
Of Non-Linearity and Commutativity in BERT
Sumu Zhao

ETH Zurich, Switzerland
Switzerland

zhaosumu@gmail.com

Damián Pascual
ETH Zurich, Switzerland

Switzerland
dpascual@ethz.ch

Gino Brunner
ETH Zurich, Switzerland

Switzerland
brunnegi@ethz.ch

Roger Wattenhofer
ETH Zurich, Switzerland

Switzerland
wattenhofer@ethz.ch

Abstract—In this work we provide new insights into the trans-
former architecture, and in particular, its best-known variant,
BERT. First, we propose a method to measure the degree of
non-linearity of different elements of transformers. Next, we
focus our investigation on the feed-forward networks (FFN) inside
transformers, which contain two thirds of the model parameters
and have so far not received much attention. We find that FFNs
are an inefficient yet important architectural element and that
they cannot simply be replaced by attention blocks without a
degradation in performance. Moreover, we study the interactions
between layers in BERT and show that, while the layers exhibit
some hierarchical structure, they extract features in a fuzzy
manner. Our results suggest that BERT has an inductive bias
towards layer commutativity, which we find is mainly due to
the skip connections. This provides a justification for the strong
performance of recurrent and weight-shared transformer models.

I. INTRODUCTION

Since the introduction of the transformer architecture [33],
and in particular of BERT [6], researchers have tried to gain
a deeper understanding of the inner workings of these models
[28]. This research paves the way for better explanations of
model decisions, thereby broadening the range of possible
applications of transformers. Furthermore, based on works on
understanding transformers, in [38] the authors introduce an
improved self-attention mechanism, resulting in state of the
art performance. This shows that deeper knowledge of trans-
formers can not only help with interpretability, but also lead to
new and better architectures. In this work, we aim to advance
the understanding of the inner workings of transformers by
providing novel insights from two complementary angles.

First, we assess the importance and representational power
of different parts of BERT. We propose to use linear approx-
imators to measure the degree of (non-)linearity of BERT’s
building blocks. Due to the large amounts of data used
for pre-training, overfitting has so far not been an issue
for transformers. This is exemplified by ever larger models
achieving state of the art performance [2], [27]. It thus seems
clear that models with higher expressive power are beneficial
for natural language tasks. We therefore hypothesise that the
degree of non-linearity of a transformer can give us valuable
insight into its inner workings, and in particular, it can indicate
which components are modeling more complex relationships.
Further, we run exhaustive experiments in which we remove
or replace parts of the model and measure the impact on
performance. We find that the feed-forward networks (FFN)
in the transformer architecture are inefficient compared to the

self-attention operation, especially since they make up two
thirds of the model parameters.

Second, we investigate why recent “recurrent transformers”
such as ALBERT [17], which employs weight sharing across
layers, performs on par with or even better than the original
BERT. Here, we find that BERT has an inherent tendency
towards weight-sharing, and that layers can be removed or
swapped without causing much performance degradation. By
comparing to simpler feed-forward architectures, we find that
skip connections play an important role in inducing layer
commutativity in neural networks.

Our main contributions are as follows:
• A diagnosis tool to measure non-linearity in Transformers

that takes into account the geometry of the embedding
space.

• An extensive architectural study revealing the importance
of the FFNs.

• An empirical justification for why BERT is amenable to
weight-sharing across layers, indicating that skip connec-
tions are largely responsible for this.

II. RELATED WORK

The field of Natural Language Processing (NLP) has un-
dergone major developments since the introduction of the
transformer architecture [33]. Since then, many different vari-
ants of transformers have been proposed [15], [19], [25]–
[27], [30], [39]. One of the fundamental building blocks
of transformers is self-attention, which allows the model to
learn alignments between words. The possibility of visualizing
attention distributions and the quest for interpretability in deep
learning have sparked a lot of research into understanding
transformer models. Most of this research has focused on
BERT [6], a well-known transformer model, initiating a line
of work now known under the term BERTology [28].

In this field, a number of studies look into attention
distributions in order to understand transformers’ decisions
and their internal dynamics [4], [11], [16]. However, recent
work raises concerns about the interpretability of attention
distributions [3], [12], [21], [24]. A complementary line of
research uses probing classifiers to test for linguistic properties
of different parts of the model [18], [32].

