
Using Deep Learning to Classify Saccade Direction from Brain
Activity

Ard Kastrati∗
akastrati@ethz.ch

Department of Electrical Engineering, ETH Zurich
Zurich, Switzerland

Martyna Beata Płomecka∗
martyna.plomecka@uzh.ch

Department of Psychology, University of Zurich
Zurich, Switzerland

Roger Wattenhofer
Department of Electrical Engineering, ETH Zurich

Zurich, Switzerland

Nicolas Langer
Department of Psychology, University of Zurich

Zurich, Switzerland

ABSTRACT
We present first insights into our project that aims to develop an
Electroencephalography (EEG) based Eye-Tracker. Our approach is
tested and validated on a large dataset of simultaneously recorded
EEG and infrared video-based Eye-Tracking, serving as ground
truth. We compared several state-of-the-art neural network ar-
chitectures for time series classification: InceptionTime, EEGNet,
and investigated other architectures such as convolutional neural
networks (CNN) with Xception modules and Pyramidal CNN. We
prepared and tested these architectures with our rich dataset and
obtained a remarkable accuracy of the left/right saccades direc-
tion classification (94.8 %) for the InceptionTime network, after
hyperparameter tuning.
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1 INTRODUCTION
During everyday life, we direct our eyes to attend and extract new
information from our visual environment [Grant and Spivey 2003].
Therefore, gaze information is a widely used behavioral measure in
cognitive science and psychology to study attentional focus, cog-
nitive control, or decision making [Cohen et al. 2007]. Recently,
researchers have shown an increased interest in estimating gaze
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direction from brain activity. One of the most successful attempts
to solve this problem was the Predictive Eye Estimation Regression
[LaConte et al. 2007], an imaging-based method that uses machine
learning algorithms to estimate the direction of gaze in the func-
tional Magnetic Resonance Imaging (fMRI) time series based on
voxel-wise data from the eyes [Son et al. 2020]. This indicates a great
potential for neuroscience labs that cannot afford an eye-tracking
system or don’t have the expertise in analyzing eye-tracking data.

However, fMRI data acquisition is costly and does not provide
temporal resolution at the level that cognition takes place. In con-
trast, EEG is a safe and cost-friendly method that measures the
electrical activity of the brain directly and enables measurement in
clinical settings (e.g. long-term recordings in a hospital bed).

Machine learning techniques allow extracting information from
EEG recordings of brain activity and play a crucial role in several
significant EEG-based research and application areas[Roy et al.
2019a]. In particular, deep learning allows computational models
to learn representations of data with multiple abstraction levels
and, therefore, to use all of the information that the dataset has
to offer [Vahid et al. 2020]. Although deep learning for EEG time
series classification proved to be successful and widely used [Roy
et al. 2019b], it still lags behind image recognition in terms of
experimental studies and architectural designs. In this project, as a
first step towards the classification of gaze position, we hypothesize
that the saccade’s direction (left and right) can be restored by using
the combination of EEG and deep learning. This, in turn, could
enrich already acquired and available EEG studies with additional
information about saccades direction, making re-analyses of these
datasets possible with the aim to validate the results and address
novel research questions that were previously inapplicable (e.g. age-
related brain activity differences confounded by the fact that older
subjects move their eyes more often than young subjects [Płomecka
et al. 2020]).

Moreover, recovering eye-gaze information from EEG data can
potentially improve many EEG-based assistive technologies, like
limb prosthesis ormobile robots build on non-invasive brain-computer
interface (BCI), providing additional rich measure and helping the
existing ones for better performance [Kapralov et al. 2019]. We
believe that this study offers some important insights into more
advanced assistive technologies, such as hybrid approaches that
combine ET with EEG [Millán et al. 2010].

There has been some research carried out on the classic su-
pervised machine learning techniques; for example, [Bulling et al.
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2010] classified different directions and lengths of saccades with a
mean precision of 76.1 %. However, to the best of our knowledge,
there were no attempts to employ deep learning to classify saccade
direction (left vs right) from EEG brain activity.

A principal challenge in developing an EEG based Eye-Tracker
is obtaining rich enough and precisely annotated data. This barrier
we already have overcome with our available data set containing
recordings from 364 healthy participants. For the proposed project,
we explored the prosaccade task (a part of the antisaccade task
[Antoniades et al. 2013]), where participants were asked to look
left or right, based on the direction of the target displayed on the
screen. This paper’s results serve as a motivation for our future
work. We currently record the new dataset that allows us to extend
the classification of saccades direction beyond left and right.

