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Abstract— Evaluating the performance of distributed applica-
tions, such as mobile telephone or video conferencing devices, has
become increasingly complex as the diversity of scenarios and
data rates in networks increase. In this paper, we present the
design and implementation of RplTrc, a network emulation tool.
RplTrc uses traces to drive interceptions of the Linux protocol
stack to delay, drop or duplicate packets. The length of traces
is not limited. Thus, unlike other well-known emulators such as
NIST Net or the emulator module in the Linux 2.6 kernel, RplTrc
is capable to account for important performance characteristics
inherent to real networks such as long-range dependence and self-
similarity of cross-traffic. Tests show that RplTrc installed on a
commodity PC is capable to emulate a 100MBit/s or a lightly-
loaded 1GBit/s network and has a precision in reproducing
packet delays in the order of 100 µs. RplTrc thus enables
extensive performance evaluation of distributed applications in
lab environments.

I. I NTRODUCTION

Evaluating the performance of distributed applications has
become increasingly complex as the diversity of scenarios and
data rates in networks increase. This includes performance
evaluation of devices in contexts such as industry automation,
distributed gaming and multimedia in both wired and wireless
networks. Given this situation, employing network emulation
for performance evaluation (see illustration in Figure 1) is an
interesting alternative to test-bed experimentation as well as
simulation. Moreover, in many test scenarios, commodity PCs
offer sufficient capabilities for the implementation of network
emulators.
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Fig. 1. Evaluating the performance of distributed applications with network
emulation.

However, the implementation of such emulators is difficult
for two reasons. First, emulating network dynamics is a task
that includes time critical actions. Thus, kernel programming
becomes necessary to protect time critical actions against
unpredictable operating system scheduling delays. Second, the
dynamics of real networks exhibit key invariant statistical
characteristics such as long-range dependence/self-similarity1

[2]. These characteristics have significant impact on perfor-
mance evaluation [1] and are not accounted for in well-known
emulators such as NIST Net [3] or the emulator module in the
Linux 2.6 kernel [4] (see section II for details).

In general, there are two ways to reproduce the impact
of long-range dependence in network cross traffic. The first
is to employ packet traces that have been verified to reflect
these characteristics to drive the network emulation. Traces
that reflect long-range dependent characteristics are inherently
very long [5]. The statistical characteristics are then inherited
from the trace to the emulation. This is simple, flexible, and
sufficient in many cases. A second way is to identify appro-
priate models, fit parameters to these models and implement
the models in the emulator. Candidates for appropriate models
are fractional Gaussian noise and fractional autoregressive
integrated moving average (fractional ARIMA) [6]. These
models have a large run time complexity and are difficult to
compute in a real time environment. Moreover, it is a known
difficult problem to find good fits for the parameters of these
models to the dynamics observed in real networks [7].

Therefore, in this paper we focus on the approach to drive
the emulation with packet traces and describe the design and
implementation of RplTrc. Our contributions with RplTrc are
as follows.

1) Rpl can reproduce the dynamics of wired and wireless
networks inherent to large packet traces that were pre-
viously generated or captured;

2) Rpl employs kernel programming to protect the time
critical task of network emulation against unpredictable
process scheduling delays;

3) Rpl can be used to emulate a 100 MBit/s network or a
lightly-loaded 1 GBits/s network on a commodity PC;

4) Rpl has a delay precision in the order of 100µs.

The rest of this paper is structured as follows: Section II

1Note that in network traffic modeling the terms long-range dependence
and self-similarity imply each other (see [1] for details).



reviews other network emulators. Section III describes the
overall architecture of RplTrc. Section IV describes the im-
plementation of RplTrc. Section V reports performance limi-
tations and delay precision of RplTrc. Section VI reports a
use case where RplTrc has successfully been employed to
evaluate mobile telephone equipment before we conclude in
Section VII.

II. RELATED WORK

Existing emulators that run on a commodity PC/workstation
pertain to two categories. The first category does not account
for the fact that network emulation is a time critical task
and implement the emulation and/or network interface read-
ing/writing as a user space task. As a result packet delays can
be distorted up to several milliseconds. The most well-known
of these emulators are the ns emulation [8], the Ohio-Network-
Emulator ONE [9], and the emulators described in [10] and
[11].

