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ABSTRACT

Multiobjective optimization in general aims at learning about
the problem at hand. Usually the focus lies on objective
space properties such as the front shape and the distribution
of optimal solutions. However, structural characteristics in
the decision space can also provide valuable insights. In cer-
tain applications, it may even be more important to find a
structurally diverse set of close-to-optimal solutions than to
identify a set of optimal but structurally similar solutions.
Accordingly, multiobjective optimizers are required that are
capable of considering both the objective space quality of
a Pareto-set approximation and its diversity in the decision
space.

Although NSGA, one of the first multiobjective evolution-
ary algorithms, explicitly considered decision space diversity,
only a few other studies address that issue. It therefore is
an open research question how modern multiobjective evolu-
tionary algorithms can be adapted to search for structurally
diverse high-quality Pareto-set approximations. To this end
we propose an approach to integrate decision space diversity
into hypervolume-based multiobjective search. We present
a modified hypervolume indicator and integrate it into an
evolutionary algorithm. The proof-of-principle results show
the potential of the approach and indicate further research
directions for structure-oriented multiobjective search.
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I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search
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1. INTRODUCTION
When approximating the Pareto-optimal set of a multi-

objective optimization problem, the goal is to find a set
of compromise solutions the quality of which is maximum.
The quality of Pareto-set approximations can be evaluated
in terms of set quality measures such as the hypervolume
indicator [13] or – more general – set preference relations
as discussed in [14]. Most of the time, the quality is de-
termined only on the basis of the corresponding objective
vectors, i.e. quality is measured in the objective space. How-
ever, in many applications not only the objective function
values matter, but also the structural properties of the gen-
erated solutions. For instance, an engineer may be particu-
larly interested in a range of structurally different solutions
distributed over the Pareto-optimal front. In that case, the
diversity within a Pareto-set approximation with regard to
the decision space needs to be taken into account within the
optimization model and the search algorithm. This study
addresses that issue.

Interestingly, the idea to integrate decision space diversity
into the optimization has been proposed as early as 1994 in
the first NSGA paper [9]. NSGA uses fitness sharing on the
decision vectors in combination with non-dominated sort-
ing. After that, most algorithms concentrated on the ob-
jective space only. In recent years, however, a few studies
have picked up on this idea and have proposed alternative
approaches. In 2003, GDEA [10] integrated diversity into
the search as an additional objective. In 2008, the Omni-
Optimizer [5] was developed which extends the original idea
of NSGA, but in contrast to NSGA, its diversity measure
takes both the decision and objective space diversity into
account. Finally in 2009, two further studies were proposed.
[8] extended a CMA-ES niching framework to include deci-
sion space diversity. [12] on the other hand applies clustering
in objective space and then builds a model from the solutions
in these clusters. This model is then used during variation
in order to generate new offspring.

Diversity is a set measure and therefore a separate goal
to the optimization. The other goal – let’s call it the ob-
jective space measure – is also a set measure which indi-
cates how well the final population approximates the Pareto-
optimal front. With two set measures the question arises
how these two measures can be combined. NSGA and the
Omni-Optimizer use a ranking of the two, where the ob-
jective space measure is always considered first, and only
if there are ties using this measure, diversity is taken into
consideration. The drawback of this approach is that the



diversity plays an inferior role and there is no possibility
to change the tradeoff between the two measures. More-
over, these kind of approaches suffer from cyclic behavior
[14]. A second approach is considering the diversity as an
additional objective. The problem here is that the diver-
sity, which is defined on sets, is treated the same way as the
original solution-oriented objectives. A second problem is
that all tradeoffs between diversity and original objectives
are explored concurrently, without any means to adjust the
tradeoff. As the number of incomparable solutions increases,
this may lead to an ineffective search.

In this paper we propose a method which combines two set
measures, namely the hypervolume and the diversity, into
one single set measure, where the tradeoff between the two
measures is adjustable in a flexible manner. The focus lies on
hypervolume-based search, a methodology that has gained
popularity in recent years. Its advantage is that cyclic be-
havior can be prevented, and therefore convergence to the
Pareto-optimal front can be proven [14]. To our best knowl-
edge, the idea of incorporating diversity into hypervolume-
based search has not yet been investigated. In the follow-
ing, we propose a first step in this direction and present an
integrated approach for hypervolume-based multiobjective
search that combines decision space diversity and hypervol-
ume indicator values. First, we introduce the basic idea in
Section 2. In Section 3, we show how a diversity measure can
be defined and and we introduce a modification of the hy-
pervolume indicator that integrates this diversity measure.
We then discuss in Section 4 how this concept can be im-
plemented within a diversity integrating hypervolume-based
search algorithm (DIVA) in the sense of a proof-of-principle,
and finally in Section 5, we use practical considerations to
adjust our algorithm.