2 MODELS AND METHODS
This study make use of an existing simultaneously recorded EEG
and infrared video-based eye-tracking dataset. The dataset com-
prises 364 participants between 19 and 83 years of age with normal
or corrected to normal vision. Written informed consent was given
by all participants before the experiment. None of the participants
communicated neurological impairments (e.g. recent concussions,
Parkinson disease, dementia, epilepsy) or any psychiatric diagnosis
at the date of measurement. Furthermore, no medication that could
affect the ET/EEG signal was taken.

2.1 Data Acquisition
For all recorded data, an identical acquisition setup has been used.
The data were collected with an 128-Channel EEG system and
simultaneous eye-tracking recordings with an infrared video-based
Eye-Tracker. The experimental setup reflects the current state-of-
the-art, with an electrically shielded recording room.

2.1.1 Eye-Tracking Acquisition. Eye-tracking data were used to
provide a ground truth information for the analysis of the prosac-
cade task. Besides the trigger onset, the direction and length of the
saccades were used for the reduction of errors (see Subsection 2.3).
Eye-tracking was recorded mostly on the left eye (in three cases
on the right eye) with an infrared video-based eye-tracker (Eye
Link 1000 Plus, SR Research, http://www.srresearch.com), which is
accurate down to 0.15◦ (typical 0.25◦-0.50◦) and has a sampling rate
of 500Hz. The calibration was done by a 9-point-grid before every
block of the prosaccade task. During the calibration, the partici-
pants were asked to look at nine targets appearing on the borders
of the screen, the edges of the screen, and the middle of the screen.
After the calibration, a validation was performed with the same
protocol to assess whether the average error of all points was kept
below 1◦. If not, the eye-tracking was adjusted, and the calibration
redone. For the final sample used in this manuscript, the average
error of all participants was equal to 0.56◦ (calculated as the average
of the error of all points).

The algorithm provided by EyeLink 1000 Plus was used to iden-
tify saccades, fixations and blinks. The acceleration threshold was
set as 8000◦ per second, the velocity threshold as 30◦ per second
and the deflection threshold as 0.1◦. The resulting data set included
gaze locations in a XY-coordinate system with pixels as units.

2.1.2 Electroencephalography Acquisition. High-density EEG data
was recorded at a sampling rate of 500 Hz, recording reference "Cz",
using a 128-channel EEG Geodesic Hydrocel system (Electrical
Geodesics, Eugene, Oregon).

2.2 The Pro- and Antisaccade Task
The pro- and antisaccade paradigm was based on the internation-
ally standardized protocol for antisaccade testing developed by
Antoniades et al [Antoniades et al. 2013]. Each task started with
a central fixation square. The participants were asked to focus on
the center of the screen for a randomized time-period between 1
and 3.5 seconds. Subsequently, the cue (i.e. dot) appeared in a hori-
zontal line on the left or the right hand-side of the central fixation
square. In the subtask “prosaccade”, the participants were asked
to focus their gaze on the cue as fast as possible. In the subtask
“antisaccade” the participants were instructed to perform a saccade
in the opposite side of the cue. In both tasks, the cue was shown for
1 second. As soon as the dot disappeared, the participants shifted
their focus back to the center of the screen. The horizontal traverse
of the eye formed a visual angle of 8◦ left or right of center. The
appearance of the dots in the left- and the right-hand square was
randomized. The subtasks were presented in blocks in the following
order: 1. Prosaccade, 2. Antisaccade, 3. Antisaccade, 4. Antisaccade,
5. Prosaccade. Each prosaccade block consisted of 60 trials (30 trials
per visual hemifield) and each anti-saccade block of 40 trials (20
trials per visual hemifield). There was a one-minute break between
each block. The dataset used in this study only makes use of the
prosaccade trials.

2.3 Dataset Preprocessing
Infrared eye tracking data was preprocessed with the EyeLink 1000
algorithm to identify saccades, gaze fixations and blinks. Saccades
onsets were detected by the velocity and acceleration of the eye
movements using the standard acceleration (8000◦ per sec2), ve-
locity (30◦ per sec) and deflection (0.1◦) thresholds. Fixations were
defined as time periods without saccades and eye blinks are re-
garded as a special case of a fixation, where the pupil diameter is
either zero or outside a dynamically computed valid pupil.

