Computing the Best Policy That Survives a Vote

Andrei Constantinescu
Roger Wattenhofer
Distributed Computing Group
7Hzürich

A Board of Directors

A Board of Directors

©

A Board of Directors

©

Issue 1: Increase

 salaries?

A Board of Directors

Issue 1: Increase salaries?

Assume

Binary
 Issues

A Board of Directors

Issue 1: Increase salaries?

Assume

Binary
Issues

A Board of Directors

Issue 1: Increase salaries?

Assume

Binary
Issues

A Board of Directors

Issue 1: Increase salaries?

Assume

Binary
 Issues

A Board of Directors

Issue 1: Increase salaries?

Assume

Binary
 Issues

A Board of Directors

Issue 1: Increase salaries?

Assume

Binary
 Issues

A Board of Directors

Issue 1: Increase salaries?

Assume

Binary
 Issues

A Board of Directors

Issue 1: Increase salaries?

Assume

Binary
 Issues

A Board of Directors

Issue 1: Increase salaries?

Assume

Issue 2: Start an advertising campaign?

Binary
Issues

A Board of Directors

Issue 1: Increase salaries?

Assume Binary
 Issues

Issue 2: Start an advertising campaign?

A Board of Directors

Issue 1: Increase salaries?

Assume
Issue 2: Start an advertising campaign?

Independent Binary
 Issues

A Board of Directors

(a) \times

Issue 1: Increase salaries?

Assume
Issue 2: Start an advertising campaign?

Issue 3: Hire more researchers?

?

A Board of Directors

$$
\text { (1) } x \times
$$

Issue 1: Increase salaries?

Assume
Issue 2: Start an advertising campaign?
 Independent Binary
Issues
Issue 3: Hire more researchers?

A Board of Directors

Issue 1: Increase salaries?

Assume
Issue 2: Start an advertising campaign?
 Independent Binary
Issues
Issue 3: Hire more researchers?

Issue-Wise-Majority (IWM)

A Board of Directors

Issue-Wise-Majority (IWM)

A Board of Directors

Issue-Wise-Majority (IWM)

\sim

A Board of Directors

Issue-Wise-Majority (IWM)

A Board of Directors

How about?
 $x \times \times$

A Board of Directors

How about?
 $x \times \times$

A Board of Directors

2 issues agree with IWM

A Board of Directors

2 issues agree with IWM

A Board of Directors

A Board of Directors

A Board of Directors

How about?

2 issues agree with IWM

A Board of Directors

How about? $\bullet \times \times$

A Board of Directors

The Problem, Formally

The Problem, Formally

(O) N voters

The Problem, Formally

(O) N voters, T issues (topics, motions, laws, etc.)

The Problem, Formally

(O) N voters, T issues (topics, motions, laws, etc.)

- Issues are binary and independent.

The Problem, Formally

(O) N voters, T issues (topics, motions, laws, etc.)

- Issues are binary and independent.
- In this talk: N and T are odd.

The Problem, Formally

(O) N voters, T issues (topics, motions, laws, etc.)

- Issues are binary and independent.
- In this talk: N and T are odd.
(0) Voters' preferences are T-bit vectors.

The Problem, Formally

(O) N voters, T issues (topics, motions, laws, etc.)

- Issues are binary and independent.
- In this talk: N and T are odd.
(0) Voters' preferences are T-bit vectors.
(O) Proposals are T-bit vectors.

The Problem, Formally

(O) N voters, T issues (topics, motions, laws, etc.)

- Issues are binary and independent.
- In this talk: N and T are odd.
(0) Voters' preferences are T-bit vectors.
(O) Proposals are T-bit vectors.
- e.g., Issue-Wise-Majority (IWM) proposal

The Problem, Formally

(O) N voters, T issues (topics, motions, laws, etc.)

- Issues are binary and independent.
- In this talk: N and T are odd.
(0) Voters' preferences are T-bit vectors.
(O) Proposals are T-bit vectors.
- e.g., Issue-Wise-Majority (IWM) proposal (wlog 11...1).