2. BACKGROUND AND IDEA
In this study, we assume that two objective functions

fi : X → R, i = {1, 2} are to be minimized. A solution x is
mapped from the d-dimensional real-valued decision space
X ⊆ [0, 1]d to its objective vector f(x) = (f1(x), f2(x)).
Without loss of generality, we assume that all decision vec-
tors lie in the interval [0, 1]. The underlying dominance re-
lation is weak Pareto dominance, where a solution a ∈ X

weakly dominates another solution b ∈ X if and only if the
solution a is better or equal than b in all objectives, i.e.
a �par b iff f(a) 6 f(b) := fi(a) ≤ fi(b) for i = {1, 2}. We
here consider the common optimization goal of finding a set
A of µ solutions that maximizes the hypervolume of the set.
The hypervolume with respect to a reference point set R is
defined as the volume dominated by the solutions in A, but
not dominated by the solutions in R.

We would now like to motivate the idea which is explained
in detail in the next section. To this end we consider the ex-
ample shown in the left part of Figure 1, with three solutions
A = {a, b, c} and one reference point R = {r}.

We assume that the hypervolume indicator is given, plus
an additional diversity measure which returns the diversity
of a subset B ⊆ A of solutions. We would now like to inte-
grate this diversity measure into the hypervolume indicator.
But first, the question arises what diversity measure should
be used. Intuitively, a measure similar to the hypervolume
indicator, but defined in the decision space could be used,
where the solutions cover some part of the decision space
and the sum of the covered space indicates the diversity of
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Figure 1: Original (left) and modified (right) hy-
pervolume for a population of three solutions A =
{a, b, c} with reference set R = {r}. d(a, b) for exam-
ple is the diversity value of the subset B = {a, b}.
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Figure 2: Symbolic representation of the modified
hypervolume with one diversity value per hypervol-
ume partition. The left figure shows the three solu-
tions in the decision space. The right figure shows
the hypervolume partitions, where in each partition
the relevant diversity is shown qualitatively. For ex-
ample in the partition dominated by solutions a and
b, the used diversity value is the total area covered
by the decision space boxes of solutions a and b.

the subset. In contrast to the objective space, the decision
space has no clear direction of search. Therefore, we define
a neighborhood around each solution, which indicates the
part of the decision space covered by that solution. The di-
versity measure then is the union of these neighborhoods,
see the left part of Figure 2 for an example.

There are different ways how such a neighborhood can be
defined. The most intuitive approach would be a sphere with
a given radius around the solution. A generalized version of
the sphere would be a kernel function. In this study, we use
a box around the solution, mainly for two reasons. First, it
is much easier and faster to calculate if two boxes overlap
than it is to calculate whether two spheres overlap. Second,
the volume of a box with boxwidth 1 is always 1, whereas
the volume of a sphere of radius 0.5 goes to zero for higher
dimensions. Therefore, it is much easier to understand the
influence and tune the boxwidth of a box than the radius of
a sphere.

The next question which needs answering is how the hy-
pervolume indicator and this diversity measure can be com-
bined. The first idea which comes to mind is using a weighted
sum. However, this approach comes with a serious draw-
back. Because only the non-dominated solutions have a
contribution to the hypervolume, the dominated solutions
are evaluated based on their contribution to diversity only.
As solutions which are very diverse from non-dominating
solutions usually also have very dissimilar objective values,



this leads to populations where the non-dominated front op-
timizes the hypervolume and the dominated solutions opti-
mize the diversity and are therefore randomly distributed
instead of being close to the non-dominated solutions.

Therefore, our approach focuses on the hypervolume in-
dicator. When looking at the hypervolume of a set of solu-
tions, it can be seen that it is divided into partitions, where
each partition is dominated by a specific subset of the whole
population. In this study we propose to weight these par-
titions with the diversity of their dominating points before
summing them up (see the right part of Figure 1 for an
general example, and the right part of Figure 2 for an ex-
ample with the proposed diversity measure). Note that in
the original hypervolume indicator, the partitions are simply
weighted with one.

This adaption has several nice properties. First, if a pop-
ulation is given, and the objective values of one solution im-
prove, the modified hypervolume also improves. Second, if
the diversity of a subset of the population improves (and the
diversities of the remaining subsets remain the same), the
modified hypervolume also improves. Third, if the diver-
sity measure is chosen to be monotonically increasing with
the number of solutions in the subset, adding a solution
to the population cannot worsen the modified hypervolume.
Fourth, it is more important that two solutions that are close
in objective space are diverse than two solutions which are
far apart in objective space. This is due to the fact that
there are more subsets of the population that contain two
close solutions than two far apart solutions.

