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We consider a battery-less real-time embedded system equipped with an energy harvester. It scavenges
energy from an environmental resource according to some stochastic patterns. Because of technical con-
straints, the harvester device first buffers the harvested energy into a reservoir; then, at regular time in-
tervals, the buffered energy is transferred to a super-capacitor. The success of jobs is threatened in case of
energy shortage which might be due to lack of harvested energy, losses originated from the super-capacitor
self-discharge, as well as power consumption of executed tasks. The periodic real-time tasks of the system
follow a dual-criticality model. In addition, each task has a minimum required success-ratio that needs to
be satisfied in steady-state. We analytically evaluate the behavior of such a system in terms of its energy-
related success-ratio for a given schedule. Based on these results, we propose a scheduling algorithm that
satisfies both, the temporal and success-ratio constraints of the jobs, while respecting task criticalities and
corresponding system modes. The accuracy of the analytical method as well as its dependence on the nu-
merical computations and other model assumptions are extensively discussed through comparison with
simulation results. Also, the efficacy of the proposed scheduling algorithm is studied through comparison to
some existing non-mixed- and mixed-criticality scheduling algorithms.

Additional Key Words and Phrases: Mixed criticality and Real-time scheduling and Stochastic analysis and
Energy harvesting

1. INTRODUCTION
One of the biggest challenges for Wireless Sensor Networks (WSNs) and the emerging
concept of Internet of Things (IoT) is powering tens of billions of WSN/IoT devices with
the expectation of perpetual and long-term autonomous operation [Brown 2014]. Many
such devices have limited space for a battery with appropriate size, motivating cord-
less power provisioning using energy harvesters. Furthermore, repeated battery re-
placement is almost impossible due to the expected enormous number of such devices.
A promising approach to address these limitations is to combine energy harvesting
with super-capacitors with very high cycle life [Chai and Zhang 2015].

In order to use energy storages like super-capacitors, however, their pros and cons
must be carefully taken into account. For example, potential for quick charge and dis-
charge and very high cycle life are positive characteristics of a super-capacitor, while
power dissipation (due to self-discharge) and low power density [Yang and Zhang
2013] are negative properties. Further, as there is a linear charge-voltage relation-
ship for super-capacitors, the usable power spectrum reduces, namely some consider-
able amount of stored energy will not be available because the super-capacitor voltage
drops to a too low level (the cut-off voltage) for a standard voltage-regulator to operate.

Despite the existing limitations, the development of intelligent system-level power
management techniques and the use of environmental energy scavenging decreases
or even eliminates the dependence on batteries [Brown 2014]. Overall, there is a
paradigm shift towards small-scale energy harvesters, especially in miniature devices
[Taufik et al. 2012]. As a consequence of this development, it is a major challenge to
seamlessly and efficiently maintain the system survivability in the presence of inter-
mittent and unreliable power supplies. As also mentioned in [Piorno et al. 2010], even
for relatively stable resources the incoming energy follows stochastic patterns, a point
which must be considered in the hardware and software design. For real-time embed-
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ded systems using harvested energy, some additional constraints need to be satisfied in
order to guarantee that energy uncertainty will not violate the system schedulability.

In this paper, we assume that tasks may fail due to energy or time shortage, where
the failure probability of tasks due to lack of energy is required to be bounded. The
combination of the following properties create major challenges for a viable system
design: (i) the stochastic nature of energy harvesting, (ii) the super-capacitor power
dissipation, (iii) the energy consumption of executing tasks, and (iv) the task real-time
and success probability requirements. In order to take full advantage of the energy-
harvesting technology, we need efficient scheduling algorithms which take the finite
capacity of the energy storage into account [Huang and Neely 2013].

This paper considers mixed-criticality real-time systems [Burns and Davis 2015]
where tasks are classified according to their criticality levels and may show different
worst-case execution time behaviors at run-time. More specifically, to each task there is
associated a set of execution time bounds with different levels of pessimism. Based on
the observed execution time in comparison to these bounds, the overall system changes
its scheduling mode such that temporal guarantees can still be given, but only for well-
defined subsets of tasks. The fact that the scheduler switches between two or more
criticality modes helps to integrate more functionalities into a device and to better
utilize its limited resources.