The Problem, Formally

(O) N voters, T issues (topics, motions, laws, etc.)

- Issues are binary and independent.
- In this talk: N and T are odd.
(0) Voters' preferences are T-bit vectors.
(O) Proposals are T-bit vectors.
- e.g., Issue-Wise-Majority (IWM) proposal (wlog 11...1).
© A voter with preference vector v supports a proposal p iff

The Problem, Formally

(O) N voters, T issues (topics, motions, laws, etc.)

- Issues are binary and independent.
- In this talk: N and T are odd.
(0) Voters' preferences are T-bit vectors.
(O) Proposals are T-bit vectors.
- e.g., Issue-Wise-Majority (IWM) proposal (wlog 11...1).
© A voter with preference vector v supports a proposal p iff v agrees with p in > T/2 bits

The Problem, Formally

(O) N voters, T issues (topics, motions, laws, etc.)

- Issues are binary and independent.
- In this talk: N and T are odd.
(0) Voters' preferences are T-bit vectors.
(O) Proposals are T-bit vectors.
- e.g., Issue-Wise-Majority (IWM) proposal (wlog 11...1).
© A voter with preference vector v supports a proposal p iff v agrees with p in > T/2 bits (else they oppose it).

The Problem, Formally

(O) N voters, T issues (topics, motions, laws, etc.)

- Issues are binary and independent.
- In this talk: N and T are odd.
(0) Voters' preferences are T-bit vectors.
(O) Proposals are T-bit vectors.
- e.g., Issue-Wise-Majority (IWM) proposal (wlog 11...1).
© A voter with preference vector v supports a proposal p iff v agrees with p in > T/2 bits (else they oppose it). $\{$ supports \Leftrightarrow prefers p to opposite of p \}

The Problem, Formally

(O) N voters, T issues (topics, motions, laws, etc.)

- Issues are binary and independent.
- In this talk: \mathbf{N} and T are odd.
© Voters' preferences are T-bit vectors.
(O) Proposals are T-bit vectors.
- e.g., Issue-Wise-Majority (IWM) proposal (wlog 11...1).
© A voter with preference vector v supports a proposal p iff v agrees with p in > T/2 bits (else they oppose it). $\{$ supports \Leftrightarrow prefers p to opposite of $p\}$
© Problem: Find proposal agreeing with IWM in as many bits as possible such that > N/2 voters support it.

The Problem, Formally

© N voters, T issues (topics, motions, laws, etc.)

- Issues are binary and independent.
- In this talk: \mathbf{N} and T are odd.
© Voters' preferences are T-bit vectors.
(O) Proposals are T-bit vectors.
- e.g., Issue-Wise-Majority (IWM) proposal (wlog 11...1).
© A voter with preference vector v supports a proposal p iff v agrees with p in > T/2 bits (else they oppose it). \{supports \Leftrightarrow prefers p to opposite of p \}
© Problem: Find proposal agreeing with IWM in as many bits as possible such that > N/2 voters support it.
[Fritsch and Wattenhofer, AAMAS'22]

How Bad Can It Get?

How Bad Can It Get?

$0^{*} \times \otimes_{8}^{8}$
$\times)^{8} \times 8$
$\times \times x_{x} \times$
$\times \times \times 8 \times$

08080
0000
00000

How Bad Can It Get?

How Bad Can It Get?

$$
\begin{aligned}
& N=9 \\
& T=5
\end{aligned}
$$

$\mathrm{v}_{1} \bigcirc$	\times	\otimes	\times	
$\mathrm{v}_{2} \times$	\bigcirc	\times	*	
$\mathrm{v}_{3} \times$	\times	\bigcirc	\times	
$\mathrm{v}_{4} \times$	\times	\times	\bigcirc	
$v_{5} \times$	\times	\times	\times	
v_{6} ¢	\bigcirc	\bigcirc	-	
v_{7} ©	\bigcirc	\bigcirc	Q	
v_{8} ©	\bigcirc	\bigcirc	V	
v_{9} ©	\bigcirc	e		

How Bad Can It Get?
$N=9$
$T=5$
$v_{1} \times x \times x \times x$
$v_{2} x \times x \times x$
$v_{3} x \times x \times x$
$v_{4} x \times x \times x$
$v_{5} x \quad x \quad x \quad x \quad y$
v_{6}
v_{7}

(v)

000
v_{8}
8
v_{s},
\bigcirc
O

How Bad Can It Get?