In this work, we take an architectural approach to the
analysis of BERT and look into how different components
of the model interact to extract features and process language.
Similar to probing classifiers, we use a linear approximator



Input

B
ER

T

Encoder n

Output

Encoder 1

...

(a) BERT

Attention

FFN

En
co
de
r

Hidden Token
Embedding

Hidden Token
Embedding

(b) Encoder

Fig. 1. Architecture of BERT and the Encoder block.

to regress the output of different architectural components in
order to study their non-linearity. While existing work has
focused on analyzing the self-attention heads and the impact
of model depth [14], [20], [34], we direct our investigation
towards the FFN blocks of BERT.

The authors of [31] and [13] show that features are extracted
in BERT following the same order as in the classical NLP
pipeline, with syntactic features extracted in earlier layers
and semantic features in later layers. These features are
extracted in a fuzzy manner, in the sense that multiple layers
are responsible for solving the same tasks (e.g., Part-Of-
Speech (POS) tagging). We study this phenomenon from a
complementary angle by investigating the similarity between
layers. Remarkably, ALBERT [17] directly shares the weights
across the layers of BERT without loss of performance, and
Universal Transformers [5] use recurrence over one single
transformer layer. Similarly, in [23] the authors exploit layer
similarity to re-order the layers and improve performance,
while in [7] and [29] they analyze layer redundancy to prune
BERT with minimal performance degradation. Our findings
support the idea that BERT has an inductive bias towards
weight sharing, which results in the layers having a strong
degree of commutativity and the features being extracted in
an incremental or fuzzy manner.

III. BACKGROUND

In this section, we give a brief description of BERT.
For more details please refer to [6] and the official GitHub
repository.1 As Figure 1 (a) shows, BERT is composed of n
encoder layers. An encoder block follows the same structure
as in the original transformer [33]; it consists of an attention
block and a feed-forward network (FFN), as shown in Figure 1
(b). Figure 2 shows the detailed structures of the attention and
FFN blocks respectively. The input of BERT is a sequence
of tokens, additionally containing special [CLS], [SEP] and
[PAD] tokens. [CLS] can be used as output for classification
tasks and [SEP] denotes sentence boundaries. Since BERT is
trained with a fixed (maximum) sequence length, [PAD] tokens
have to be appended to the actual input sequences.

In our study, we use two BERT models of different sizes
(base and small); architecture details are shown in Table I.

1https://github.com/google-research/bert

Self-Attention

FF

Dropout

+
LayerNorm

SA
-F
F

A
tte

nt
io
n

(a) Attention

FF GeLU

FF

Dropout

+
LayerNorm

M
LP

FF
N

(b) FFN

Fig. 2. Architecture of Attention and FFN blocks.

TABLE I
DETAILS OF THE BERT MODELS WE USE.

Model Layers Heads Hidden
Size Params Max. Seq

Length

small 6 8 512 35M 128
base 12 12 768 110M 512

For BERT-base we use the pre-trained weights as released by
the authors. All variants of BERT-small are pre-trained by us
from scratch. Pre-training BERT-small takes 8 days on one
Tesla V100 GPU card and 5 days on two cards. In [6] they
pre-trained BERT-base on a 16GB text corpus which is a com-
bination of ENGLISHWIKIPEDIA and BOOKCORPUS [40]. Since
this dataset is not readily available, we use OPENWEBTEXT [9],
which is a 38GB text corpus created using the same method
as for training GPT-2 [26].

We evaluate our BERT-small models on all nine GLUE [35]
tasks. For other experiments, we use the MNLI-matched
(MNLIm) dataset from GLUE. To speed up the experiments,
we select a random subset, MNLIm-sub, consisting of 39,271
examples for fine-tuning, and 983 for validation.

IV. STUDYING (NON-)LINEARITY

A reliable measure of how non-linear different components
of deep neural networks are, can help guide model analysis
and design. Here, we propose to use a linear approximator
to quantify the non-linearity of different components of trans-
formers.