The second category employs kernel programming to sup-
port real-time actions. The emulators in this category are

1) Dummynet [12],
2) NIST Net [3],
3) the network emulator module that is build in the Linux

2.6 kernel [4], and.
4) NetPath [13].
Dummynet is part of one of the IP firewalls in the FreeBSD

kernel. However, its functionality is limited to modeling con-
stant packet delay as well as packet delay that comes from
a constant bandwidth limitation on a single link. There is no
support to implement variable packet delay as induced by a
network. Simple extensions of Dummynet, such as employing
a script in user space to configure variable delays, would result
in a violation of the real-time support.

NIST Net [3] is a Linux kernel module capable of modeling
variable network delays. NIST Net implements data structures
such as a radix sort delay list that are particularly optimized to
store large amounts of delayed packets. Values for packet delay
are generated from a table which is stored in the kernel. NIST
Net randomly accesses this table, which codes the inverse CDF
of the delay distribution, and corrects the table’s value for the
correlation with the previously generated value. However, this
generation process cannot account for correlation structures
other than short-range dependence as can be seen from the
following argument. Formally, NIST Net’s model to generate
delay values is

di = ρ · di−1 + (1− ρ) · rndi ρ ∈ (−1, 1) (1)

where thedi is the i-th value, ρ is the constant lag-one
correlation and therndi are independent random increments
from a configurable distribution. With regard to correlation
structure this simple model is comparable to the first-order
autoregressive process

Xi = a ·Xi−1 + εi a ∈ (−1, 1) (2)

where the εi are independent random increments from a
normal distribution. However, this autoregressive process is

known to lead to short-range dependent values which in turn
has a major impact on performance evaluations. For details
see [5]. As a consequence, care has to be taken when using
NIST Net for performance evaluations.

The network emulator module built in the Linux kernel
2.6 as well as NetPath use the same table-based approach to
generate delay values as NIST Net which likewise lead to
short-range dependent values. Moreover, the emulator module
built in the Linux kernel reuses existing data structures that
are optimized for fast forwarding of packets. These structures
need to be modified to store large amounts of delayed packets.

III. A RCHITECTURE

We start with giving an overview on RplTrc’s architecture
as depicted in Figure 2. The emulator kernel module intercepts
the Linux TCP/IP protocol stack between layer 2 and 3. This
module performs time critical actions on incoming packets
(delay, drop, duplicate). The actions are controlled on a per
flow2 level with a packet action trace that is successively
loaded by a preemptive low priority user space process. To
facilitate the implementation, RplTrc reuses parts of NIST Net
(version 2.0.12) code for the protocol stack interception and
for the delaying of packets in the kernel emulator module.
However, the trace reader module is completely new.

IV. I MPLEMENTATION

Implementation of the protocol stack interception, the kernel
emulator module, and the trace reader module are as follows.

A. Protocol stack interception

The Linux protocol stack is intercepted between layer 2
and 3 to delay, drop or duplicate packets (see figure 3). The
current version of RplTrc, is build on the GNU/Linux 2.4
kernel. Hence, the processing path from packet arrival until
interception is as follows: When an Ethernet frame arrives
at a receiving interfaceRX dev, it is temporarily stored in
the device’s memory before a triggered interrupt copies it
into a socket buffer. The deposed frame is then unpacked
and analyzed byeth type trans determining the appropriate
layer 3 protocol. Thennetif rx transfers the packet to a
queue and informs the responsible layer 3 protocol handler
by triggering a software interrupt. At this point the protocol
stack is intercepted by hooking in the emulator module as a
packet handler. This handler replaces the handler for standard
IP packets.

B. The emulator kernel module

RplTrc’s kernel emulator module essentially consists of a
packet handler, a multi-field classifier and action handlers
for dropping, delaying or duplicating packets (see figure 4).
The packet handler controls the emulation and a multi-field
classification of the IP headers that enables us to identify the
flow associated with a packet. Based on this classification, the

2A flow is characterized by the port- and IP-addresses of the source and
destination hosts.
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Fig. 2. RplTrc’s overall architecture: Previously generated packet action traces are employed to drive the network emulation.
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Fig. 3. The GNU/Linux protocol stack is intercepted between layer 2 and 3. The emulator is implemented as a packet handler that delays, drops, or duplicates
packets.

action is determined from an instruction buffer that contains
a chunk of the packet action trace.