$N=9$
$\mathrm{T}=5$

v_{1} (x $x \quad x$

$v_{2} x \times x \times x$
$v_{3} x \times x \times x$
$v_{4} \times x \times x$
$v_{5} x \quad x \quad x \quad x$
v_{6}

$\mathrm{v}_{7} \mathrm{C}$
v_{8}.
O

${ }_{9}$
-
\bigcirc
(7) (2) (7)
(3) (3)

How Bad Can It Get?

$$
\begin{aligned}
& N=9 \\
& T=5
\end{aligned}
$$

v_{1} (x $x \quad x$
$v_{2} x \times x \times x$
$v_{3} x \times x \times x$
$v_{4} x \times x \times x$
$v_{5} x \quad x \quad x \quad x$
$v_{6} \times \square \square$
$v_{7} \times \square \square$

Prop.

QQ

How Bad Can It Get?

$N=9$
$\mathrm{T}=5$
$v_{1} \subset \times \times \times \times$
$v_{2} \times \times x \times x$
$v_{3} \times \times$ x \times
$v_{4} \times x \times x \times$
$v_{5} \times \times \times \times$
v
v_{7}
v_{8}
\checkmark

v_{9}
C

Prop.
\checkmark ?

How Bad Can It Get?

$N=9$
Te

How Bad Can It Get?

$N=9$
Te

Prop.p $\otimes \ominus \Theta \Theta \theta$

How Bad Can It Get?

$N=9$
Te

Prop. p \& \& $\otimes \ominus$

How Bad Can It Get?

3 issues agree with IWM

What Was Known

What Was Known $\operatorname{say} \mathrm{T}=2 \mathrm{k}+1$

What Was Known
 say T = 2k + 1

Agree with IWM in \geq issues	0	\ldots	$k-1$	k	$k+1$	$k+2$	$k+3$	\cdots	$2 k+1$

What Was Known
 say T = 2k + 1

Agree with IWM in \geq issues	0	\cdots	$\mathrm{k}-1$	k	$\mathrm{k}+1$	$\mathrm{k}+2$	$\mathrm{k}+3$	\cdots	$2 \mathrm{k}+1$
Always possible?		\cdots						\cdots	

What Was Known
 say $\mathrm{T}=2 \mathrm{k}+1$

Agree with IWM in issues	0	\cdots	$\mathrm{k}-1$	k	$\mathrm{k}+1$	$\mathrm{k}+2$	$\mathrm{k}+3$	\cdots	$2 \mathrm{k}+1$
Always possible?		\cdots				No	No	\cdots	No

(by previous construction)

What Was Known
 say $\mathrm{T}=2 \mathrm{k}+1$

Agree with IWM in \geq issues	0	\ldots	$k-1$	k	$k+1$	$k+2$	$k+3$	\cdots	$2 k+1$
Always possible?	Yes	\ldots	Yes	Yes		No	No	\cdots	No

(consider proposal with k+1
(by previous construction) ones, its opposite has k ones, one has more support)

What Was Known
 say $\mathrm{T}=2 \mathrm{k}+1$

Agree with IWM in \geq issues	0	\ldots	$\mathrm{k}-1$	k	$\mathrm{k}+1$	$\mathrm{k}+2$	$\mathrm{k}+3$	\ldots	$2 \mathrm{k}+1$
Always possible?	Yes	\ldots	Yes	Yes	$?$	No	No	\ldots	No

What Was Known
 $\operatorname{say} \mathrm{T}=2 \mathrm{k}+1$

Agree with IWM in issues	0	\ldots	$k-1$	k	$k+1$	$k+2$	$k+3$	\cdots	$2 k+1$
Always possible?	Yes	\ldots	Yes	Yes	Yes	No	No	\cdots	No