EEG data was preprocessed with the openly available prepro-
cessing toolbox “Automagic” for MATLAB [Pedroni et al. 2019]
including bad channel identification and interpolation, 0.5 Hz high-
pass filtering, artifact (asmuscular noise, heart signals and sweating)
correction with automated independent component analysis.

After preprocessing, the EEG and eye-tracking data were syn-
chronized using “EYE EEG extension” [Ehinger and Dimigen 2019]
to accurately enable extracting EEG data time-locked to the on-
sets of fixations and saccades from the infrared Eye-Tracker. The
preprocessed sample consisted of 40 000 one-second trials locked
to the stimulus onset. This sample was screened again and 3778
trials were later excluded due to: occurrences of eye blinks between
the cue presentation and the saccade, saccade onset earlier than
100 or later than 800 ms after cue presentation, no saccades onset
after the cue presentation, or an error trial. An error was defined
as a saccade away from the target stimulus. If 70 % or more trials
were rejected, the whole subject was excluded from the analysis (7
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subjects were excluded and thus only the data from the remaining
357 participants is used in our models).

2.4 Classification of Gaze Direction
2.4.1 Training and Validation Dataset. The dataset consisted of
36222 training and validation samples collected from the 357 par-
ticipants, from which 80% of the data was used for training and
20% for validation. We studied the performance for cross-subject
classification. Classification results are reported for two sets of
analyses. In the first method, the data was shuffled between all
the participants and then divided into two groups of sizes: 80%
for training and 20% for validation. In the second approach, we
chose 287 participants for the training set and the remaining 70
participants for the validation set. Note that in the first approach, in
expectation, the model is trained with 80% and validated with 20%
of the samples of each participant. On the other hand, the second
approach enforces a fully cross-subject analysis since the validation
data is from entirely new participants. Each sample has the size (500,
128): 500 measurements for every 2ms (a time window of 1 second
in total) and 128 electrodes. The electrodes’ placement is irrelevant
for all used models since, in each filter, convolution is applied to all
electrodes. The primary motivation for the one-second window’s
length is based on the experiment’s design. Stimulus is always pre-
sented for one second, and the participant is supposed to perform
a saccade in that time window. Additionally, the exact description
of the experiment and the length of the stimulus presentation can
be found in [Płomecka et al. 2020]. The data set (left and right)
was equally balanced, and each sample was mapped either to 0 (for
looking left) or 1 (for looking right).

2.4.2 Baseline Classifiers. We approached the left-right classifi-
cation problem initially by using several standard classifiers im-
plemented in the scikit-learn library. We report the results of the
following baseline classifiers: Random Forest, Nearest Neighbors,
Linear SVM and Naive Bayes. Other standard classifiers (such as
non-linear SVM, AdaBoost, etc.) provided by scikit-learn are not
reported since they don’t scale, and with our big dataset, it is infea-
sible to train such models.

2.4.3 DNN Architectures. We compared five different state-of-the-
art DNN architectures: EEGnet [Lawhern et al. 2018], Inception
Time Network (IncTime) [Fawaz et al. 2020a], traditional Convo-
lutional Neural Network (CNN), Convolutional Pyramidal Neural
Network (PyrCNN) [Krizhevsky et al. 2017], and a network with an
Xception module (Xception) [Chollet 2017]. All models were trained
in an ensemble composed of 5 identical architectures. For the final
classification, we used the major votes out of 5 classifications from
each ensemble. During the training of the CNN, PyrCNN, IncTime
and Xception, we tuned the following parameters:

• The kernel size of each convolution
• The depth of the architecture
• The bottleneck size
• The number of filters used in each layer.

For the EEGnet architecture, we tuned:
• the dropout fraction
• the length of temporal convolution
• the number of temporal filters

• the number spatial filters
• the number of pointwise filters.

All models were trained using one GPU per run (NVIDIA GeForce
GTX 1080 Ti), in Tensorflow, using the Keras API [Abadi et al. 2016].

• Standard Convolutional Neural Network
This module is the simplest one which consists of a straight-
forward convolutional step. In this architecture we didn’t
use any residual connections.

