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Abstract. Wireless sensor networks come of age and start moving out of the labora-
tory into the field. As the number of deployments is increasing the need for an efficient
and reliable code update mechanism becomes pressing. Reasons for updates are mani-
fold ranging from fixing software bugs to retasking the whole sensor network. The scale
of deployments and the potential physical inaccessibility of individual nodes asks for a
wireless software management scheme. In this paper we present an efficient code update
strategy which utilizes the knowledge of former program versions to distribute mere in-
cremental changes. Using a small set of instructions, a delta of minimal size is generated.
This delta is then disseminated throughout the network allowing nodes to rebuild the
new application based on their currently running code. The asymmetry of computational
power available during the process of encoding (PC) and decoding (sensor node) necessi-
tates a careful balancing of the decoder complexity to respect the limitations of today’s
sensor network hardware. We provide a seamless integration of our work into Deluge,
the standard TinyOS code dissemination protocol. The efficiency of our approach is
evaluated by means of testbed experiments showing a significant reduction in message
complexity and thus faster updates.

1 Introduction

Recent advances in wireless networking and microelectronics have led to the vision
of sensor networks consisting of hundreds or even thousands of cheap wireless nodes
covering a wide range of application domains. When performing the shift from purely
theoretical investigations to physical deployments the need for additional network man-
agement services arises. Among other facilities this includes the ability to reprogram
the sensor network [1,2]. Software updates are necessary for a variety of reasons. Itera-
tive code updates on a real-world testbed during application development is critical to
fix software bugs or for parameter tuning. Once a network is deployed the application
may need to be reconfigured or even replaced in order to adapt to changing demands.

Once deployed, sensor nodes are expected to operate for an extended period of time.
Direct intervention at individual nodes to install new software is at best cumbersome
but may even be impossible if they are deployed in remote or hostile environments.
Thus, network reprogramming must be realized by exploiting the network’s own abil-
ity to disseminate information via wireless communication. Program code injected at
a base station is required to be delivered to all nodes in its entirety. Intermediate
nodes thereby act as relays to spread the software within the network. Given the com-
paratively small bandwidth of the wireless channel and the considerable amount of
data to be distributed, classical flooding is prone to result in serious redundancy, con-
tention, and collisions [3]. These problems prolong the update completion time, i.e. the
time until all nodes in the network fully received the new software. Even worse, sensor
nodes waste parts of their already tight energy budgets on superfluous communication.



Current code distribution protocols for sensor networks try to mitigate the broadcast
storm problem by incorporating transmission suppression mechanisms or clever sender
selection [4–6].

The radio subsystem is one of the major cost drivers in terms of energy consump-
tion on current hardware platforms. Therefore, communication should be limited to a
minimum during reprogramming in order not to reduce the lifetime of the network too
much. Orthogonal to the above mentioned efforts the amount of data that is actually
disseminated throughout the network should be minimized. Data compression seems
to be an adequate answer to this problem. As knowledge about the application cur-
rently executed in the sensor network is present1 differential compression, also known
as delta compression, can be applied. Delta algorithms compress data by encoding one
file in terms of another; in our case encoding the new application in terms of the one
currently running on the nodes. Consequently, only the resulting delta file has to be
transferred to the nodes which are then able to reconstruct the new application by
means of their current version and the received delta. There exists a rich literature
proposing a plethora of different algorithms for delta compression, e.g. [7–12]. These
algorithms shine on very large files. However, neither time nor space complexity is cru-
cial considering the small code size of today’s sensor network applications. It is much
more important to account for the asymmetry of disposable computational power at
the encoder and the decoder. While almost unlimited resources are available to gener-
ate the delta file on the host machine special care must be taken to meet the stringent
hardware requirements when decoding on the nodes.

In this paper we present an efficient code update mechanism for sensor networks
based on differential compression. The delta algorithm is pursuing a greedy strategy
resulting in minimal delta file sizes. The algorithm operates on binary data without
any prior knowledge of the program code structure. This guarantees a generic solution
independent of the applied hardware platform. We refrain from compressing the delta
any further as this would exceed the resources available at the decoder. Furthermore,
in contrast to other existing work we directly read from program memory to rebuild
new code images instead of accessing flash memory which is slow and costly. The delta
file is also structured to allow sequential access to persistent storage. All this leads to a
lean decoder that allows fast and efficient program reconstruction at the sensor nodes.