[Fritsch and Wattenhofer, AAMAS'22]

What Was Known
 $\operatorname{say} \mathrm{T}=2 \mathrm{k}+1$

Agree with IWM in issues	0	\ldots	$k-1$	k	$k+1$	$k+2$	$k+3$	\ldots	$2 k+1$
Always possible?	Yes	\ldots	Yes	Yes	Yes	No	No	\ldots	No

[Fritsch and Wattenhofer, AAMAS'22]

- nonconstructive

What Was Known say T = 2k + 1

Agree with IWM in issues	0	\ldots	$k-1$	k	$k+1$	$k+2$	$k+3$	\cdots	$2 k+1$
Always possible?	Yes	\ldots	Yes	Yes	Yes	No	No	\cdots	No

[Fritsch and Wattenhofer, AAMAS'22]

- nonconstructive (and a bit magic)

What Was Know
 We swapped summations in the second step and substituted $y=$ $k-x$ in the third step. Note that

Acree with 0

Lemma A.1. For $l=0, \ldots, t$,

$$
\sum_{k=\lceil t / 2\rceil}^{t}(2 k-t) s_{k, l}=l\binom{t-1}{\lfloor t / 2\rfloor}
$$

Proof. Let

$$
f(l)=\sum_{k=\lceil t / 2\rceil}^{t}(2 k-t) s_{k, l} .
$$

Note that we use the convention that $\binom{n}{k}=0$ for $k>n$ and $k<0$. Hence, the upper summation bound in the formula for $s_{k, l}$ from Lemma 4.4 can be omitted. Inserting this formula yields

$$
\begin{aligned}
f(l) & =\sum_{k=\lceil t / 2\rceil}^{t} \sum_{x=\lceil(k+l-\lfloor t / 2\rfloor) / 2\rceil}^{\infty}\binom{l}{x}\binom{t-l}{k-x}(2 k-t) \\
& =\sum_{x=\lceil(l+1) / 2\rceil}^{\infty}\binom{l}{x} \sum_{k=\lceil t / 2\rceil}^{2 x-l+\lfloor t / 2\rfloor}\binom{t-l}{k-x}(2 k-t) \\
& =\sum_{x=\lceil(l+1) / 2\rceil}^{\infty}\binom{l}{x} \sum_{y=\lceil t / 2\rceil-x}^{t-l-(\lceil t / 2\rceil-x)}\binom{t-l}{y}(2 y+2 x-t) .
\end{aligned}
$$

$$
\binom{t-l}{y}(2 y+2 x-t)+\binom{t-l}{t-l-y}(2(t-l-y)+2 x-t)=2\binom{t-l}{y}(2 x-l)
$$

$\mathbf{K}+$ Using this we further conclude

$$
\begin{aligned}
f(l) & =\sum_{x=\lceil(l+1) / 2\rceil}^{\infty}\binom{l}{x} \sum_{y=\lceil t / 2\rceil-x}^{x-l+\lfloor t / 2\rfloor}\binom{t-l}{y}(2 x-l) \\
& =\sum_{y=\lceil t / 2\rceil-l}^{\lfloor t / 2\rfloor}\binom{t-l}{y} \sum_{x=\max (\lceil t / 2\rceil-y, y+l-\lfloor t / 2\rfloor)}^{\infty}\binom{l}{x}(2 x-l) .
\end{aligned}
$$

In the second step, we switched the summation again. Now let $x_{0}=\max (\lceil t / 2\rceil-y, y+l-\lfloor t / 2\rfloor)$. Then

Watte
tructiv

$$
\begin{aligned}
\sum_{x=x_{0}}^{\infty}\binom{l}{x}(2 x-l) & =\sum_{x=x_{0}}^{\infty} x\binom{l}{x}-(l-x)\binom{l}{x} \\
& =\sum_{x=x_{0}}^{\infty} l\binom{l-1}{x-1}-l\binom{l-1}{x}=l\binom{l-1}{x_{0}-1}
\end{aligned}
$$