Essentially, the emulator module consists of four functional
units (see figure 4).

1) The control unit, implemented as apackethandler.
2) The classification unit, implemented as the

multi field classification. This unit determines which ac-
tion is associated with the packet.

3) The action unit, containing the three action handlers for
dropping, duplicating and delaying.

4) The packet play-out unit, containing theinterrupt timer
and its handler (do timer).

First of all, when thepackethandler receives a packet,
it checks if the emulator is switched off or the packet has
already been processed. In this case, the handler forwards the
packet to the IP protocol handler (ip forward/ip recv) without
further processing. In all other cases, the multi-field packet
header classification (multi field classification) is invoked for

checking which action needs to be performed with this packet.
For this purpose, we look up a two-level hash table containing
per flow information. If no entry is found, the packet is directly
forwarded to the IP protocol handler. Otherwise, the action
is as specified in the packet action trace and the packet is
forwarded to the corresponding handler.

This handler is either thepacketdrop handler, the
packetdelay handler, or thepacketduplicate handler. The
packetdrop handler deletes the packet from the buffer and ex-
its the module. Thepacketdelayhandler forwards the packet
into a delay list (packetdelay list). This list is implemented
with radix sort. Due packets are released from this list every
121 µs which is one tick in the interrupt frequency of the
PC’s MC146818 clock. Packets with the same due time are
released in arbitrary order. Then the packets get marked and
are re-injected intonetif rx. As a consequence of marking,
the packethandlerof the emulator kernel module sends them
directly to the standardip forward handler.
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Fig. 4. The kernel emulator module consists of a packet handler, a multi-field classifier and action handler for dropping, delaying or duplicating packets.

The packetduplicate handler creates a new instance of a
packet. This duplicated packet is then re-injected intonetif rx
and handled separately. The original instance of the packet is
transfered to thepacketdelayhandler. This design choice for
duplication opens the possibility to create cascaded instances
of the same packet.

C. The trace reader module

The trace reader module transfers packet action traces from
the file system (e.g. from a disk) into packet action buffers
that are located in the kernel. The emulator kernel module
then reads from these buffers (see figure 5). Conceptually,
trace reading from the file system into the kernel is a classical
producer-consumer problem with the trace reader module
being the producer and the emulator kernel module the
consumer. However, this producer-consumer problem has
a few constraints. These are the timely delivery of chunks
of packet action traces required to drive the emulator and
the fact that any distortions of the emulation due to the
CPU requirement of the transfer must be avoided. From
the point of implementation the trace reader is a user space
process that transfers packet action traces associated with
a flow. Transfers are coordinated with system calls and signals.

Alternatives to transfer traces

Before implementing the trace reader, we have evaluated the
following mechanisms to transfer packet action traces between
user and kernel space:

1) Transfer overshared memoryby mapping of pages of
physical memory into both kernel and user space;

2) transfer over theprocess file systemby employing call
back functions which invoke the process file system’s
copy from user function.

3) transfer overdevice files by employing their limited
interface and the device filescopy from user function.

Results of the evaluation including performance tests are
reported in [14]. From these tests we conclude that all three
mechanisms can reach transfer rates faster than 200 Mbit/s.
Since a maximum transfer rate of 8.7 Mbit/s is required to
support the emulation of a 100 MBit/s network3, any of the
three transfer mechanisms can be employed to implement the
tracer reader module.

Implementation

We decided to employ the process file system to implement
the transfer of packet action traces into kernel space since
this option has the lowest implementation complexity. Loading
packet action traces can be triggered by the command line
interface (CLI) and is performed in three steps. First, a unique
flow ID is requested from the emulator kernel module using
a specific process file, and a pair of buffers associated with
this flow is initialized. Second, a new producer process is
initialized with the obtained flow ID and the filename of the
trace. Third, the producer process gets registered in the flow
table of the emulator’s kernel module and starts filling the two
buffers.

The trace reader module uses two buffers instead of just
one to ensure continuous operation. While one empty buffer
is reloaded, the emulator reads from the other. The reloading
process of an empty buffer is initiated by sending a signal to
the associated producer process.

We denote that a dedicated packet action trace needs to be
loaded for each flow.

