AdaPNet: Adapting Process Networks in Response to Resource Variations

Lars Schor, Hoseok Yang, Iuliana Bacivarov, and Lothar Thiele
Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland
firstname.lastname@tik.ee.ethz.ch

Motivation
- If multiple applications share a system, the computing resources that an application can use depend on the overall workload of the system.
- The programmer does not know the available computing resources at design time.
- Applications must seamlessly adapt on-line to dynamic resource changes for increased efficiency – performance, memory usage.

AdaPNet Highlights
AdaPNet is a runtime system that efficiently executes streaming applications, on platforms with dynamic resource allocation.
AdaPNet responds to changes in the available resources:
1. It calculates a process network that maximizes the performance on the new resources.
2. It transparently transforms the application into the alternative network without discarding the program state.
AdaPNet outperforms comparable run-time systems, in terms of speed-up and memory usage.

Design Flow
1. Application(s)
2. Mapping optimization
3. Architecture
4. Mapping storage
5. Run-time manager
6. Behavioral events
7. Fault events

Design Transformations
- Expandable Process Networks (EPN)
- Specification
 - Only behavioral description
 - Behavioral description
 - Structural description
 - Behavioral description & structural description

Experimental Results
- Can AdaPNet outperform run-time systems that do not adapt the application's degree of parallelism?
- How expensive is the transformation into an alternative process network?

AdaPNet Runtime Strategy
- Application
 - Network 1
 - Network 2
- Mapping
 - Mapping 1
 - Mapping 2
- Transform
- Calculate new network/mapping

Experimental Setup
- Vary number of available cores
- Intel Xeon Phi

AdaPNet is an adaptive run-time system that enables the efficient execution of streaming applications specified as stateful process networks, on multi-processor platforms with dynamic resource allocation.