Our work is tightly integrated into Deluge [5], the standard code dissemination pro-
tocol for the TinyOS platform. Deluge has proven to reliably propagate large objects
in multi-hop sensor networks. Furthermore, it offers the possibility to store multiple
program images and switch between them without continuous download. We support
code updates for all program images even if they are not currently executed. Perfor-
mance evaluations show that update size reductions in the range of 30% for major
upgrades to 99% for small changes are achieved. This translates to a reprogramming
speedup by a factor of about 1.4 and 100, respectively.

The remainder of the paper is organized as follows: After discussing related work
in the next section, we give an overview of the code update mechanism in Section 3.

1 This assumption is based on the fact that sensor networks are normally operated by a central
authority.



Section 4 describes the update creation process as well as the decoder. In the subsequent
section we present an experimental evaluation of our reprogramming service. Section 6
concludes the paper.

2 Related Work

The earliest reprogramming systems in the domain of wireless sensor networks, e.g.
XNP [13], did not spread the code within the network but required the nodes to be in
transmission range of the base station in order to get the update. This drawback was
eliminated by the appearance of MOAP [4] which provides a multi-hop code dissemina-
tion protocol. It uses a publish-subscribe based mechanism to prevent saturation of the
wireless channel and a sliding window protocol to keep track of missing information.

Deluge [5] and MNP [6] share many ideas as they propagate program code in an
epidemic fashion while regulating excess traffic. Both divide a code image into equally
sized pages, pipelining the transfer of pages and thus making use of spatial multiplex-
ing. A bit vector is used to detect packet loss within a page. Data is transmitted using
an advertise-request-data handshake. Deluge uses techniques such as a sender suppres-
sion mechanism borrowed from SRM [14] to be scalable even in high-density networks.
In contrast, MNP aims at choosing senders that cover the maximum number of nodes
requesting data. There have been various proposals based on the above mentioned
protocols, e.g. [15,16], that try to speed up program dissemination. However, all these
approaches share the fact that the application image is transmitted in its entirety. This
potentially induces a large amount of overhead in terms of sent messages but also in
terms of incurred latency.

There have been efforts to update applications using software patches outside the
sensor network community in the context of differential compression that arose as part
of the string-to-string correlation problem [17]. Delta compression is concerned with
compressing one data set, referred to as the target image, in terms of another one, called
the source image, by computing a delta. The main idea is to represent the target image
as a combination of copies from the source image and the part of the target image that
is already compressed. Sections that cannot be reconstructed by copying are simply
added to the delta file. Examples of such delta encoders include vdelta [7], xdelta [9],
and zdelta [10]. They incorporate sophisticated heuristics to narrow down the solution
space at the prize of decreased memory and time complexity as it is important to
perform well on very large input files. However, these heuristics result in suboptimal
compression. The zdelta algorithm further encodes the delta file using Huffman coding.
This raises the decoder complexity to a level which does not match the constraints of
current sensor network hardware. In [18], the xdelta algorithm is used to demonstrate
the efficiency of incremental linking in the domain of sensor networks. However, the
authors do not give a fully functional network reprogramming implementation but use
the freely available xdelta encoder to evaluate the fitness of their solution. There exists
other work in the domain of compilers and linkers trying to generate and layout the
code such that the new image is as similar as possible to a previous image. Update-
conscious compilation is addressed in [19] where careful register and data allocation
strategies lead to significantly smaller difference files. In [20] incremental linkers are
presented that optimize the object code layout to minimize image differences. All these



approaches are orthogonal to our work and can be integrated to further increase the
overall system performance. We refrain from including one of them since they are
processor specific and thus do not allow a generic solution.

Similar to the above mentioned delta algorithms, bsdiff [11] does also encode the
target image by means of copy and insert operations. The algorithm does not search
for perfect matches to copy from but rather generates approximate matches where
more than a given percentage of bytes are identical. The differences inside a match are
then corrected using small insert instructions. The idea is that these matches roughly
correspond to sections of unmodified source code and the small discrepancies are caused
by address shifts and different register allocation. Delta files produced by bsdiff can
be larger than the target image but are highly compressible. Therefore, a secondary
compression algorithm is used (in the current version bzip2 ) which makes the algorithm
hardly applicable for sensor networks. The authors of [21] propose an approach similar
to bsdiff. Their algorithm also produces non-perfect matches which are corrected using
repair and patch operations. The patch operations work at the instruction level2 to
recognize opcodes having addresses as arguments which must be moved by an offset
given by the patch operation. The algorithm shows promising results but depends on
the instruction set of a specific processor.