Furthermore, the definition of x_{0} implies

$$
\binom{l-1}{\lfloor t / 2\rfloor-y}=\binom{l-1}{y+l-\lceil t / 2\rceil}=\binom{l-1}{x_{0}-1} .
$$

With the previous two properties, we establish

$$
\begin{aligned}
f(l) & =\sum_{y=\lceil t / 2\rceil-l}^{\lfloor t / 2\rfloor}\binom{t-l}{y} l\binom{l-1}{\lfloor t / 2\rfloor-y} \\
& =l \sum_{z=0}^{l-1}\binom{t-l}{\lfloor t / 2\rfloor-z}\binom{l-1}{z}=l\binom{t-1}{\lfloor t / 2\rfloor} .
\end{aligned}
$$

Here we substituted $z=\lfloor t / 2\rfloor-y$, and the last step follows from the well-known combinatorial identity $\binom{n}{k}=\sum_{j}\binom{i}{j}\binom{n-i}{k-j}$.

What Was Known
 $\operatorname{say} \mathrm{T}=2 \mathrm{k}+1$

Agree with IWM in issues	0	\ldots	$k-1$	k	$k+1$	$k+2$	$k+3$	\ldots	$2 k+1$
Always possible?	Yes	\ldots	Yes	Yes	Yes	No	No	\ldots	No

[Fritsch and Wattenhofer, AAMAS'22]

- nonconstructive

What Is New

say $\mathrm{T}=2 \mathrm{k}+1$

Agree with IWM in \geq issues	0	\ldots	$k-1$	k	$k+1$	$k+2$	$k+3$	\cdots	$2 k+1$
Always possible?	Yes	\ldots	Yes	Yes	Yes	No	No	\ldots	No

This paper

- probabilistic \rightarrow derandomization

What Is New

say $\mathrm{T}=2 \mathrm{k}+1$

Agree with IWM in \mathbf{Z} issues	0	\ldots	$\mathrm{k}-1$	k	$\mathrm{k}+1$	$\mathrm{k}+2$	$\mathrm{k}+3$	\ldots	$2 \mathrm{k}+1$
Always possible?	Yes	\ldots	Yes	Yes	Yes	No	No	\ldots	No
Compute (or report "none")	Poly	\ldots	Poly	Poly	Poly			\ldots	

What Is New

say $\mathrm{T}=2 \mathrm{k}+1$

Agree with IWM in issues	0	\ldots	$\mathrm{k}-1$	k	$\mathrm{k}+1$	$\mathrm{k}+2$	$\mathrm{k}+3$	\ldots	$2 \mathrm{k}+1$
Always possible?	Yes	\ldots	Yes	Yes	Yes	No	No	\cdots	No
Compute (or report "none")	Poly	\ldots	Poly	Poly	Poly	NP-h		\cdots	

This paper

What Is New

say $\mathrm{T}=2 \mathrm{k}+1$

Agree with IWM in issues	0	\cdots	$\mathrm{k}-1$	k	$\mathrm{k}+1$	$\mathrm{k}+2$	$\mathrm{k}+3$	\ldots	$2 \mathrm{k}+1$
Always possible?	Yes	\ldots	Yes	Yes	Yes	No	No	\cdots	No
Compute (or report "none")	Poly	\ldots	Poly	Poly	Poly	NP-h	Np-h	\cdots	

This paper

What Is New

say $\mathrm{T}=2 \mathrm{k}+1$

Agree with IWM in issues	0	\cdots	$\mathrm{k}-1$	k	$\mathrm{k}+1$	$\mathrm{k}+2$	$\mathrm{k}+3$	\cdots	$2 \mathrm{k}+1$
Always possible?	Yes	\ldots	Yes	Yes	Yes	No	No	\cdots	No
Compute (or report "none")	Poly	\ldots	Poly	Poly	Poly	NP-h	Np-h	\cdots	Poly

This paper
Trivial