Given an architectural component f , we train a linear
approximator f∗ that, given an input e, maximizes the co-
sine similarity between the actual output f(e) = y and
the approximated output f∗(e) = y∗. Cosine similarity is
a common choice to measure similarity between words in
an embedding space [3], [8], [22] . We define the linearity
score γf of a component f as the average cosine similarity
between actual and approximated outputs over a set of inputs:
γf = Ee∼E [cos(y,y

∗)]. The larger γf , the more linear the
measured component f is. Intuitively, if f is very non-linear,



0 1e-4 5e-4 1e-3 5e-3 1e-2 5e-2 1e-1 5e-1 1

0.92

0.94

0.96

0.98

1

L2 Regularization Weight

γ

Linear
Linear+ReLU

Fig. 3. Linearity score of a hidden layer of a linear MLP (Linear) and a
non-linear MLP (Linear+ReLU) for different regularization strengths.

a linear approximator will not be able to approximate it
accurately and the linearity score γf will be close to 0. If
f is very linear, γf will be close to 1.

A. Method validation

To validate our method, we first consider a simple toy task
where we can manipulate the model’s degree of non-linearity.
Specifically, we use a Multi-layer Perceptron (MLP) on the
MNIST handwritten digit classification task, which consists
of 60,000 examples. The MLP has one hidden layer of size
768 with ReLU activations, and one softmax layer with 10
output classes. We train this model on 50,000 examples for 30
epochs with batch size 32 and a learning rate of 0.001 using
the Adam optimizer, and then evaluate it on 10,000 examples.
Next, we use the remaining 10,000 training examples to train
a linear model with 768 neurons for 10 epochs to approximate
the output activations of the MLP’s hidden layer.

To verify the linearity score γ, we train the MLP with
different L2 regularization strengths and calculate γ for each
model using the linear approximator. We expect that the more
non-linear a layer, the smaller γ, i.e., the larger the approxima-
tion error. Since increasing the regularization strength makes
the weights smaller, which causes the hidden layer to behave
more linearly, the linearity score γ should increase with larger
regularization weights. In Figure 3, we observe this exact
behavior, with a monotonic increase in linearity with stronger
regularization. Next, we run the same experiment using a linear
MLP (without ReLU activation). Since this model is linear, we
expect a linearity score of 1 regardless of the regularization
strength; as shown in Figure 3, we observe precisely this
behavior. These results show that the linear approximator can
quantify the non-linearity of a simple MLP. Next, we apply
this method to study the non-linearity of BERT. To do this, we
first need to consider the geometry of the embedding space.

B. Measuring the Non-Linearity of BERT

In [8] it is pointed out that the hidden embeddings at
each transformer layer are directional and occupy cones of
different sizes in their respective spaces, i.e., the embedding

0 1 2 3 4 5 6 7 8 9 10 11 12

0.2

0.4

0.6

0.8

1

Layer

C
on

eS
iz

e

Actual Pad All

Fig. 4. Average cosine similarity of 1000 random token pairs. The pairs are
generated from the validation set of MNLIm-sub. Layer 0 denotes the input
token embeddings, layers 1-12 denote the output token embeddings of the 12
layers of BERT.

space is anisotropic, with most hidden embeddings located
within a narrow region (cone) of the space. Since the size
of these cones is different at each point of the model, we
need to normalize the approximation errors by the respective
cone sizes in order enable comparisons across layers. This
is because, for architectural components that generate smaller
cones at their output, the linear approximation is easier since
all the output embeddings are already close to each other.

To calculate the cone size we follow [8] and estimate
the expected pair-wise cosine similarity from 1000 randomly
sampled word representations. The intuition behind this is that
the average similarity between pairs of randomly sampled
vectors describes how narrow the cone is. This way, larger
values correspond to smaller cones. At each layer l, the cone
size is defined as:

ConeSize(l) = E(el
i,e

l
j)∼El [cos(eli, e

l
j)]

Where El are the word embeddings at layer l. A value of
0 represents perfect isotropy and 1 perfect anisotropy. We
then calculate the cone size at each layer of BERT for the
MNLIm-sub dataset. In Figure 4 we report the cone size for
padding, actual and all tokens. We see that there is a significant
difference between actual and padding tokens, and that the
cone size for all tokens is roughly the average between both
(weighted by the ratio of actual vs padding tokens). Overall,
we see that the cone size for actual tokens is relatively wide2.

