8 Years of X-Sense and X-Sense2

Lothar Thiele, Jan Beutel
Andreas Vieli
Alain Geiger
Hugo Raetzo
Christofer Hierold, Cosmin Roman

Computer Engineering and Networks, ETH Zurich
Physical Geography, University Zurich
Geodesy and Photogrammetry, ETH Zurich
Federal Office of the Environment, Bern
Micro- and Nano-Systems, ETH Zurich
New scientific knowledge about geophysical processes

Development of early warning systems

Wireless Sensor Network Technology

- allows to quantify mountain phenomena at diverse modalities and scales,
- provides information for process understanding and modeling
- can be used for safety critical applications in hostile environments.
X-Sense - Detecting Large-Scale Mass Movements in Mountain Permafrost Slopes
Detecting Millimeter-scale Process Dynamics

Objectives of this work

• Accurate point measurements (surface)
• High temporal resolution intra annual – intra day
• Long-term autonomous operation
• High spatial coverage
• Process understanding – knowledge
• Decision making for natural hazard mitigation (warning)
Standard Approach: Repeat Manual Surveys

- Low temporal resolution; limitations for process understanding
- Repeat exposure to natural hazards

Wireless L1-GPS Sensors

- Wireless communication
 - Wireless sensor network cluster
 - 868 MHz ultra low-power radios
 - Up to ~7km range

- Sensors
 - ublox LEA-6T L1-GPS
 - Trimble Bullet III active antenna
 - 2-axis SCA830 inclinometer
 - Ambient temp/hum/battery

- Standalone data logger functionality
 - Local 2GB data buffer

- Remote configurable
 - Duty-cycle (1-24h)
 - Sampling rate (30 sec)

- Data transfer in near real-time

GPS Logger
Large-scale, early access data

GPS CoreStation
Experimentation, variable use

Wireless GPS Sensor
Fully integrated, low-power

Short-term Variability of Rock Glacier Surface Velocities in the Swiss Alps Revealed by Continuous GPS
Real-time Experimentation at Valley Scale
Intra-annual Variability of Horizontal Velocities

Movements In the Context of Meteorological Factors

<table>
<thead>
<tr>
<th>snow cover</th>
<th>zero curtain (GST)</th>
<th>hor. velocity</th>
<th>velocity peak</th>
<th>low SNR</th>
</tr>
</thead>
</table>

RG Breithorn

RG Dirru
Access to Real-time Data for Early Warning Decision-making

Bielzug Debris Flow, June 2013
- Critical natural hazard event
- Herbriggen partial village evacuation
- Closure of road and railway to Zermatt

![Bielzug/Breithorn rock glacier, C. Graf, WSL, Switzerland](image1)

Längschnee, Fall 2014
- Constructive measures securing rock boulders above Herbriggen
- Extension of sensor coverage in collaboration with authorities

![Längschnee, Stalden, Switzerland](image2)
Technology Transfer

PERMOS Continuous GPS Pilot

• Pilot program to make L1-DGPS sensors developed in a research project available to PERMOS partner on their field sites

• First sensor installation in summer 2013, extensions in 2014, 2015, 2016
 (Valais: Herbriggen Bielzug, Breithorn + Längschnee, Grächen Distelhorn + Ritigraben, Saas-Balen Gruben + Jäggihorn, Wysse Schije, Randa Grossgufer)
X-Sense2
A New Seismic and Acoustic Emission Experiment is Taking Shape
Why?

[Randa rockfall incident, April 22, 2015, blick.ch]
Sensors cover the Hörnligrat from first couloir up to Eisloch
The clefts at Hörnliridge move in distinct patterns.

What is preventing wide applicability?

- sensing movement events (GPS, images, crackmeters) and/or micro-seismic and acoustic activities
- high sensing rate, signal amplification
- big data
- high energy
- high cost

Improve the energy efficiency of the sensor network by several order of magnitude and *expand sensor modalities.*
sensors
pre-processing
communication
data cleaning & processing
geophysical processes
geo-science
society & early warning
X-Sense2 – From Tera To Nano

- Sensor
- Pre-processing
- Communication
- Data cleaning & processing
- Geophysical processes
- Decision

Nano

Tera
The X-Sense2 MEMS Acoustic Sensor Concept

Acoustic emission signals

A crack in the rock creates a vibration signal
The X-Sense2 MEMS Acoustic Sensor Concept

Acoustic emission signals

The sensor picks up the vibration and amplifies it mechanically like a shoaling wave
The X-Sense2 MEMS Acoustic Sensor Concept

Acoustic emission signals

If the signal has the target spectrum and threshold amplitude: the device triggers a switch

Events

Idle power needed only for DC voltage sourcing

Current detection
Proof of Concept Devices

Simulation of amplification mechanism...

...with 4 masses...

...with 6 masses...

...with 10 masses!

...and fabrication of devices...

Combination with pull-in trigger
10-mass mechanical amplifier fabricated with 3-D Silicon-on-Insulator (SOI) technology

Our Event-driven System Architecture

DPP – The Dual-processor Platform

Acoustic Sensor Interface
\[P_s = 6.2 \, \mu W \]

Acoustic Event Characterization
\[P_s = 2.5 \, \mu W \]

Multi-hop Event Dissemination
\[P_s \ [11.0, 49.6] \, \mu W \]

BOLT
\[P_s = 1.3 \, \mu W \]

ETH Zurich
Computer Engineering and Networks Lab
Geodesy and Geodynamics Lab
Micro and Nanosystems
Federal Office for the Environment
University of Zurich
Department of Geography

Demo at nano-tera.ch booth