In [8] rsync is presented that efficiently synchronizes binary files in a network
with low-bandwidth communication links. It addresses the problem by using two-stage
fingerprint comparison of fixed blocks based on hashing. An adaptation to rsync in
the realm of sensor networks is shown in [22]. As both the source image and the
target image reside on the same machine various improvements were introduced. The
protocol was integrated into XNP. Besides the fact that XNP does only allow single-
hop updates, the protocol does not overcome the limitations of rsync and performs
well only if the differences in the input files are small.

FlexCup [23] exploits the component-based programming abstraction of TinyOS
to shift from a monolithic to a modular execution environment. Instead of building
one single application image FlexCup produces separate object files which are then
linked to an executable on the sensor node itself. Thus, code changes are handled
at the granularity of TinyOS components. This solution does no longer allow global
optimizations. Furthermore, since the linking process requires all memory available at
the sensor node, FlexCup is not able to run in parallel to the actual application. In [24],
dynamic runtime linking for the Contiki operating system [25] is presented.

Besides TinyOS, there exist other operating systems for sensor networks which are
inherently designed to provide a modular environment [1, 25]. They provide support
for dynamic loading of applications and system services as a core functionality of the
system. However, this flexibility implies additional levels of indirection for function calls
which add considerable runtime overhead. The update process for changed components
is limited to these components as they are relocatable and address independent.

Virtual machine architectures for sensor networks [26–28] push the level of indi-
rection one step further. They conceal the underlying hardware to offer high-level
operations to applications through an instruction interpreter. Updates are no longer
native code but normally considerable smaller application scripts. This renders repro-

2 Their work is based on the MSP430 instruction set.
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Fig. 1. Components involved in the process of wireless reprogramming.

gramming highly efficient. However, the execution overhead of a virtual machine is
considerable and outweighs this advantage for long-running applications [24,26].

A temporary alternative to supply in-network programmability inside the sensor
network itself is to provide a parallel maintenance network [29]. This is particularly
useful during the development process as one does not have to rely on the network
being operational to update it. Furthermore, new protocols can be tested and evaluated
without the reprogramming service distorting the results.

3 Overview

Updating code in wireless sensor network is a non-trivial task and requires the inter-
action of multiple system components. In general, application reprogramming can be
broken down into three steps: image encoding, image distribution, and image decoding.
Figure 1 shows a schematic view of all involved components and how they are interre-
lated in our code update mechanism. On the left-hand side, all services are consolidated
that run on the host machine or base station, respectively. On the right, the required
components on a sensor node are depicted. The dissemination protocol is responsible
to reliably distribute the encoded update in the entire sensor network. We make use of
Deluge as it is widely accepted as the standard dissemination protocol and has shown
its robustness in various real-world deployments. We give a brief overview of Deluge’s
data management as it has direct implications on all other system components.3

Deluge enables a sensor node to store multiple application images. It divides a
junk of the external flash memory (EEPROM) into slots, each of them large enough to
hold one image. In conjunction with a bootloader Deluge is then able switch between
these images. To manage the program image upload, Deluge divides images into pages
of fixed size.4 So far, Deluge transmits images at the page granularity. That is, all
packets of the last page in use were distributed no matter how many of them actually
containing data of the new application image. The residual space of the last page is
thereby filled with zero bytes. This overhead of up to one kilobyte might be of minor
concern if the application image is transmitted in its entirety. However, it becomes
unacceptable in the context of small changes leading to delta files of only a few bytes.

3 The interested reader is referred to [5] for a detailed description of Deluge.
4 In the current version of Deluge one page sums up to 1104 bytes. In turn, this results in 48 data

packets per page.



Deluge was therefore adapted to just transmit packets containing vital information
about the new image. The remaining bytes of the last page are then padded with zeros
on the sensor node itself to enable a 16-bit cyclic redundancy check on the pages. By
requiring a node to dedicate itself to receiving a single page at a time, it is able to
keep track of missing packets using a fixed-size bit vector. Packets also include CRC
checksums. Redundant data integrity checks at both packet and page level is critical
as erroneous data is otherwise propagated throughout the whole network due to the
epidemic nature of Deluge.