This way, we calculate the cone size of the embeddings
after different components f in BERT. These values are then
used to obtain the normalized linearity score γ̃lf of component
f at layer l. To do this, we first subtract the cone size from
γf to correct for anisotropy, following the same procedure as
in [8]. Then, to allow comparison across layers, i.e., to have

2Our results differ from [8]; we tried different settings without being able to
reproduce the exact results. Possible explanations are that we separate padding
and actual tokens, and that we use the original pre-trained weights of BERT
while [8] uses the model from the HuggingFace [36].



1 2 3 4 5 6 7 8 9 10 11 12

0.5

0.6

0.7

0.8

Layer

γ̃

SA-FF MLP

Fig. 5. Normalized linearity scores of SA-FF and MLP for each layer in
BERT-base. The scores are obtained using MNLIm-sub.

the values of γ̃lf contained in a fixed range, we normalize
the result by dividing by the maximum possible value of the
anisotropy-corrected linearity score 1− ConeSize(fl):

γ̃lf =
γlf − ConeSize(fl)
1− ConeSize(fl)

Using this normalized linearity score, we measure at each
layer of BERT the (non-)linearity of the SA-FF and the
MLPs, which are the core of the Attention and FFN blocks
respectively. For both blocks, the linear approximator is a
fully connected linear layer of the same size as the hidden
dimension in BERT-base, i.e., 768. We train it for 3 epochs
with batch size 64, using the Adam optimizer with a learning
rate of 0.001 on MNLIm-sub. In Figure 5 we show the
normalized linearity score γ̃lf between the approximator output
and the real tokens after each of the considered blocks for each
of the layers of BERT-base.

Note that, while MLPs perform a non-linear function on
one input token, the self-attention operation in the SA-FF
block performs a weighted sum over all tokens in the input
sequence. This way, the non-linearity introduced by SA-FF
comes mainly from the aggregation of context information.
Given the fundamentally different non-linear mechanisms used
by each block, we refrain from directly comparing their
linearity scores. Instead, we analyse how the non-linearity of
each of them changes along the layers.

Both MLPs and SA-FF blocks follow opposing trends in the
first three layers, with the MLPs becoming less linear, and SA-
FF becoming more linear. After layer 3, the linearity scores of
both blocks plateaus until approximately layer 10, when both
become progressively more linear. Interestingly, the U-shaped
pattern followed by both blocks (with the notable exception of
the SA-FF block in the first layer), indicates that layers closer
to the input/output space extract more linear features.

These results show that 1) MLPs introduce strong non-
linearity, especially in the middle layers; and 2) the non-
linearity introduced by SA-FF follows the same trend as that
of MLPs even if the non-linear mechanism is fundamentally

(12
-12

)

(12
-11

)

(12
-10

)

(12
-9)

(12
-8)

(12
-7)

(12
-6)

(12
-5)

(12
-4)

(12
-3)

(12
-2)

(12
-1)

0.4

0.6

0.8

Layer

A
cc

ur
ac

y

Replace MLP
Remove MLP
Remove SA-FF
Remove Encoder

Fig. 6. Multi-layer backwards replacement/removal of different components
in BERT-base, evaluated on MNLIm-sub.

different. Next, we directly compare the impact of each block
on model performance.

C. MLP vs. Self-Attention

Most research on understanding Transformer architectures
has focused on the self-attention component. However, roughly
two thirds of the total parameters of BERT reside within the
FFN blocks, mainly in the MLPs. Here we compare the impact
on performance of MLPs versus SA-FF blocks.

To this end, we first progressively replace the MLPs in
all layers of BERT-base in the backwards direction, i.e.,
starting from the last layer, by their corresponding linear
approximator. We replace backwards because this does not
change the input to the earlier layers (which are not replaced).
After replacement, we fine-tune and evaluate the model on
MNLIm-sub. Then we repeat the process but this time we
simply remove the MLPs, i.e., without replacing them by
linear approximators. We compare the performance of these
experiments with the performance of progressively removing
the SA-FF blocks. The results are reported in Figure 6; as
reference, we also report the performance after removing the
whole encoder layer.