3. DIVERSITY INTEGRATING HYPERVO-

LUME INDICATOR
In this section we provide a formal definition of the mod-

ified hypervolume indicator. First we discuss diversity mea-
sures and the properties they should have, then we show
how such set measures in general can be integrated into the
hypervolume indicator.

3.1 Diversity Measures
To calculate the decision space diversity of a given set of

solutions, a so-called diversity function is used. Such a di-
versity function has to fulfill certain requirements such that
the modified hypervolume indicator remains compliant with
the underlying preference relation. First, the diversity of a
set of solution must not decrease if a new solution is added to
the set. Second, the diversity of a non-empty set of solution
must be greater than zero, and the diversity of the empty
set has to be zero. These properties are formally defined in
Definition 1.

Definition 1 (Diversity Function). Let Ψ denote
the powerset of the decision space X. Then we call a func-
tion D from Ψ to R monotonic diversity function if the fol-
lowing two properties hold:
Monotonicity: if A, B ∈ Ψ are two sets of solutions for

which A ⊆ B holds, then D(A) ≤ D(B).
Positivity and null empty set: for all A ∈ Ψ\∅ it holds

D(A) > 0, while D(∅) = 0.

We here propose two different functions that are in ac-
cordance with Definition 1. The first function which is de-
fined in Definition 2 has already been described in Section
2, where the diversity is equal to the volume of the union of
neighborhoods around each solution.

Definition 2 (Coverage Diversity Function). Given
a set of solutions A ⊆ X and a boxwidth b. The coverage
diversity function Dc(A) is then calculated as follows:

Dc(A) =
1

bd

∫

Rd

c
b
A(z)dz

where

c
b
A(z) =

{

1 if ∃x ∈ A : ∀1 ≤ i ≤ d : |zi − xi| ≤
b
2

0 else

zi and xi is the i-th decision variable value of solution z and
x, respectively.

The division by bd makes the measure independent of the
chosen neighborhood boxwidth b such that if the set con-
sists of only one solution, this set has diversity one. This
function fulfills the requirements of a monotonic diversity
function. Adding solutions cannot decrease the diversity. A
non-empty set has at least diversity 1, and the empty set
has diversity zero.

The second diversity function is based on the distance be-
tween the solutions of a set A. More precisely, the diversity
is the sum of distances of all solutions x ∈ A to the median
mA of that set.

Definition 3 (Distance Diversity Function). Given
a set of solutions A ⊆ X and a given distance measure
d(x, y), x, y ∈ X. Then the distance diversity function
Dd(A) is defined as:

Dd(A) =

{

0 if A = ∅
1 +

∑

x∈A d(x, mA) else

where m(A) = (m1
A, ..., md

A) is the median of the set A:

m
i
A =

1

|A|

∑

x∈A

xi

Theorem 1 states the monotonicity of that function, i.e.
that adding a solution to a given set cannot decrease the
diversity value of that set. Positivity and null empty set are
obvious.

Theorem 1. Dd(A ∪ a) ≥ Dd(A) holds for any set of
solutions A ⊆ X and any solution a ∈ X.

Proof. The proof is by induction over the number of
solutions n = |A|. n = 1 is obvious. For the transition of
n → n + 1 We have to show that 1 +

∑

x∈A∪a d(x, mA∪a)
≥ 1 +

∑

x∈A d(x, mA). Using the triangle inequality, we
get

∑

x∈A d(x, mA∪a) + d(a, mA∪a) ≥
∑

x∈A d(x, mA∪a) +
∑

x∈A d(mA∪a, mA) ≥
∑

x∈A d(x, mA). We therefore have
to show that d(a, mA∪a) ≥

∑

x∈A d(mA∪a, mA). Writing

out the median sum we get d(a, 1
n+1

∑

x∈A x + 1
n+1

a) ≥ n ·

d( 1
n+1

∑

x∈A x + 1
n+1

a, 1
n

∑

x∈A x)

= n ·d( 1
n+1

a, 1
n(n+1)

∑

x∈A x). Multiplying by (n+1) we get

d(na+a,
∑

x∈A x+a) = d(na,
∑

x∈A x) which completes the
proof.

3.2 Modified Hypervolume
We now explain how any such diversity function – or any

set-based function which fulfills the above properties – can
be integrated into the hypervolume indicator. As motivated
in Section 2, we look at the hypervolume as a set of partitions
which are dominated by a subset of the population. We
call the solutions in A that dominate a certain point z the
dominating points of z:



Definition 4 (Dominating Points). Given a point
z ∈ R

d, and A ⊆ X a set of solutions. We call the set of
solutions domA(z) := {x |x ∈ A∧ f(x) 6 z} the subset of A

dominating the objective vector z.