The protocol also incorporates an administration service that allows the base sta-
tion to retrieve information about all stored images including which one is currently
running. On the host machine, Deluge offers an update management service to inject
new images into the network. To allow differential updates a version control system is
required at the host machine in order to know all application images currently residing
on the sensor nodes. In the current version a file-system-based image repository is used
to archive the latest program versions stored in each slot on the sensor nodes. If a new
target image is supposed to be injected to a given slot, the update manager first queries
the nodes to retrieve metadata about all loaded images. Based on this information a
crosscheck in the version control system is performed to ensure that the latest image
version for the requested slot is present in the repository. Once the validity of the source
image in the repository is verified it is used as input for the delta encoder along with
the target image. The encoder processes both images and generates the corresponding
delta file. The delta is then disseminated using Deluge as if it was a normal applica-
tion image. However, it is not stored in the designated slot of the target image but in
an additional EEPROM slot reserved for delta files. Upon complete delta reception,
a node starts the decoding process using additional information from external flash
memory and program memory. The target image is thereby directly reconstructed in
its intended EEPROM slot. In the meantime, the delta is further disseminated within
the network. We now give a detailed description of the encoding algorithm employed
on the host machine as well as of the decoder that resides on the sensor nodes.

4 Update Mechanism

All delta algorithms introduced in Section 2 use some kind of heuristic to speed up the
generation of copy commands and consequently to reduce the overall execution time
of the encoder. In [30] a greedy algorithm is presented that optimally solves the string-
to-string correction problem which lies at the heart of differential updating. While its
time complexity is undesirable for very large input files it poses no problem in the
context of sensor networks where program size is limited to a few hundred kilobytes.5

Hence, the design of our delta encoder is based on the findings in [30]. Before we give
a detailed description of the encoder itself we specify the employed instruction set and
how instructions are arranged in the delta file.

5 The maximal application memory footprint of state-of-the-art sensor network hardware is limited
to 48kB for nodes equipped with MSP430 microcontrollers or 128kB for ATmega128 platforms,
respectively.



Instruction Code Arguments Cost [bytes]

shift xxxxx100 none 1

run xxxxx101 byte to be repeated 2

copy xxxxx110 start address 3

add xxxxx111 data to be added 1+#bytes

Table 1. Instruction codes, arguments, and overall costs in bytes if the instructions reconstruct less
than 32 bytes. The length of the instruction is encoded in the first five bits of the instruction code.

4.1 Delta Instructions and Delta File Organization

We adopt the set of delta instructions specified in VCDIFF [31] which is a portable
data format for encoding differential data. It is proposed to decouple encoder and
decoder implementations to enable interoperability between different protocol imple-
mentations. It distinguishes three types of instructions: add, copy and run. The first
two instructions are straightforward; add appends a number of given bytes to the tar-
get image and copy points to a section in the source image to be copied to the target
image. The run instruction is used to encode consecutive occurrences of the same byte
efficiently. It has two arguments, the value of the byte and the number of times it is
repeated. Making use of the fact that the target image is decoded into the same slot
in external memory where the source image already resides, we introduce a fourth in-
struction. The shift instruction is used to encode sections of the image that have not
changed at all from one version to the next. It is used to prevent unnecessary EEP-
ROM writes. The only effect of a shift instruction is the adjustment of the target
image pointer at the decoder.

These instructions are designed to minimize the overhead of the delta file. Each
instruction code has a size of one to three bytes dependent on the number of bytes in the
target image the corresponding instruction encodes. Table 1 comprises the arguments
and costs of all four instruction types if they reconstruct less than 32 bytes of the
target image. The actual length is directly encoded in the first 5 bits of the instruction
code in this case. The cost of an instruction increases by one if the encoded fragment
spans up to 255 bytes, or by two if it is larger than that, as the instruction length
occupies one or two additional bytes, respectively.