Some surprising insights can be extracted from these ex-
periments. First, replacing the MLPs by linear approximators
yields approximately the same performance as completely
removing the MLPs. This implies that it is the non-linear
contribution of the MLP that is solely responsible for the
performance difference. Second, the drop in performance after
removing MLP blocks is smaller than when removing SA-FF
blocks; especially after layer 6, removing the SA-FF blocks
produces a much more severe degradation. Finally, removing
SA-FF is as harmful as removing the whole encoder layer.

All of this confirms that while the majority of the parameters
are in the MLPs, i.e., in the FFNs, the self-attention operation
is more important for overall model performance. Furthermore,
it raises the question of what happens if we remove all FFNs
and instead add more attention layers. We explore this by



TABLE II
GLUE SCORES OF VARIANTS OF BERT-SMALL.

Model GLUE score

BERT-small 74.5
no-FFN 69.6
no-FFN-SA+ 70.9
no-FFN-GeLU-SA 70.0
no-FFN-GeLU-SA+ 72.3

training different variants of BERT-small and evaluating them
on GLUE. In particular, we train:

no-FFN: model without FFN blocks. This model has about
one third of the original parameters.

no-FFN-SA+ : model without FFN blocks, but with more
layers so that the total number of parameters is roughly
the same as BERT-small. This model has 18 layers.

no-FFN-GeLU-SA : same as no-FFN but with GeLU activa-
tion functions after the SA-FF block.

no-FFN-GeLU-SA+ : same as no-FFN-SA+ but with GeLU
activation functions after the SA-FF block.

The results are shown in Table II. We find that, as expected,
models with more parameters perform better; we see this
from the performance of the SA+ models. We also see that
adding a GeLU non-linearity [10] to the self-attention block
further improves performance. However, adding more self-
attention blocks in substitution of the FFN blocks degrades the
performance of the model by more than 4 points, and by more
than 2 points when using GeLU non-linearities. This strong
degradation is surprising and indicates that separate FFN
blocks with their own skip connection and layer normalization
are more effective than moving the parameters and non-
linearity to the attention blocks.

Overall, we find that the FFNs are an important, albeit
somewhat inefficient, building block of BERT. We believe
that a redesign of these structures could lead to improved
performance, or equal performance with fewer parameters.
However, this redesign is not straightforward and requires a
more extensive investigation.

V. BERT HAS AN INDUCTIVE BIAS TOWARDS WEIGHT
SHARING

Recently there has been a trend towards transformers that
feature recurrence across the layer-dimension [1], [5], [17].
For example, ALBERT achieves this by explicitly sharing
the weights across all layers. Somewhat surprisingly, this
does not negatively affect the performance, despite drastically
reducing the number of parameters by a factor of nlayers. In
this section we show that BERT has an inductive bias that
makes it amenable for explicit weight-sharing across layers.
In particular, we show that the layers in BERT are highly
commutative, that is, they can be swapped with surprisingly
little impact on performance.

(1,
2)

(2,
3)

(3,
4)

(4,
5)

(5,
6)

(6,
7)

(7,
8)

(8,
9)

(9,
10

)

(10
,11

)

(11
,12

)

0.74

0.76

0.78

0.8

Swapped Layers

A
cc

ur
ac

y

Direct evaluation
Train 3 more epochs

Fig. 7. Swapping adjacient layers of BERT-base fine-tuned on MNLIm-sub.
Baseline: 80.14% (dashed).

1 2 3 4 5 6 7 8 9 10 11
0.5

0.6

0.7

0.8

Layer Distance

A
cc

ur
ac

y

Direct eval.
3 more ep.

Fig. 8. Swapping all possible combinations of two layers (mean accuracy).
Baseline: 80.14% (dashed).

A. Swapping Layers

Figure 7 shows the effect of swapping adjacent layers of
BERT-base and evaluating the resulting models directly on
the validation set of MNLIm-sub. Surprisingly, the average
performance degradation is only 2%.