We can say that if one set A ⊆ X has a better or equal
diversity in all hypervolume partitions than another set B ⊆
X, the set A is weakly preferred to set B:

Definition 5 (Diversity Preference Relation). Let
A, B ⊆ X be two sets of solutions and D a diversity func-
tion. A is weakly diversity preferred to B, denoted A 4D B

iff ∀z ∈ R
d : D(domA(z)) ≥ D(domB(z))

This preference relation has the property that if A is
weakly diversity preferred to B, it is also weakly preferred
to B according to Pareto dominance:

Theorem 2. Given two sets A, B ⊆ X and a diversity
measure D, then A 4D B ⇒ A 4par B holds, where 4par

is the extension of Pareto dominance to sets, i.e. A 4par B

holds iff ∀y ∈ B : ∃x ∈ A : f(x) 6 f(y).

Proof. As B ⊆ R
d it holds that A 4D B ⇒ ∀y ∈ B :

D(domA(b)) ≥ D(domB(b)). We want to proof that this
means that also A 4par B as defined in this theorem holds.
Assume the contrary, i.e. ∃y ∈ B : ∄x ∈ A : f(x) 6 f(y).
In this case, domA(b) = ∅ ⇒ D(domA(b)) = 0. At the same
time D(b) > 0 and with monotonicity D(domB(b)) > 0.
Therefore D(domB(b)) > D(domA(b)) which is a contradic-
tion.

To modify the hypervolume indicator, we weight each
hypervolume partition with the diversity of its dominating
points. Because the diversity is a monotonically increasing
function with the number of considered points, partitions
which are dominated by only a few solutions are weighted
with lower values than partitions which are dominated by
a large number of solutions. In order to attenuate this ef-
fect, a so called desirability function is used. To that end,
the hypervolume partitions are weighted with this desirabil-
ity value of the partition, which in turn is derived from the
diversity of the solutions dominating the partition:

Definition 6 (Desirability of Diversity). Let A ∈
Ψ\∅ be a set of solutions with corresponding diversity D(A).
Then the desirability function ξ : R>0 → R≥0, D(A) 7→ R≥0

assigns a non-negative value to the diversity representing its
desirability to the decision maker. The function ξ is as-
sumed to be monotonically increasing and non-negative, i.e.,
∀x, y ∈ R>0 : x ≤ y ⇒ ξ(x) ≤ ξ(y), and ξ(x) ≥ 0.

Many functions fulfill the required properties. We here
propose the following class of functions which is tunable by
a shape parameter s:

Definition 7. (Logarithmically Increasing Desir-
ability) Let s ∈ R≥0 be a shape parameter, then we define
the logarithmically increasing desirability function as

ξlog(D(A)) :=
log(1 + s · D(A))

log(1 + s)
(1)

Note that lims→0 ξlog(D(A)) = D(A)
and lims→∞ ξlog(D(A)) = 1
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Figure 3: Shape of the desirability function
ξlog(D(A)) for D(A) ∈ [1, 10] and for different shape
parameter values s.

The shape of this desirability function using different shape
parameters is shown in Figure 3.

Now we are able to formally define the diversity integrat-
ing hypervolume. The objective space is divided into hyper-
volume partitions. Each partition is dominated by a specific
subset of the population. The partitions weight is equal to
the desirability value derived from the diversity of that sub-
set of solutions. To achieve the total diversity integrating
hypervolume, the partitions size multiplied with its weight
is summed up.

Definition 8 (Diversity Integrating Hypervolume).
Let A ∈ Ψ denote a set of solutions, let w : Rk → R>0 be
a strictly positive and integrable weight function. Further-
more, let D : Ψ → R≥0 be a monotonic diversity measure
according to Def. 1, let ξ denote a desirability function of the
diversity according to Def. 6, and let domA(z) according to
Def. 4 give the subset of A dominating the objective vector
z. Then the (weighted) diversity integrating hypervolume in-

dicator I
w,D
H (A, R) corresponds to a weighted Lebesgue mea-

sure of the set of objective vectors weakly dominated by the
solutions in A but not by a so-called reference set R ∈ Z:

I
w,D
H (A, R) =

∫

Rd

αA(z)w(z)ξ(D(domA(z)))dz (2)

with αA(z) = 1H(A,R)(z) where

H(A, R) = {z | ∃a ∈ A ∃r ∈ R : f(a) 6 z 6 r} (3)

and 1H(A,R)(z) being the characteristic function of H(A, R)
that equals 1 iff z ∈ H(A, R) and 0 otherwise. w(z) is a
weight function which indicates how important it is to dom-
inate z. In our case, w(z) ≡ 1.

This indicator is a weak refinement of the diversity pref-
erence relation defined in Definition 5:

Theorem 3. If a set A ⊆ X is weakly diversity preferred
to another set B ⊆ X, the modified hypervolume of set A is
larger or equal the one of B, i.e. A 4D B ⇒ I

w,D
H (A, R) ≥

I
w,D
H (B, R).