In this paper, we adopt the widely used dual criticality model, where the tasks are of
two criticality levels. Tasks with lower criticality may not be executed at all, stopped
or are provided lesser service if high-criticality tasks exceed their low execution time
bounds. However, in an energy harvesting scenario, high-criticality tasks exceeding
their low execution time bound require extra energy in addition to the needed extra
time. Due to the finite capacity of the energy storage and the uncertainty in the har-
vested energy, the described variation in execution time has a strong effect on the
success ratios of subsequent tasks.

As usual, a feasible schedule guarantees that mixed-criticality time constraints of
jobs will be satisfied. For jobs belonging to high-criticality tasks, the statistical success-
ratio constraints should be always guaranteed. When all jobs execute within their
low criticality execution time bound, the success-ratio constraints of the low-criticality
tasks must be satisfied in addition. In this case, all jobs that are guaranteed to ex-
ecute according to the classic mixed-criticality scheduling paradigm need to satisfy
their energy-related success probability constraints as well. Certainly, the approach
can further be generalized to settings where low-criticality tasks receive a degraded
service in such a case, e.g., they may violate their deadline or they may reduce their
time and energy demands by switching to a basic functionality.

A typical application example may be a mission-critical node in a WSN/IoT scenario.
The node is "zero power" (i.e., it is completely energy autonomous) and harvests all
necessary energy from the environment, for example using light, temperature differ-
ences, vibration, acceleration or radio waves. We consider five different tasks in a node
with different criticalities. Task 1 (high criticality) has to regularly read a sensor, for
example from an image sensor in a surveillance scenario. The high-critical image pro-
cessing Task 2 is subject to different execution time bounds obtained with different
levels of pessimism. This processing is done locally to reduce the amount of high-power
data transmission to the central station. Occasionally, when some important event has
been identified, the highly critical Task 3 needs to transfer the result wirelessly to a
central host. This communication may need the repetition of radio packets in case of
transmission errors and therefore, results in different execution times. A node uses the
low criticality Task 4 to periodically switch on its radio, to maintain synchronization
with the host, and to exchange status data via the wireless communication medium.
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Finally, the low criticality Task 5 regularly checks system health, relays some packets,
and manages the node memory.

This paper contributes to consider the aforementioned aspects, as summarized be-
low:

(1) We present an analytical method for calculating the energy content of the super-
capacitor and the job success-ratios for a given schedule, both in steady state, while
considering the stochastic availability of energy and the physical characteristics of
the super-capacitor.

(2) We derive basic theoretical results which quantify the impact of each modification
in a given schedule on the job success-ratios.

(3) We propose a mixed-criticality scheduling algorithm for periodic tasks with time
and success-ratio constraints, inspired by the theoretical results, to manage the in-
herent unpredictability of the system. This algorithm is mainly based on an offline
phase which determines static start time of individual jobs depending on the sched-
uler criticality mode.

In summary, the paper considers energy as an additional resource in comparison to
the classic mixed-criticality model. The jobs of a task may not execute successfully
due to lack in available energy, but they still need to satisfy given success probability
constraints. Therefore, we are faced with a complex interdependence between tem-
poral behavior (computation resource) and success behavior (energy resource): The
harvested energy follows some stochastic patterns, and the task behavior changes due
to different execution times and mode switches in the mixed-criticality scheduler. To
the best of our knowledge, the paper describes the first results on mixed-criticality
scheduling under energy harvesting constraints. The authors are also unaware of any
similar study which is applicable to non-mixed-criticality real-time systems, namely
those which need simultaneous consideration of energy uncertainty and success-ratio
constraints.

The structure of the paper is as follows. After presenting some related works in
Section 2, we give the system model and define the problem in Section 3. Then, we
present an analytical method to determine the super-capacitor energy behavior as well
as individual job steady-state success-ratios for given schedules in Section 4. Section 5
contains a scheduling algorithm for a restricted system model that guarantees the
required mixed-criticality timing behavior and the success-ratio constraints of tasks.
This algorithm is provided on the basis of the analytical method proposed in Section 4.
The efficacy of the analysis and the algorithm are then extensively studied for a num-
ber of system setups in Section 6. Finally, Section 7 concludes the paper.