Next, we investigate swapping any two layers by evaluating
all 66 models that can be created by swapping two layers. Fig-
ure 8 shows the average accuracy for each swapping distance.
Swapping distance refers to the absolute difference between
the indices of the swapped layers. Note that there are fewer
models for longer swapping distances and hence fewer data
points. For example, swapping layers across a distance of 11
corresponds to swapping layer 1 and layer 12, and so there is
only one possible model. The figure shows that, overall, BERT
is surprisingly robust to this modification, and only 3 epochs of
further fine-tuning can recover most of the performance loss.
However, swapping over longer distances generally results in
worse performance, indicating that adjacent layers are more



10 9 8 7 6 5 4 3 2 1 0

0.33

0.5

0.66

0.8

Number of Fixed Layers k

A
cc

ur
ac

y

Fig. 9. Create new BERT models by keeping k layers fixed and shuffling the
rest. The models are then directly evaluated on MNLIm-sub without further
fine-tuning. Baseline: 80.14% (dashed).

similar, as it was also observed in [37]. Interestingly, for
distances above 9 this trend reverses. When examining the
results in more detail, we find that this is due to the fact
that swapping layer 1 with either layer 11 or 12 results in
accuracies of 62% and 70% respectively. This indicates that
the very first and very last layers of BERT are remarkably
similar, potentially due to their “closeness” to the input/output
space. This is in line with the U-shape observed in our non-
linearity analysis in Section IV-B.

B. Shuffling Layers and ALBERT-like Configuration

Next, we extend our analysis from swapping two layers at
a time to shuffling different numbers of layers, i.e., changing
their order. Figure 9 shows the results of a series of layer-
shuffling experiments on BERT; we first randomly choose k
layers to be fixed, and then randomly permute all the remaining
layers. For every value of k we create 100 permuted versions
of BERT. We then directly evaluate each of these models on
the MNLIm-sub validation set without any additional fine-
tuning. The results show that as we decrease the number of
fixed layers, performance monotonically decreases. However,
only for k <= 3 does the median accuracy drops to random
guessing (MNLI has three classes, thus random guessing
corresponds to an accuracy of 33%). Also, for every value
of k, there are many models that still perform well above
random.

Figure 10 shows what happens when we fine-tune the
shuffled models for another three epochs. Remarkably, for
values of k >= 5, there are some models that reach or
even surpass the baseline score. Even for k < 5, much of
the performance can be recovered. Note that 3 epochs of
fine-tuning correspond to less than 2000 weight updates at a
reduced learning rate, as is common when fine-tuning BERT.
This stands in stark contrast to the over 1M weight updates
during pre-training, and shows that most layers of BERT can
be quickly “repurposed” after shuffling, which in turn indicates
that they are very similar to each other.

10 9 8 7 6 5 4 3 2 1 0

0.33

0.5

0.66

0.8

Number of Fixed Layers k

A
cc

ur
ac

y

Fig. 10. Create new BERT models by keeping k layers fixed and shuffling the
rest. The models are then fine-tuned again on MNLIm-sub before evaluating.
Baseline: 80.14% (dashed).

1 2 3 4 5 6 7 8 9 10 11 12

0.4

0.6

0.8

Layer

A
cc

ur
ac

y

Direct eval. 3 more ep.

Fig. 11. Performance of ALBERT-like models on MNLIm-sub. Baseline:
80.14% (dashed).

Finally, we create ALBERT-like models from the fine-tuned
BERT-base by repeating each layer 12 times. Without further
fine-tuning, this reduces performance to random guessing.
However, if we fine-tune for another 3 epochs, performance
improves significantly. The results are shown in Figure 11.
Interestingly, models based on layers 2-5 seem to be best,
and higher layers fail to perform well on their own. This
shows that, while BERT has an inherent tendency towards
weight-sharing, its layers do still exhibit a certain hierarchical
structure.

So far, the results in this section suggest that BERT has an
inductive bias towards learning very similar transformations at
each layer, which is why layers can be swapped and shuffled
without incurring a large performance loss. We therefore
hypothesize that enforcing weight sharing as in ALBERT [17]
makes this inherent tendency explicit, thus acting as an ef-
fective regularizer. Next, we investigate where this inherent
weight-sharing tendency is coming from.



(2,
3)

(3,
4)

(4,
5)

(5,
6)

(6,
7)

(7,
8)

(8,
9)

(9,
10

)

(10
,11

)

(11
,12

)

0

0.25

0.5

0.75

1

Swapped Layers

A
cc

ur
ac

y

CNN CNN-LN CNN-LN-SC

Fig. 12. Swapping adjacent layers of CNNs trained on MNIST. LN stands for
layer normalization and SC for skip connections. Baseline: 99.1% (dashed).