Proof. We know that A 4D B ⇒ A 4par B (Theorem
2), therefore, {z : αB(z) 6= 0} ⊆ {z : αA(z) 6= 0}. From
D(domA(z)) ≥ D(domB(z)) it follows with a monotonic de-
sirability function that ξ(D(domA(z))) ≥ ξ(D(domB(z))).

Therefore, I
w,D
H (A, R) ≥ I

w,D
H (B, R).



Algorithm 1 Calculation of the modified hypervolume in-
dicator. Takes a population A ⊆ X and a boxwidth b and
returns the indicator value. d is the number of decision vari-
ables.

function modHyp(A, b)
h = 0 /* the indicator value */
/* For all non empty hypervolume partitions */

for all B ⊆ A\∅, ∃z ∈ R
d : domB(z) 6= ∅ do

/* Calculate the partition’s volume */
v ←

∏

1≤i≤d[maxz:domB(z) 6=∅ fi(z)−minz:domB(z) 6=∅ fi(z)]

/* Calculate Dc(B) */
d← 0 /* Dc(B), diversity of B */
for x ∈ B do /* For all points */

for 1, . . . , m, m: Number of samples do

/* Sample in the box around x */

Sample s = (s1, ..., sd), si ∈ [xi − b
2 , xi + b

2 ]
/* Calculate the solutions of B which are within the

box of s */

F ← {y ∈ B : yi ∈ [si − b
2 , si + b

2 ]}

d← d + 1
m·|F | /* Increment diversity */

end for

end for

h← h + v · ξ(d) /* Increment indicator */
end for

Return h
end function

4. PROOF OF PRINCIPLE
In this section we evaluate if our approach makes sense.

We use the diversity measure Dc since it fits our intuitive
notion of coverage in the decision space. The question is
how the modified hypervolume indicator can be used in the
evolutionary algorithm. Its calculation is complex, as the
diversity of each partition has to be calculated separately.
We elaborate on how we tackle that problem in the following.

4.1 Search Algorithm Design
First, we need to decide how the modified hypervolume

indicator can be calculated. As we optimize a problem with
two objective functions, the intuitive idea would be to use
the hypervolume by slicing objectives algorithm [11] to cal-
culate the hypervolume partitions, and then calculate the
diversity of each partition.

The biggest problem with that approach is that calcu-
lating the diversity according to the Dc measure is #P-
hard [2]. The fastest known algorithm [7] is of complexity

O(nd/2 log n), which makes it unusable for general optimiza-
tion problems, as e.g. our testproblems have d = 24. We
therefore suggest to use sampling in order to estimate the
diversity of a set. With an increasing number of decision
variables, the volume of the neighborhood of a solution (if
the boxwidth is smaller than 1) converges to zero. Therefore
sampling the whole decision space would require an infinite
number of samples, as the probability of a sample falling
into the neighborhood of a solution also converges to zero.
We therefore suggest to only sample in the neighborhoods
around each solution in the set, and to increase the diversity
of the set depending on the number of solutions in the set
that have the sample within their neighborhood (intersec-
tion size). Once the diversities of all hypervolume partitions
are calculated, the desirability value of these diversities can
be calculated, and then the hypervolume partition volumes
are weighted with the corresponding desirability value and
summed up to yield the diversity integrating hypervolume.
This procedure is described in Algorithm 1.

Next, we need a fitness assignment strategy. We here pro-

Algorithm 2 Environmental Selection. Takes a Population
A, |A| ≥ α, and the number α of selected individuals. R is
the reference set.

function envSel(A, α)
while |A| > α do

/* Simulate removing each solution from the population.
Remove the solution that induces the smallest indicator loss. */

A← A\max
I

w,Dc
H

(A\x,R),x∈A
x

end while

end function

pose to set the fitness of a solution equal to the loss in the
modified hypervolume if that solution is removed from the
population. Finally, for the environmental selection strategy
we propose to use a popular greedy environmental selection
scheme as described in Algorithm 2. In this greedy strategy,
the solution with lowest fitness is removed until the popu-
lation is of size α. As soon as one solution is removed, the
fitnesses of the remaining solutions are reevaluated.

The whole environmental selection algorithm including
the indicator calculation is of complexity O(n · (n2 + n ·
m ·(n ·d+n2 ·n ·n)+n ·n2)), where n = |A| is the number of
solutions, m is the number of samples and d is the decision
space dimension. Assuming that n3 ≥ d and m ≥ 1 this
simplifies to O(n · n · n2 · n · n) = O(n6). The first n comes
from the number of greedy steps in the environmental selec-
tion. The second n comes from the fact that the sampling
is done for each point. The n2 is the number of hypervol-
ume partitions1. The fourth n stems from the fact that the
diversity has to be calculated for each solution, simulating
the diversity change if that solution is removed. The last n

comes from the calculation of the intersection size. Due to
its high combinatorial complexity, this algorithm can only
be applied to very small population sizes, e.g. |A| ≤ 10.