346 bytes minimal packet size for IP packets without payload, 271739
packets per second, 4 bytes of action trace data per packet
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A specific trace format has been developed to code in-
structions for packet actions (drop, duplicate, delay) in a way
that minimizes the amount of trace data transfered from the
file system to the kernel emulator module. The instruction is
encoded in 4 bytes (32 bits) as depicted in figure 6. The first
two bits encode the type of action as listed in table I.

Action type Code
Drop packet 00
Normal packet 01
Duplicate packet 10
unused 11

TABLE I

L IST OF CODES FOR VARIOUS PACKET ACTION TYPES

The remaining thirty bits specify the packet delay in
microseconds. This encoding enables us to specify delays
at a very fine granularity while the maximum of more than
17 seconds delay will likely never be reached. Action type
10 duplicates a packet. The remaining thirty bits of the
code specify the delay of the original packet. A subsequent
01 action type specifies the delay of the duplicated packet.
Cascaded duplications, i.e. triplications etc., are also possible.

Section Summary

RplTrc is based on

• intercepting the Linux TCP/IP stack between layer 2 and
3,

• an emulator kernel module that is registered as a layer
3 packet handler and performs the time critical task of
delaying packets, and

• a trace-reader module that employs the process file sys-
tem to perform the low priority task of loading chunks of
packet action traces into the kernel where they are used
to drive the emulation.

V. PERFORMANCEL IMITATION AND DELAY PRECISION

In this section, we report on a test of RplTrc, installed on
a commodity PC4, to find out the emulation’s performance
limitation and delay precision. The test setup is as depicted in
figure 7.

A. Performance limitation

First of all, we test up to what rate the emulator can process
offered load. We employ the sender to offer an increasing
load of UDP/IP packets that contain no payload. At the same
time we monitored system parameters such as CPU usage
at the emulator and check the receiver to see whether the
emulator timely forwards the offered load. We found that the
emulator can process offered load up to 105000 packets/s,
which corresponds to a minimum rate of 32 MBit/s. At higher

4Results reported here were achieved on a Dell Precision 340 Workstation
with Intel Pentium P4 2.0GHz, 512MB RAM, 40GB Hitachi Deskstar
120GXP, two 3Com Tornado 3c905C NICs running Debian Sarge 2.4.27.
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Fig. 7. Test Setup to measure performance limitation and delay precision of
the emulator.

offered load the trace reader process cannot refill the trace
buffers in the kernel emulator module. As a consequence these
buffers under-run. The underlying reason for this under-run is
the large amount of interrupts caused by incoming packets that
have higher priority than the user level trace reader process.
Thus, the CPU usage is the limiting factor. Table II lists the
CPU usage for various offered amounts of load. Table III
lists reference values of CPU usage with the emulator been
switched off. From this test we infer that RplTrc, installed on
a commodity PC, can be employed to emulate a well-loaded
100 MBit/s network or a lightly-loaded 1 GBits/s network.

Packets CPU usage Buffer
[x1000/s] [%] under-run

50 48 no
100 89 no
105 92 no
110 96 yes

TABLE II

CPU USAGE OF THE EMULATOR AT VARIOUS OFFERED LOADS.

Packets CPU usage Buffer
[x1000/s] [%] under-run

100 70 no
110 75 no

TABLE III

CPU USAGE OF THE EMULATORPC AT VARIOUS OFFERED LOADS

(EMULATOR SWITCHED OFF).

B. Delay precision

Besides performance limitation, delay precision is a key
performance characteristic of an emulator. We thus determine
the delay precision of RplTrc on a commodity PC. We run
various traces and inject/log traffic at the sender/receiver with
a real-time measurement infrastructure that has a precision
of 3µs. We investigate the emulator’s delay precision under
various synthetic traffic patterns and traces which we have
gathered by probing ETH’s network. For details see [14].
From our results, we infer that the emulator has a precision
of two clock ticks which is approximately 242µs on the
commodity PC used for the tests. We denote that this
precision is more than five times more accurate than the

precision of the network emulator build in the Linux 2.6
kernel [4].

Section Summary

Performance limitation and delay precision of RplTrc in-
stalled on a commodity PC can be summarized as follows:
Tests show that RplTrc can process at least 32 MBit/s of
offered load. Thus RplTrc can be used to emulate a 100 MBit/s
network or a lightly-loaded 1 GBits/s network. The delay
precision with which RplTrc reproduces delays is in the order
of 100µs.