• Pyramidal CNN [Krizhevsky et al. 2017]
The traditional CNNmodel requires attention to reduce num-
ber of learnable parameters, with no meaningful reduction
in performance. Thus we implemented pyramid structure
typical for biological neurons.

• EEGnet [Lawhern et al. 2018]
EEGnet performs two convolutional steps in sequence. First,
a 2D convolutional filters outputting featuremaps containing
the EEG signal at different band-pass frequencies. The next
step is a depthwise convolution to learn a spatial filter.

• InceptionTime [Fawaz et al. 2020a]
InceptionTime Network [Fawaz et al. 2020b] is a novel deep
learning ensemble for time series classification that applies
multiple filters simultaneously to an input time series. The
InceptionTime module includes filters of varying lengths,
that allow the network to automatically extract relevant
features from time series.

• Xception Network [Chollet 2017]
This CNN model is built on the backbone of the Xception
[Chollet 2017], that was designed by replacing the Inception
modules with a depthwise separable convolution. The basic
idea behind the Xception network was adopting multiple
one-dimensional filters with different kernel sizes to extract
features. Simultaneously, the resulting feature maps was
concatenated to construct the output features. The use of the
depthwise separable convolutions, significantly mitigated
the required number of parameters in the network.

3 RESULTS
In the following, we present our results for the baselines and the
deep neural networks. For every model, we tuned their hyperpa-
rameters: for the baselines, we used cross-validation, and for the
deep neural networks, we used Keras Tuner. During hyperparame-
ter optimization, we have observed that different hyperparameters
choices achieve similar performance. For brevity, we report the
accuracy of model ensembles only on the best obtained architec-
tures for all described models. Other hyperparameters choices are
also possible, and the difference in performance among the best
ten hyperparameter choices is less than 1% for each model. Some
models have considerably different architectures from other models,
and thus they are subject to some limitations in their comparability,
which we will elaborate in the next section.

3.1 Baseline Results
In Table 1 we report our results of the baselines: Random Forest,
Nearest Neighbors, Linear SVM and Naive Bayes implemented in
scikit-learn library. We tuned the reported hyperparameters by
using cross-validation.
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Table 1: Classification accuracy of the baselines, their running time (in seconds) and the tuned hyperparameters by using
cross-validation.

Architecture Max Acc (%) Runtime Hyperparameters

Random Forest 65.99 883 max depth: 5, min samples leaf: 0.1, min samples split: 0.1, nr. of estimators: 1000
Linear SVM 70.57 18550 tolerance: 1e-3, regularization term: 0.1, max iter: 12000
Nearest Neighbor 54.12 3658 nr. of neighbors: 100, leaf size: 100
Naive Bayes 54.22 57 —

Table 2: Classification accuracy (Max Acc (%)) for the ensem-
bles of different architectures, number of trainable parame-
ters of model (# of par), and running time of ensemble, each
consisting of 5 models (Runtime,in seconds).

Architecture Max Acc (%) # of par Runtime

CNN 91.1 315,681 6830
PyrCNN 93.8 320,513 3575
EEGnet 89.8 186,689 10866
Xception 90.5 158,441 17177
IncTime 94.9 393,377 11235

Table 3: Overview of the hyperparameters of CNN, Pyr-
CNN, Xception and IncTime. DEPTH - depth of the network,
BATCH - batch normalization size, KERNEL - Kernel size,
FILTER - Filter size, BN - bottleneck size

Hyperparameters CNN PyrCNN Xception IncTime

RES TRUE FALSE TRUE TRUE
DEPTH 12 6 18 12
BATCH 64 64 54 64
KERNEL 64 16 40 64
FILTER 16 16 64 16
BN - - - 16

3.2 DNN Results
The summary of performance of used models is presented in Table
2. We compared the highest obtained accuracy of ensemble, the
number of parameters of themodels and running time on cluster. All
reported models achieved maximum accuracy greater than 89.8%.

As shown in the Table 2, the InceptionTimeNetwork architecture
outperformed other solutions with almost 95% accuracy and became
the best architecture for our rich dataset.