C. What Causes the Inductive Bias Towards Weight-Sharing?

We now contrast the results on BERT with a simple CNN
baseline trained on MNIST, where we find that swapping
adjacent layers instantly reduces the classifier performance
to random. Thus, in order to figure out which component
of BERT is responsible for the strong commutatity of its
layers, we train two additional CNN versions, one with layer
normalization and another one with skip connections around
every convolutional layer3. The results for all three CNNs
are shown in Figure 12. Adding layer normalization does not
make the CNN more commutative. However, the CNN with
skip connections shows almost no performance drop when
swapping adjacent layers. These result are very similar to the
ones on BERT from Figure 7.

Analogously to the previous section, we also investigate how
the CNN behaves when more than two layers are shuffled.
The results are shown in Figure 13. Direct comparisons to
the results on BERT are difficult due to the differences in
training task and architectures. However, the figures clearly
show that layers of models with skip connections are highly
commutative, especially when compared to baselines without
skip connections. These results suggests that much of the
inherent weight-sharing bias of BERT comes from the skip
connections in the FFN and Attention blocks.

Our findings in this section suggest that feature extraction in
BERT is not strictly hierarchical, but happens incrementally,
and that it is not the “early layers” per-se that extract low-
level features, but low-level features are simply extracted first,
regardless of the order in which the layers are applied. We
believe that this is partly due to the commutativity of BERT’s
layers, which seems to be caused mostly by the use of skip
connections.

3Ablating components from BERT (e.g. skip connections) prevented con-
vergence during training and thus, we use a simpler CNN model to analyze
the behavior of the different architectural elements.

9 8 7 6 5 4 3 2 1 0
0

0.5

1

Number of Fixed Layers

A
cc

ur
ac

y

Fig. 13. Creating new skip-connection CNN models by keeping k layers fixed
and shuffling the rest. The resulting models are evaluated without further fine-
tuning. Baseline: 99.1% (dashed).

VI. CONCLUSION

In this work we propose a tool to measure non-linearity in
transformers which takes into account the geometry of the
embedding space. With this, we find that the non-linearity
introduced by the MLPs and SA-FF blocks follow the same
U-shaped pattern. Further, we find that although FFN blocks
contain approximately two thirds of the parameters, attention
has a considerably stronger impact on the performance of the
model. Finally, we investigate how BERT’s layers interact with
each other and observe that features are extracted in a fuzzy or
incremental manner, with the layers being very similar to each
other. By comparing BERT to simple CNNs we find that the
commutativity of the layers is induced by the skip connections.
This inductive bias towards weight sharing and recurrence
provides an explanation for the strong performance of weight-
shared models like ALBERT or the Universal Transformer.

We hope that this work will motivate further investigation of
architectural elements of transformers other than self-attention.
We believe a more efficient use of the parameters contained
in the FFNs is possible, and we expect that further research
will find a better way of exploiting the representational power
of those parameters. Although we find that skip connections
make adjacent layers commutative, the role of self-attention
in enabling recurrence over layers remains unclear. Since
self-attention is an input-dependent operation, it provides
additional flexibility to the model that may further enforce
the inductive bias towards weight-sharing. Hence, we deem
the investigation of weight-shared architectures an exciting
direction for future work.

REFERENCES

[1] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium
models. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 690–701. Curran Associates, Inc., 2019.

[2] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.



Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners, 2020.

[3] Gino Brunner, Yang Liu, Damian Pascual, Oliver Richter, Massimiliano
Ciaramita, and Roger Wattenhofer. On identifiability in transformers. In
International Conference on Learning Representations, 2020.

[4] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D
Manning. What does bert look at? an analysis of bert’s attention. In
Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 276–286, 2019.

[5] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and
Lukasz Kaiser. Universal transformers. In International Conference on
Learning Representations, 2019.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, 2019.

[7] Nadir Durrani, Hassan Sajjad, Fahim Dalvi, and Yonatan Belinkov.
Analyzing individual neurons in pre-trained language models. In
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4865–4880, 2020.

[8] Kawin Ethayarajh. How contextual are contextualized word representa-
tions? comparing the geometry of bert, elmo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing, EMNLP-IJCNLP 2019. Association for
Computational Linguistics, 2019.