VI. U SAGE EXAMPLE

We have employed RplTrc to evalute the performance of
synchronization algorithms in newly developed circuit emula-
tion adapters. The adapters are employed to connect mobile
telephone base stations over packet-switched networks such as
Metropolitan Gigabit Ethernets (see figure 8 for an illustration
of the scenario and [15] for further details). The task of the
sending adapter is to encapsulate the plesiochronous TDM
signals from base stations and send the resulting frames over
the Metropolitan Gigabit Etherent. The task of the receiving
adapter is to decapsulate and play-out the TDM signal at a
rate synchronized to the sending base station. Plesiochronous
TDM signals of a base station have a nominal frequency of
8000Hz with a variation of± 50 ppm. However, despite this
rather large tolerance of 50 ppm, each base station’s specific
frequency within this tolerance needs to be preserved across
the Ethernet. This perservation is necessary to prevent long-
term buffer over- or underrun and has to be such that the
maximum time interval error (MTIE) requirement as specified
by ITU-T can be met [16]. This task is usually achieved by
time stamping encapsulated signal at the sending and receiving
adapter, estimating the minimal time stamp difference and
subsequently correcting for any change in this difference. The
rationale behind taking the minimal difference for synchro-
nization is that this difference does not depend on the traffic
characteristics of the Metropolitan Gigabit Etherent. At perfect
synchronization, this difference is equal to the minimal net-
work delay, which is in the order of 100 microseconds. Thus, a
network emulator that is employed to evaluate synchronization
algorithms in circuit emulation adapters needs to have a delay
precision which is at least in this order to get meaningful
results. This delay precision requirement is met with RplTrc.

Figure 9 depicts the lab setting we have used to evalute the
performance of various synchronization algorithms in circuit
emulation adapters with RplTrc by measuring the MTIE.
Figure 10 depicts a sample result. The initial skew between
the clocks in sending and receiving adapter has been set to
50 ppm. The depicted sample result has been measured after
an initial phase of 10 seconds. The packet trace replayed for
this evaluation is from a an active probing measurement in the
ETH Zurich campus network.

A technical report [17] documents the complete evaluation
with various classes of synthetic and measured packet traces.
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Fig. 8. Usage example: The emulator has been used to evaluate the performance of synchronization algorithms in circuit emulation adapters that connect
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Fig. 9. Evaluation setup to measure the perfomance of synchronization algorithms in circuit emulation adapters with RplTrc in terms of MTIE (maximum
time interval error).
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The packet traces represent traffic patterns that can be expected
in metropolitan Gigabit Ethernets. This includes patterns that
correspond to a change in the physical delay after a spanning
tree re-computation and traffic bursts as measured in the ETH
campus network.

In addition to use RplTrc to evalute the performance of
synchronization algorithms in circuit emulation adapters, we
intend to use RplTrc to evalute synchronization algorithms in
other contexts. These contexts include industry automation,
distributed gaming and multimedia over wireless networks.

VII. C ONCLUSION

We have presented the design and implementation of
RplTrc, a network emulation tool. RplTrc’s architecture is
based on a combination of a kernel module that performs
the time critical task of network emulation and a user space
module that successively transfers packet traces into the kernel
to drive the emulation. Since the length of traces is not lim-
ited, RplTrc is capable to account for important performance
characteristics inherent to real networks such as long-range
dependence and self-similarity of cross-traffic. This feature
differentiates RplTrc from other emulators such as NIST Net
and the emulator module in the Linux 2.6 kernel. Moreover,
we have shown that RplTrc, installed on a commodity PC, can
be used to emulate a 100 MBit/s network or a lightly-loaded
1 GBits/s network at a delay precision in the order of 100µs.

Our experience and the feedback from our industry partner
indicate that RplTrc can be employed for a wide variety of
testing purposes in lab environments. This includes perfor-
mance evaluation of devices and applications in contexts such
as industry automation, distributed gaming and multimedia in
both wired and wireless networks. Moreover, we are currently
porting RplTrc into the 2.6 Linux kernel. [Comment: A release
can be expected together with the camera ready version of this
paper.] Further work is to port RplTrc to a real-time Linux
(RTLinux [18] or RTAI [19]) to get the delay precision below
the order of 10µs.

The code of RplTrc is available via
www.tik.ee.ethz.ch/rpltrc.
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