Acoustic Emission Measurement System to Investigate Rock Damage Driven by Freezing

Samuel Weber¹, Stephan Gruber³, Lucas Girard¹, Jan Beutel²

¹Glaciology & Geomorphodynamics, Dep. of Geography, University of Zurich, Switzerland
²Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology Zurich, Switzerland
samuel.weber@tik.ee.ethz.ch, stephan.gruber@geo.uzh.ch, lucas.girard@geo.uzh.ch, janbeutel@ethz.ch

Motivation
- Formation of ice-filled clefs can precondition rock fall
- Initial rock damage processes and dynamics can be studied by AE

Goals
- Transfer theoretical and laboratory knowledge to real conditions
- Design a measurement system to capture AE at different depth

Measurement System Evaluation

Preliminary experiments
April 2010, Jungfraujoch, Switzerland (Amitrano et al. 2012)
- Outdoor measurements with lab equipment during 4 days
- Piezoelectric sensors and six-channel high-frequency board
- Proved the potential and feasibility of AE measurements in PermaSense

Rock/sensor contact: two generic measurement assemblies
- Casing: direct insertion of the sensor in the borehole
 - 2 dB loss
- Waveguide: thin rod transmits AE signal to sensor at surface
 - 3-10 dB loss

AE Measurement System

AE-node: customized, outdoor, low power, wireless
- Acquires reliable and consistent data
- Arbitrary depth mounting
- Replacement of sensor (piezoelectric sensors, Microphonic)
- Compatible to Physical Acoustics Corp.

AE-rod: direct insertion with casing
- Data acquisition and preprocessing
 - High rate sampling and event characterization
- Dual-channel sampling at 500 kHz
- Control and communication
 - Transmission of captured event data
 - Local data storage on network intrusion
- AE-node
 - Wireless Sensor Nodes
 - BEUTEL et al. 2009
- AE node
 - AE-rod
 - Basestation
 - Internet

Field Installation

Switzerland, Bernese Alps, Jungfraujoch
3500 m a.s.l., facing south-east, slope 50 - 60°, granitic gneiss (~ 2% porosity)
2 locations with distinct characteristics (M1 = dry; M2 = wet)

Results

- Rate of AE event (i/day) detected at 59 cm depth for bins of the temperature
 - Weighted by the time spent in each temperature bin
 - Blue bars = cooling phases, red bars = warming phases

Which Processes can Cause Rock Damage?

1) Hydraulic pressure theory: volumetric expansion
 - Expansion of 9% when water turns to ice (increase of the pressure)
 - Liquid water is expelled from freezing sites
 - With high cooling rates, high saturation level, low drainage ability, the pressure build up could damage rock.

2) Cryo-suction and ice segregation
 In sustained freezing conditions:
 - Ice continues to grow and draws water through unfrozen layers and fine pores
 - The ice is rejected from the pore walls by intermolecular forces.
 - This causes an inflow of liquid water into the pore: the cryo-suction effect.

3) Elastic-thermomechanical coupling between pore space and rock ‘skeleton’

4) Constant load
 - gravity
 - earthquakes

5) Punctual load
 - rock falls

References

Acknowledgements

The research was generously supported through the projects: PermaSense funded by the Swiss National Science Foundation, SNF (Grant 136811 and 136812) and as well as the International High Altitude Research System (HARDS) and PermaSense. We are grateful for the technical support from the Swiss Federal Institute of Technology in Zurich (ETH Zurich) and the PermaSense Company. We thank the whole PermaSense team, especially Max Maisch, Florian Schulthess, Andreas Displing, Kevin Huser, and Yves Morel for the great technical support.

AE = Acoustic Emission

Powerful technique to track the evolution of damage

Acoustic emission
- Form of microseismicity
- Transient elastic waves produced by a sudden redistribution of stress in a material
- AE monitoring – technique to track the evolution of damage

AE detection = passive system
- Frequency content of source
- Source size
- Elastic wave velocity

AE monitoring = technique to track the sudden redistribution of stress in a material

AE node: AE-rod: AE-sensor

Which Processes can Cause Rock Damage?

1) Hydraulic pressure theory: volumetric expansion
 - Expansion of 9% when water turns to ice (increase of the pressure)
 - Liquid water is expelled from freezing sites
 - With high cooling rates, high saturation level, low drainage ability, the pressure build up could damage rock.

2) Cryo-suction and ice segregation
 In sustained freezing conditions:
 - Ice continues to grow and draws water through unfrozen layers and fine pores
 - The ice is rejected from the pore walls by intermolecular forces.
 - This causes an inflow of liquid water into the pore: the cryo-suction effect.

3) Elastic-thermomechanical coupling between pore space and rock ‘skeleton’

4) Constant load
 - gravity
 - earthquakes

5) Punctual load
 - rock falls