Now that we have designed an environmental selection
strategy, we can integrate it in our diversity integrating
hypervolume-based search algorithm (DIVA). DIVA addi-
tionally uses random mating selection which is based on
pairwise tournament selection. As variation operators the
simulated binary crossover (SBX) and the polynomial mu-
tation operator [4] are used.

4.2 Results
DIVA was run on the WFG testsuite [6], with 4 posi-

tion and 20 distance related parameters (in total 24 decision
variables). The population size as well as the number of
offspring was set to 10 and the algorithm was run for 300
generations. The number of samples per neighborhood box
was set to 500. Different shape parameter values s for the
desirability function were tested and it has been found that
s = 100 is a value that yields good results. To test the
influence of the neighborhood boxwidth, widths of 0.4 and
1.8 were used. For each test problem (WFG1 - WFG9) 11
runs were done. As a reference algorithm, we used HypE
[1]. HypE is among the newest hypervolume optimizing al-
gorithms and has been shown to be highly competitive with
respect to other state-of-the-art multiobjective optimizers.
HypE was used without sampling, and its mating selection
was set to random tournament selection, like in DIVA.

The results are shown in Table 1 for the boxwidth of 0.4

1
Note that this only holds for two dimensional objective spaces.



Hypervolume Diversity
DIVA HypE DIVA HypE

WFG1 88.4± 1.36 89.0± 1.37 10.0± 0.03∗ 8.7± 0.67
WFG2 99.0± 3.35 99.7± 4.01 10.0± 0.00∗ 7.9± 0.86
WFG4 107.6± 0.69 109.3± 0.70∗ 10.0± 0.00∗ 8.8± 0.59
WFG5 107.9± 0.36 110.8± 0.70∗ 10.0± 0.00∗ 7.4± 0.76
WFG6 104.4± 1.65 107.6± 1.67∗ 10.0± 0.01∗ 8.7± 0.46
WFG7 107.8± 0.46 110.0± 0.56∗ 10.0± 0.02∗ 9.7± 0.20
WFG8 105.9± 1.03 108.1± 0.62∗ 10.0± 0.00∗ 9.9± 0.09
WFG9 107.2± 1.88 107.9± 2.70 10.0± 0.04∗ 7.9± 1.05

Table 1: Mean values and standard deviation of the
hypervolume and diversity for DIVA and HypE. Sig-
nificantly better results are highlighted with an as-
terisk. The used neighborhood boxwidth is 0.4.

Hypervolume Diversity
DIVA HypE DIVA HypE

WFG1 87.7± 1.10 89.0± 1.37 9.9± 0.02∗ 4.8± 0.80
WFG2 100.9± 3.45 99.7± 4.01 9.7± 0.06∗ 4.6± 0.58
WFG4 107.4± 0.56 109.3± 0.70∗ 9.8± 0.04∗ 5.6± 0.34
WFG5 107.9± 0.56 110.8± 0.70∗ 9.9± 0.02∗ 3.5± 0.69
WFG6 104.9± 1.42 107.6± 1.67∗ 9.9± 0.03∗ 4.9± 0.60
WFG7 107.4± 0.23 110.0± 0.56∗ 9.6± 0.07∗ 6.1± 0.29
WFG8 106.1± 0.50 108.1± 0.62∗ 9.7± 0.05∗ 6.9± 0.49
WFG9 105.2± 1.60 107.9± 2.70∗ 9.8± 0.04∗ 3.8± 0.68

Table 2: Similar to Table 1, but with a neighborhood
boxwidth of 1.8.

and Table 2 for the boxwidth of 1.8.2 In order to test the
results for significant differences between DIVA and HypE,
a Kruskal-Wallis test as described in [3] is applied, using the
Conover-Inman procedure, Fisher’s least significant differ-
ence method performed on ranks and a significance level
of 5%. It can be seen that DIVA produces populations
with a significantly better diversity than HypE for all eight
testproblems and for both boxwidth values. It also seems
that the hypervolume of WFG4, WFG5, WFG6, WFG7
and WFG8 is better optimized by HypE than by DIVA.
For WFG1 and WFG2, there is no significant difference
whereas WFG9 is only better optimized by HypE if the
larger boxwidth is used.

The results indicate that there is a tradeoff between hy-
pervolume and diversity. An explanation of this behavior
is that the Pareto-optimal front of the WFG testsuite has
very similar solutions. In our case where there are 24 de-
cision variables in total, the 20 distance related parameters
have a fixed value for Pareto-optimal solutions. This behav-
ior can be seen in Figure 4, where for example for WFG7
and WFG8 the HypE populations of the distance related pa-
rameters (decision variables 5 to 24) are more similar than
those of the position related parameters (decision variables
1 to 4).