We refrained from using the delta file organization as proposed in VCDIFF. It splits
the file in three sections, one for data to be added, one for the actual instructions,
and one for the addresses of the copy instructions. This enables better secondary
compression of the delta file. As we try to keep the decoder complexity to a minimum
to meet the nodes’ hardware limitations no such compression is applied. We could still
use the VCDIFF format without secondary compression. However, the fact that an
instruction has to gather its arguments from different places within the delta file results
in unfavorable EEPROM access patterns. Random access to external memory—as it
would be the case if the VCDIFF format was employed—results in increased overhead
during the decoding process. This is caused by the discrepancy between the small
average delta instructions and the rather coarse-grained EEPROM organization. On
average, the delta instruction length is below four bytes for all experiments described
in Section 5. In contrast, external memory access is granted at a page granularity with



Operation Current Draw Time Rel. Power Drain

Receive a packet 14 mA 5 ms 1

Send a packet 33 mA 5 ms 2.36

Read EEPROM page 4 mA 0.3 ms 0.017

Write EEPROM page 15 mA 20 ms 4.29

Table 2. Relative energy consumption of different operations in comparison to a packet reception for
the TinyNode platform.

page sizes of 256 bytes for flash chips of modern sensor network hardware. As EEPROM
writes are expensive (see Table 2) current flash storage incorporates a limited amount
of cached memory pages to mitigate the impact of costly write operations.6 However, it
is important to notice that even though a read itself is cheap, it may force a dirty cache
page to be written back to EEPROM which renders a read operation as expensive as
a write.

To allow for the above mentioned EEPROM characteristics the delta file is or-
ganized by appending instructions in the order of their generation. That is, each in-
struction code is directly followed by its corresponding arguments. Furthermore, all
instructions are ordered from left to right according to the sections they are encoding
in the target file. This permits a continuous memory access during the execution of
the delta instructions.

4.2 Delta Encoder

The severe hardware constraints of wireless sensor networks let our delta encoder differ
in various points from common delta compression algorithms to optimize the decoding
process. Besides the objective to minimize the delta file size one also has to consider
the energy spent on reconstructing the new image at the nodes. In particular, special
care has to be taken to optimize external flash memory access.

The only instruction that requires additional information from the source image to
reconstruct its section of the target image is copy. To avoid alternating read and write
requests between source image and delta file potentially causing the above discussed
EEPROM cache thrashing problem we derive the data required by copy instructions
directly from program memory. This decision has several implications. Most important,
copies must be generated based on the currently executed image even if it is not
identical to the image we would like to update. That is, the decoder is actually using a
third input file, namely the currently executed image, to reconstruct the target image.
Second, decoding is sped up since reading from program memory is fast in comparison
to accessing external flash memory. Third, we are able to directly overwrite the source
image in external memory without wasting an additional slot during the reconstruction
process. This renders shift instructions possible. As a drawback, it is no longer allowed
to use an already decoded section of the target image as origin for later copies. This
potentially results in larger delta files. However, the aforementioned positive effects
compensate this restriction.

6 The Atmel AT45DB041B flash chip on the TinyNode platform has a cache size of two pages.



In a first phase, the encoder analyzes both source and target image. The algorithm
runs simultaneous over both input files and generates shift instructions for each
byte sequence that remains unchanged. Then, the target image is inspected and run
instructions are produced for consecutive bytes with identical values. In a third pass,
for each byte in the target image a search for the longest common subsequence in the
source image is performed. A copy is then generated for each byte with a matching
sequence of size at least three as copy instructions of length three or larger start to
pay off compared to an add.

In a second phase a sweep line algorithm is employed to determine the optimal
instruction set for the target image minimizing the size of the resulting delta. All
instructions produced in the first phase reconstruct a certain section of the target
image determined by their start and end address. The algorithm processes the image
from left to right and greedily picks the leftmost instruction based on its start addresses.
Then, the next instruction is recursively chosen according to the following rules. First,
the instruction must either overlap with or be adjacent to the current instruction.
Second, we choose the instruction among those fulfilling the previous requirement
whose endpoint is farthest to the right. The instruction costs are used for tie breaking.
To avoid redundancy in the delta file the new instruction is pruned to start right after
the end of the current one if they overlap. If no instruction satisfies these demands an
add is generated. These add instructions span the sections not covered by any of the
other three instruction types. Once the algorithm reaches the end of the target image
the delta file is generated according to the rules stated in the previous section.

4.3 Delta Decoder

The delta decoder is mapped as a simple state machine executing delta instruction
in rotation. Prior to the actual decoding metadata is read from the head of the delta
file. This information is appended by the encoder and contains the delta file length
and additional metadata for the target image required by Deluge. The length is used
to determine completion of the decoding. The metadata comprises version and slot
information of the target image. This information is used to verify the applicability of
the delta to the image in the given slot. In case of failure the decoding process is aborted
and the image is updated traditionally without the help of differential reprogramming.
If the delta is valid, the instructions are consecutively executed to rebuild the target
image.