2. RELATED WORK
As mentioned in the previous section, some challenges of perpetual devices [Brunelli
et al. 2009] are related to energy management as many such systems should work in
an energy-autonomous manner after deployment.

Some studies have focused on determining size, type and scheduling of batteries
[Jongerden et al. 2009; He et al. 2013]; some authors replace the batteries with super-
capacitors [Brown 2014; Chai and Zhang 2015; Brunelli et al. 2009]. Battery/super-
capacitor scheduling and their joint management in systems which use both stor-
age principles is also considered as a favorite method [Jin et al. 2014; Krishna 2011;
Mirhoseini and Koushanfar 2011]. However, to be able to guarantee some performance
level of the overall system, energy prediction is needed. A major example is the Lazy
Scheduling Algorithm (LSA) [Moser et al. 2007] which works optimally for a real-time
system if the energy prediction is accurate. However, uncertainties due to environ-
mental conditions negatively impact the accuracy of predictions, even for resources
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like solar [Piorno et al. 2010]. Some studies try to circumvent these non-deterministic
properties through scavenging energy from multiple resources [Porcarelli et al. 2012]
or through improving efficiency via techniques like Maximum-Power-Point Tracking
(MPPT) [Brunelli et al. 2009], diminishing the need to have a large energy storage
[Weddell et al. 2013].

One further approach is to use load management, i.e., task and energy scheduling,
e.g., through voltage and frequency scaling [Wang et al. 2013], to adapt to the uncer-
tainties. Although many systems need guaranteed performance levels, example stud-
ies like [Audet et al. 2011] which schedule periodic tasks for uncertain energy arrival
do not provide guarantees, rather they only reduce the task energy violation ratio.
Similar to [Audet et al. 2011], the authors of [Huang and Neely 2013] present an on-
line algorithm, however within the scope of non-real-time networks. A non-real-time
system with probabilistic load and energy arrivals has been considered in [Liu et al.
2015] as well, where the energy deficiency is supplied from a power grid. The target of
the paper is to minimize the average delay while satisfying a constraint on the max-
imum grid power consumption. In [Piorno et al. 2010], an online task scheduler has
been proposed for a system with multiple priority queues which works based on some
energy predictions. It does not consider time limitation for the tasks, and delays the
task execution if there is not enough energy available in the energy harvesting device.

A stochastic view to energy harvesting and event arrival is taken in [Zhang et al.
2013]. The study follows an analytical approach based on a Markov model and it unifies
the energy harvesting and event arrival processes to derive the probability of event loss
and average delay. There exist additional studies like [Su et al. 2014] which consider
the fact that the energy arrival is intermittent and variable. The approach proposes
stochastic energy scheduling for operational cost and power loss reductions. From the
aspect of scheduling in stochastic conditions, [Li et al. 2014] employs Dynamic Volt-
age and Frequency Scaling (DVFS) to schedule independent tasks with normally dis-
tributed execution times, and with deadline and energy consumption budgets.

The usual pessimistic view on execution times in real-time systems negatively im-
pacts the amount of resources that are necessary to guarantee the temporal behav-
ior. Therefore, an accepted approach is to have a mixed-criticality view on the sys-
tem specification [Burns and Davis 2015] that allows to certify the high-critical func-
tionalities under conservative assumptions and to improve the utilization of platform
resources under less pessimistic assumptions. Extending the mixed-criticality liter-
ature to energy-efficient design using DVFS [Huang et al. 2014a], fault-tolerance
with respect to transient hardware faults [Huang et al. 2014b], timing analysis us-
ing probabilistic techniques and appropriate hardware/software architectures [Davis
et al. 2014], reliability guarantee using combinations of fault management techniques
in multi-core systems [Kang et al. 2014], and battery-awareness [Wognsen et al. 2014]
has been attended. Different but similar views considering load uncertainty have also
been given in [Samadi et al. 2013].