CNN, PyrCNN, Xception and IncTime share the same general
structure: they only differ in the way how the convolution module
in each step of the depth is implemented. Thus they have the same
hyperparameters. The hyperparameters presented in Table 3 are
tuned by using Keras Tuner. Additionally, we also tuned the EEGnet
architecture, obtaining accuracy of 89.8% with the following hy-
perparameters: dropout fraction was set to 0.5, length of temporal
convolution set to 64, number of temporal filters set to 32, number

of spatial filters to learn within each temporal convolution was set
to 8, and the number of pointwise filters to 512.

The comparison of the validation accuracy and validation binary
cross-entropy loss of tested ensembles for both approaches of cross-
subject classifications are presented in Figure 1 and Figure 2.

4 CONCLUSIONS
In this study, we proposed the binary classification of gaze direction
(left/right), as the first step of the larger project, aiming to predict
the general gaze position. To the best of our knowledge, the prosac-
cade task was not tested before on state-of-the-art neural networks
for time series classification. Moreover, there were no attempts
to classify saccades directions from the brain activity using deep
learning. The findings of this study suggest that InceptionTime is
the best architecture suitable for the prosaccade task (classifying
left or right). Comparing this result with the best results of some
standard classifiers, where Random Forest achieves a maximum
accuracy of 65.99% and a Linear SVM of 70.57% shows that deep
neural networks are very suited for classification of gaze direction
and perform with a remarkable accuracy. The bad performance of
standard classifiers is also due to the fact that we used in our ex-
periments for each classifier 500×128 features for each sample. The
accuracy in baseline classifiers could be improved by first applying
a feature extraction algorithm. However, this typically requires
understanding of EEG data and for some tasks can be very difficult.
On the other hand, deep neural networks are able to learn these
features end-to-end which makes them preferable.

It is also worth noting that we obtained a remarkable accuracy
(93.8 %) for the standard Convolutional Neural Network with a typ-
ical pyramidal shape, where the number of the channels increases
but the number of the spatial and time dimensions decreases for
each layer of the neural network. Finally, we can see that the dif-
ference in validation accuracy and loss between the first approach
(shuffling of the data) in Figure 1 and second approach (validation
set contains only participants’ data that is not used for training) in
Figure 2 is negligble and is always less then 1%. This confirms that
our models are participant-agnostic.

The generalizability of these results is subject to certain limita-
tions. We used hyperparameter optimization methods such as Keras
Tuner and cross-validation to see the best achieved accuracy. As we
mentioned in the previous section, some models considered in this
paper have considerably different architectures and use different
methods. Therefore, they are not easily comparable. Although the
reported deep neural network models have hundreds of thousands
of parameters, they still differ in their size and training time. For
instance, InceptionTime achieves the highest accuracy but has more
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(a) Comparison of the validation accuracy of tested ensembles

(b) Comparison of the validation loss of tested ensembles

Figure 1: Approach 1: Comparison of validation accuracy
and validation loss where the data was shuffled and then
divided into two groups: 80% for training and 20% for valida-
tion.

parameters and is more resource expensive. We can also observe
in the baseline models that Linear SVM performs better than other
models. However, it needs several hours of training time until it
converges. EEGNet also has a different architecture with fewer
parameters, but it has a higher training time due to the large filters
used in each convolution. While our project uses a conveniently
big dataset, more research is required to determine the dataset’s
influence and architecture size on model performance. Although
achieving exceptionally high accuracy, reaching almost always 90%
for the prosaccade task classification, it is necessary to test these
architectures with other datasets and generalize them for more
saccade directions and locations on the screen.

(a) Comparison of the validation accuracy of tested ensembles

(b) Comparison of the validation loss of tested ensembles

Figure 2: Approach 2: Comparison of validation accuracy
and validation loss where we chose 287 participants for the
training set and the other remaining participants for the val-
idation set.

Another finding of this study is that all models reach a high accu-
racy (at least 85%) in very few epochs. Although we have used five
ensembles to reduce the unstable results for each epoch, we can see
that the binary cross-entropy loss still shows instability patterns. In-
creasing the number of ensembles decreases the significant variance
of the results but increases the number of parameters. The binary
cross-entropy loss decreases with the number of epochs. Never-
theless, it has a high variance, showing that even with different
regularization methods, the models (except for the InceptionTime)
have unstable behaviour.

A planned follow-up to this work will be an online public bench-
mark repositorywith different types of datasets and implementation
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of all discussed models and extending this work for other tasks (not
only left vs. right).
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