Once the decoder has fully reconstructed the image it signals Deluge to pause the
advertisement process for the newly built image. This has the effect that the delta is
disseminated faster within the network than the actual image enabling all nodes to
reprogram themselves by means of the delta.

5 Experimental Evaluation

In this section we analyze the performance of our differential update mechanism on
real sensor network hardware. The experiments were run on TinyNode 584 [32] sensor
nodes operating TinyOS. The TinyNode platform comprises a MSP430 microcontroller



Setting Target Size [bytes] Delta Size[bytes] Size Reduction Encoding Time

Case 1 28684 322 98.88% 8453 ms

Case 2 27833 5543 80.08% 5812 ms

Case 3 28109 7383 73.73% 6797 ms

Case 4 34733 17618 49.28% 7563 ms

Case 5 21508 14904 30.70% 4781 ms

Table 3. Target and delta sizes for the different settings. Additionally, times required to encode the
images are given.

featuring 10 kB of RAM and 48kB of program memory. Furthermore 512 kB external
flash memory are available.

To prove the fitness of the proposed approach in a wide range of application scenar-
ios five different test cases are consulted ranging from small code updates to complete
application exchanges. Except one, all applications are part of the standard TinyOS
distribution. Before evaluating the performance of our reprogramming approach the
different test settings are discussed in the following.

Case 1: This case mimics micro updates as they occur during parameter tuning.
We increase the rate at which the LED of the Blink application is toggled. This
change of a constant has only local impact and should therefore result in a small
delta.
Case 2: The Blink application is modified to facilitate concurrent program execu-
tions. The application logic is therefore encapsulated in an independent task (see
BlinkTask). This leads to additional calls to the TinyOS scheduler and a deferred
function invocation.
Case 3: The CntToLeds application, which shows a binary countdown on the
LED’s, is extended to simultaneously broadcast the displayed value over the radio
(CntToLedsAndRfm). This is a typical example of a software upgrade that integrates
additional functionality.
Case 4: In this setting Blink is replaced with the Oscilloscope application. The
latter incorporates multi-hop routing to convey sensor readings towards a base
station. Both application share a common set of system components. This scenario
highlights the ability of our protocol to cope with major software changes.
Case 5: Here we switch from Blink to Dozer [33], an energy-efficient data gathering
system. Among other features, Dozer employs a customized network stack such that
the commonalities between the two applications are minimal. Furthermore, Dozer
is the only application in this evaluation that has no built-in Deluge support.

The Blink application produces a memory footprint of 24.8 kB in program memory
and 824 bytes RAM using the original Deluge. In comparison, the enhanced Deluge
version including delta decoder sums up to 27.6 kB ROM and 958 bytes of RAM.
Consequently, our modifications increase the memory footprint of an application by
2.8 kB in program memory and 134 bytes of RAM.

The performance of our delta encoder for all five cases is shown in Table 3. For
Case 1, the encoder achieves a size reduction by a factor of 100. Actually, the mere delta



Setting #shift avg. size #run avg. size #copy avg. size #add avg. size

Case 1 5 57334 0 0 0 0 5 2.80

Case 2 16 79.19 3 244 884 27.43 859 1.83

Case 3 71 26.01 5 91 1183 20.13 1153 1.72

Case 4 30 37.13 12 40.32 2757 9.68 2472 2.64

Case 5 25 7.78 20 54.70 2219 6.44 1858 3.19

Table 4. The number of occurrences of each instruction type for all scenarios. Furthermore, the average
number of bytes encoded by one instruction is given.

is only 32 bytes long. The other 290 bytes consist of metadata overhead introduced
by Deluge such as 256 bytes of CRC checksums. As already mentioned in the case
descriptions, the increasing delta sizes indicate that the similarity between source and
target image decreases from Case 1 to 5. The delta file produced due to major software
changes is still only about half the size of the original image. Moreover, even if we
replace an application with one that has hardly anything in common with the former,
such as in Case 5, the encoder achieves a size reduction of about 30%. Table 3 also
contains the execution times of the encoder for the five different scenarios. Note that
the encoding was computed on a customary personal computer. The encoding process
for the considered settings takes up to nine seconds. Compared to the code distribution
speedup achieved by smaller delta files this execution time is negligible.