[9] Aaron Gokaslan and Vanya Cohen. Openwebtext corpus.
http://Skylion007.github.io/OpenWebTextCorpus, 2019.

[10] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus).
arXiv preprint arXiv:1606.08415, 2016.

[11] Phu Mon Htut, Jason Phang, Shikha Bordia, and Samuel R Bowman.
Do attention heads in bert track syntactic dependencies? arXiv preprint
arXiv:1911.12246, 2019.

[12] Sarthak Jain and Byron C Wallace. Attention is not explanation. In
Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics, pages 3543–3556, 2019.

[13] Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah. What does bert learn
about the structure of language? In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, 2019.

[14] K Karthikeyan, Zihan Wang, Stephen Mayhew, and Dan Roth. Cross-
lingual ability of multilingual bert: An empirical study. In International
Conference on Learning Representations, 2020.

[15] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451, 2020.

[16] Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky.
Revealing the dark secrets of bert. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4356–4365, 2019.

[17] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel,
Piyush Sharma, and Radu Soricut. Albert: A lite bert for self-supervised
learning of language representations. In International Conference on
Learning Representations, 2020.

[18] Yongjie Lin, Yi Chern Tan, and Robert Frank. Open sesame: Getting
inside bert’s linguistic knowledge. In Proceedings of the 2019 ACL
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pages 241–253, 2019.

[19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[20] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really
better than one? In Advances in Neural Information Processing Systems,
pages 14014–14024, 2019.

[21] Damian Pascual, Gino Brunner, and Roger Wattenhofer. Telling bert’s
full story: from local attention to global aggregation. arXiv preprint
arXiv:2004.05916, 2020.

[22] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014 con-

ference on empirical methods in natural language processing (EMNLP),
pages 1532–1543, 2014.

[23] Ofir Press, Noah A Smith, and Omer Levy. Improving transformer
models by reordering their sublayers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 2996–
3005, 2020.

[24] Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Graham Neubig, and
Zachary C Lipton. Learning to deceive with attention-based explana-
tions. arXiv preprint arXiv:1909.07913, 2019.

[25] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative
pre-training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language understanding
paper. pdf, 2018.

[26] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
and Ilya Sutskever. Language models are unsupervised multitask
learners. OpenAI Blog, 1(8), 2019.

[27] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Explor-
ing the limits of transfer learning with a unified text-to-text transformer.
arXiv preprint arXiv:1910.10683, 2019.

[28] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in
bertology: What we know about how bert works. arXiv preprint
arXiv:2002.12327, 2020.

[29] Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. Poor
man’s bert: Smaller and faster transformer models. arXiv preprint
arXiv:2004.03844, 2020.

[30] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter.
arXiv preprint arXiv:1910.01108, 2019.

[31] Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the
classical nlp pipeline. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages 4593–4601, 2019.

[32] Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak,
R Thomas McCoy, Najoung Kim, Benjamin Van Durme, Sam Bowman,
Dipanjan Das, and Ellie Pavlick. What do you learn from context?
probing for sentence structure in contextualized word representations.
In International Conference on Learning Representations, 2019.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in neural information processing systems,
pages 5998–6008, 2017.

[34] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan
Titov. Analyzing multi-head self-attention: Specialized heads do the
heavy lifting, the rest can be pruned. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 5797–
5808, 2019.

[35] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. GLUE: A multi-task benchmark and analysis
platform for natural language understanding. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019.

[36] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, et al. Transformers: State-of-the-art natural language pro-
cessing. arXiv preprint arXiv:1910.03771, 2019.

[37] John M Wu, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim
Dalvi, and James Glass. Similarity analysis of contextual word repre-
sentation models. arXiv preprint arXiv:2005.01172, 2020.

[38] Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song Han. Lite trans-
former with long-short range attention. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020.

[39] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan
Salakhutdinov, and Quoc V. Le. Xlnet: Generalized autoregressive pre-
training for language understanding. https://arxiv.org/abs/1906.08237,
2019.

[40] Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov,
Raquel Urtasun, Antonio Torralba, and Sanja Fidler. Aligning books
and movies: Towards story-like visual explanations by watching movies
and reading books. In 2015 IEEE International Conference on Computer
Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages 19–27.
IEEE Computer Society, 2015.


