005.

2. DOL distribution. ToolDescription.pdf, cCodingStyle.pdf, pnExamples.pdf.

3. W. Haid, L. Schor, K. Huang, I. Bacivarov, and L. Thiele. Efficient Execution
of Kahn Process Networks on Multi-Processor Systems Using Protothreads and
Windowed FIFOs. In Proc. IEEE Workshop on Embedded Systems for Real-Time
Multimedia (ESTIMedia), pages 35–44, Grenoble, France, Oct. 2009.

4. K. Huang, D. Grünert, and L. Thiele. Windowed FIFOs for FPGA-based Multipro-
cessor Systems. In Proc. Int’l. Conf. on Application-Specific Systems, Architectures
and Processors (ASAP), pages 36–41, Montreal, Canada, July 2007.

5. G. Kahn. The Semantics of a Simple Language for Parallel Programming. In Proc.
IFIP Congress, North Holland Publishing Co, 1974.

6. K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli.
System-Level design: Orthogonalization of Concerns and Platform-Based Design.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 19(12):1523–1543, Dec.
2000.

7. E. A. Lee and D. G. Messerschmitt. Synchronous Data Flow. Proceedings of the
IEEE, 75(9):1235–1245, Sept. 1987.

8. MPARM distribution. readme dma.txt.
9. RTEMS Steering Committee. RTEMS Home Page.

http://www.rtems.com/.
10. L. Thiele, I. Bacivarov, W. Haid, and K. Huang. Mapping Applications to Tiled

Multiprocessor Embedded Systems. In Proc. Int’l Conf. on Application of Concur-
rency to System Design (ACSD), pages 29–40, Bratislava, Slovak Republic, July
2007.