From Figure 4 it also becomes clear that the degree to
which diversity is optimized depends on the chosen neigh-
borhood size. As long as the box width is smaller than 1,
two solutions whose distance in one decision space variable
is larger or equal to this boxwidth do not overlap. With a
boxwidth that is larger than 1, the neighborhoods of two
solutions always overlap (hence the diversity value never
reaches the optimal value of 10), and to minimize this over-
lap, the solutions distances in all decision variables must be
as large as possible. Therefore if an optimization problem
is used where the Pareto-optimal solutions are very simi-

2
WFG3 is not shown because the algorithms failed to achieve an

acceptable approximation of the Pareto-front.
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Figure 4: Parallel coordinates plot of the decision
variable values of one population (ten individuals)
for each WFG problem (top to bottom rows are
WFG1 to WFG9). Results are shown for DIVA with
a neighborhood boxwidth of 1.8 and 0.4 (left and
middle column, respectively), as well as for HypE
(right column).

lar, a boxwidth of 1.8 yields more diverse solutions than
a boxwidth of 0.4. Interestingly enough, the hypervolume
value is not impeded by using a larger boxwidth.3

When interpreting these results it has to be noted that
the explanatory power of runs with population sizes of 10 is
rather low. The goal of this section was to investigate the
tradeoff between hypervolume and diversity, as well as to get
an idea about the influence of the boxwidth. Also, the mean
runtime for a population size of 10 is roughly 11 seconds per
generation. As stated in Section 4, DIVA has a complexity
of O(n6), therefore making it unusable for larger population
sizes. In order to alleviate this problem, we propose two
adjustments of the original algorithm in the next section.

5. PRACTICAL CONSIDERATIONS
In the following we propose a modified environmental se-

lection scheme and evaluate it on three testproblems.

5.1 Search Algorithm Design
There are two ways how the proposed environmental se-

lection scheme can be modified for speed. The first way
is to facilitate the calculation of the diversity and the sec-
ond way is to reduce the number of considered hypervolume
partitions.

Replacing Diversity Measure Out of the O(n6) complex-
ity, O(n2) is due to the used diversity measure Dc, as
n points have to be sampled with m samples and for
each sample, the intersection size has to be calculated.
The distance diversity measure Dd, on the other hand,
only needs to go through the solutions twice (once for
calculating the median and once for calculating the
solutions distance to the median) and therefore has
complexity O(n), so we propose to use that measure
for larger population sizes.

Bounding Recursion Depth The second adjustment is
due to the fact that the number of hypervolume parti-
tions is O(n2). To reduce that number, we propose to

3
Except for WFG7 and WFG9, where the hypervolume achieved

with a boxwidth of 0.4 is significantly better than the hypervolume
achieved with a boxwidth of 1.8.



Algorithm 3 Takes a population A and a cutoff value c and
returns the modified hypervolume indicator value.

function modHypSpeedUp(A, c)
h = 0 /* the indicator value */
/* For all non empty hypervolume partitions dominated by

less or equal c solutions */

for all B ⊆ A\∅, ∃z ∈ R
d : | domB(z)| ∈ [1, c] do

/* Calculate the partitions volume */
v ←

∏

1≤i≤d[maxz:domB(z) 6=∅ fi(z)−minz:domB(z) 6=∅ fi(z)]

h← h + v · ξ(Dd(B)) /* Increment indicator */
end for

Return h
end function

not use all partitions, but only those which are domi-
nated by less than c solutions. c in this case serves as
a cutoff value. The smaller c is, the fewer partitions
have to be considered. This new partition number is
of complexity O(c · n). The new diversity integrating
hypervolume with cutoff c is

I
w,D
H (A, R, c) =

∫

Rd

αA(z)w(z)ξ(Dc(domA(z)))dz

where

D
c(domA(z)) =

{

D(domA(z)) if | domA(z)| ≤ c

D(A) else

Note that D(A) is a constant and therefore does not
influence the ranking of the fitnesses of the solutions.

If these two modifications are used, the overall complex-
ity of the algorithm reduces to O(c · n4), which makes the
algorithm applicable to reasonable population sizes.

5.2 Search Algorithm Design
In order to integrate these two modifications into the search,

Algorithm 1 needs to be adapted. The modified algorithm
including the new diversity measure is described in Algo-
rithm 3.

5.3 Results
In the following tests, the distance diversity measure Dd

was used. The population size was chosen to be 100, with
100 offspring in each generation. The desirability function
shape parameter was again set to s = 100 and on each se-
lected WFG testproblem there were 11 runs with 300 gen-
erations each.