Table 4 shows the number of occurrences of all four instruction types in all five
settings. It also contains the average number of bytes covered by one instruction. One
can see that the modifications in Case 1 are purely local as only 14 bytes have to be
overwritten and the rest of the image stays untouched. For the other four scenarios,
copy and add instructions constitute the dominating part of the delta files. It is inter-
esting to see that the average size of a copy is larger if the source and target images
have a higher similarity. The opposite is true for the add instruction. In the case of
minor application updates many code blocks are only shifted to a different position
within the code image but not changed at all. This fact is exploited by the copy in-
structions enabling a relocation of these sections with constant overhead. However, if
the new application is completely unrelated to the one to be replaced as in Case 5, the
image exhibits less opportunities for copies. Consequently, more add instructions are
necessary to rebuild the target image.

To evaluate the decoder we measure the reconstruction time of the target image
on a sensor node. Table 5 shows the decoding time for all cases dependent on the
available buffer size at the decoder. If no input buffer is available, each delta instruction
is read separately from external memory before it is processed. If an input buffer is
allocated, the decoder consecutively loads data blocks of the delta file from EEPROM
into this buffer. Before a new block of data is fetched, all instructions currently located
in the buffer are executed. Similar to the input buffer handling, the decoder writes
the result of a decode instruction directly to external memory if no output buffer is
present. In contrast, if an output buffer is available, it is filled with the outcomes of
the processed delta instructions and only written back to EEPROM if it is full. We



Setting none |none 256 | none 256 | 256 128 | 128 64 | 64 32 | 32 16 | 16

Case 1 1.20 s 1.24 s 1.24 s 1.24 s 1.24 s 1.23 s 1.23 s

Case 2 7.03 s 5.05 s 4.11 s 4.20 s 4.38 s 4.74 s 5.40 s

Case 3 8.51 s 5.52 s 4.25 s 4.36 s 4.54 s 5.02 s 5.74 s

Case 4 15.14 s 8.68 s 5.63 s 5.79 s 6.06 s 6.82 s 7.84 s

Case 5 11.27 s 6.47 s 4.08 s 4.15 s 4.35 s 4.74 s 5.45 s

Table 5. Time to reconstruct the target image on a sensor node as a function of the available input
and output buffer sizes in bytes at the decoder (input | output).

limit the maximum buffer size to 256 bytes thereby matching the EEPROM page size
of the TinyNode platform.

For Case 1 the decoding process takes approximately 1.2 seconds no matter which
buffer strategy is applied. This can be explained by the fact that only 10 delta instruc-
tions are involved (see Table 4) where five of them are shift instructions which do not
lead to EEPROM writes. In contrast, the decoder takes about 15 seconds to update
from Blink to the Oscilloscope application if neither input nor output buffers are
used. However, decoding time decreases to 8.68 or 5.63 seconds if an input buffer of
256 bytes or both, input and output buffers of size 256 bytes are employed, respectively.
That is, decoding with maximum input and output buffer reduces the execution time
by a factor of 2.7 in Case 4.

Due to the promising results with large buffer sizes, we also study the impact of
varying buffer sizes on the decoding speed. The reconstruction times for all scenarios
were evaluated for buffer sizes of 16, 32, 64, 128, and 256 bytes, respectively. Table 5
shows that execution times increase with decreasing buffer sizes. However, the increases
are moderate: Reducing the buffers from 256 to 16 bytes—and thus saving 480 bytes
of RAM—results in an at most 40% longer decoding time. Furthermore, the execution
times with buffers of 16 bytes are roughly the same as if only an input buffer of 256
bytes is used.

6 Conclusions

Sensor networks are envisioned to operate over a long period of time without the need
of human interaction. Once deployed, remote reprogramming of the sensor network is
therefore crucial to react to changing demands. This paper introduces an efficient code
update strategy which is aware of the limitations and requirements of sensor network
hardware. We exploit the fact that the currently running application on the sensor
nodes is know at the time a new program is supposed to be installed. Differential
compression is employed to minimize the amount of data that has to be propagated
throughout the network. The proposed delta encoder achieves data size reductions
from 30% to 99% for a representative collection of update scenarios. The delta decoder
is integrated into the Deluge framework which guarantees reliable data dissemination
within the sensor network. The energy spent for the image distribution is directly
proportional to the transmitted amount of data. Thus, our system reduces the power
consumption of the code dissemination by the same percentage as it compresses the
input data.
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