In addition to HypE, we used the Omni-Optimizer [5] as
a second reference algorithm. It was implemented according
to [5], with ε = 0.001. The only adaption with respect to
[5] is that normal SBX (simulated binary crossover) on 50%
of the individuals and the polynomial mutation operator [4]
were used instead of the slightly adapted versions proposed
in the Omni-Optimizer paper. That way, DIVA, HypE and
the Omni-Optimizer all used the same variation operators,
which makes them better comparable. However, note that
while DIVA and HypE used random mating selection such
that differing results are solely due to the different environ-
mental selection strategies, the Omni-Optimizer implemen-
tation used the fitness-based mating selection proposed in
its paper.

The results are shown graphically in Figures 5 and 6. For
all three testproblems, the hypervolume as well as the di-
versity has a tendency to increase with an increasing cut-
off value. As in Section 4.2, Kruskal-Wallis was used to
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Figure 5: Hypervolume values (higher = better)
for three different testproblems (WFG1, WFG2 and
WFG4), for DIVA with different cutoff values (c =
{1, 2, 3, 5, 10, 15}) as well as for HypE and the Omni-
Optimizer (Omni).

W
F

G
1

W
F

G
2

c1 c2 c3 c5 c10 c15 HypE Omni

W
F

G
4

Figure 6: Distance diversity (Dd) values (higher =
better) for the same runs as shown in Figure 5.

test whether DIVA’s results are significantly better than
HypE’s. The results are shown in Table 3. Interestingly
enough, DIVA seems to work better on the selected test
problems when using the new measure. With a cutoff value
of 15, DIVA’s diversity is significantly better than the Omni-
Optimizer’s as well as HypE’s. With a cutoff value of 3
of higher, DIVA’s hypervolume is not significantly differ-
ent and sometimes even significantly better than the Omni-
Optimizer’s and HypE’s. This indicates that the optimiza-
tion of the diversity also helps to explore the search space
and therefore to achieve better objective values. One reason
for this could be that more unusual solutions are produced
which have quite a different decision space representation
from the solutions which are usually found during optimiza-
tion.

The decision space values of one population of DIVA and
HypE and all three selected testproblems are shown in Fig-
ure 7. It can be seen that DIVA’s distance diversity measure
allows for much more subtle diversity changes which are diffi-
cult to make out at a glance, but still yield a mathematically
significantly better diversity than HypE.

The calculation time in relation to the chosen cutoff value
is shown in Figure 8. It can be seen that the calculation time



Hypervolume
c1 c2 c3 c5 c10 c15

WFG1 0 0 + + + +
WFG2 - 0 0 0 0 0
WFG4 0 + + + + +

Diversity
c1 c2 c3 c5 c10 c15

WFG1 0 0 0 + + +
WFG2 + 0 0 0 0 +
WFG4 0 0 0 0 + +

Table 3: Significance of hypervolume (top) and di-
versity Dd (bottom) values of DIVA with different
cutoff values with reference to HypE. For example,
c1 means that the cutoff value was set to one. A
+/− indicates that DIVA’s result for the given cut-
off value and the given testproblem is significantly
better/worse than the HypE values. A 0 indicates
that there is no significant difference to HypE.
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Figure 7: Parallel coordinates plot of the decision
variable values of one population (100 individuals)
for WFG problems 1, 2, and 4 (rows). Results are
shown for DIVA with a cutoff value of c = 15 (left
column), as well as HypE (right column).

achieved with the distance diversity measure Dd, a cutoff
value of 10 and a population size of 100 is comparable to the
calculation time when using the coverage diversity measure
Dc, no cutoff and a population size of 10.

6. CONCLUSIONS AND OUTLOOK
This work has laid a foundation for diversity integrating

hypervolume based search. We have introduced a method
to integrate decision space diversity into the hypervolume
indicator, such that these two set measures can be opti-
mized simultaneously. We have proposed a proof of principle
method which only works on small populations, and some
modification of this method such that it is also applicable
to reasonable population sizes. Using the latter method we
could show that the diversity can be significantly increased
without impeding the hypervolume. Interestingly enough,
there are several problem settings where the hypervolume
even increases if diversity is also optimized. Whether this
finding can be generalized to other problems has to be the
focus of further studies.

In the future it might be interesting to have an adaptive
setting of the neighborhood size for the coverage based di-
versity measure, or to use different neighborhood shapes,
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Figure 8: The calculation time for different cutoff
values in seconds per generation. The population
size and the number of offspring is 100. The used
testproblems were WFG1, WFG2 and WFG4, with
11 runs for each problem.

and maybe even kernel functions. Furthermore, the algo-
rithms should be adapted such that they are applicable to
higher-dimensional objective spaces. Finally, the proposed
diversity measures should be extended such that they can
be used with other than real-valued decision spaces, such as
integer or nominal spaces.
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