In contrast to previous studies, we allow efficient resource utilization through mixed-
criticality scheduling in an energy harvesting setup. The availability of energy can
stochastically be characterized and lower bounds on task success probabilities in spite
of possible energy shortage can be guaranteed. The main challenges of this problem
arise from uncertainty in the provided and required energy, as well as physical prop-
erties of the energy storage. There are very few investigations that consider the latter
problem, especially in the context of real-time systems [Chai and Zhang 2015]. We
analytically investigate the interaction between these three challenges by modeling
stochastic energy arrival, mixed-criticality task systems, and energy-dependent super-
capacitor power dissipation.
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3. SYSTEM MODEL AND PROBLEM DEFINITION
We consider a battery-less dual-criticality system supplied by a super-capacitor which
is charged through an energy harvester. The system must respect the mixed-criticality
temporal requirements on one hand and the success probability requirements on the
other.

In spite of studies like [Davis et al. 2014] which focus on specifying timing behav-
iors of mixed-criticality systems using probabilistic timing analysis, this paper concen-
trates on job success-ratios if jobs may fail due to energy shortage. In other words, a
job not only needs to execute within its deadline regarding the mixed-criticality re-
quirements, but it also should satisfy its energy-related success-ratio constraint. To
satisfy this property, we need to setup the system in a manner that it shows some
type of predictable behavior from both aspects. Therefore, a job that fails due to lack in
energy cannot simply resume its execution, even if technologies like non-volatile mem-
ories are used to store its state at the point of failure. The reasons for restricting this
are the following: i) Resumption of a job after failure may interfere with the temporal
feasibility of other mixed-criticality jobs. ii) Postponing the execution of a job (or some
portion of it) to use energy that will be harvested in the future may negatively impact
the success-ratio of other jobs due to energy scarcity.

Thus, to guarantee the success-ratio constraint, appropriate task scheduling is
needed to control the available energy in the super-capacitor at different moments
in time, while considering the stochastic pattern of energy arrival, the super-capacitor
power dissipation, and the mixed-criticality task energy usages. As a consequence, our
proposed approach is based on an analytic evaluation of the energy availability and its
interplay with mixed-criticality scheduling. The corresponding formal system model is
given in the following subsections.

3.1. Task Model
We consider a mixed-criticality system with L = 2 criticality levels, denoted as
LO and HI. In an abstract view, the system consists of m periodic real-time tasks
τi : (li, πi,~εi,Pow i, αi), 1 ≤ i ≤ m, where li = LO or HI denotes the task critical-
ity, πi denotes the task period (with implicit relative deadline), ~εi is a vector, where
~εi[LO] and ~εi[HI] show the task Worst-Case Execution Times (WCETs) at different
criticality levels (~εi[LO] = ~εi[HI] for tasks with li = LO), and Pow i is the task-specific
power consumption, which is the same at both criticality levels. Also, 0 ≤ αi ≤ 1 is the
success-ratio constraint for individual jobs of the task. The hyperperiod is defined as
Π = LCM(πi), 1 ≤ i ≤ m. The task scheduling is repeated at the boundaries of Π and
τi,k is the kth instance of τi during Π.

We follow the conventional mixed-criticality scheduling techniques that provide dy-
namic guarantees to all tasks, and which can be specified by a simple mode switch
protocol: i) The system starts in the low criticality mode, where all jobs of tasks τi are
guaranteed to meet their deadlines if they do not exceed their low criticality execution
time bound ~εi[LO]. ii) Whenever a high criticality job exceeds its low criticality execu-
tion time bound, then the scheduler transits immediately to the high mode. Hereafter,
jobs of tasks τi with criticality li = LO may be dropped or their services may be de-
graded in order to protect the timeliness of all other jobs of tasks τi with criticality
li = HI. For the sake of simplicity, we suppose that all LO jobs are dropped after such a
low-to-high scheduler mode change, while more general cases could also be discussed.

Now, the task success-ratio constraint αi can be interpreted as follows: For each indi-
vidual job of a HI task τi, the probability that it is interrupted due to energy shortage
is at most 1 − αi, i.e., with probability at least αi there is enough energy available
to successfully execute that job. The probability that each individual job of a LO task
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Fig. 1. A schematic view of the system architecture.

τi successfully finishes its execution is at least αi as well, but only provided that the
scheduler is in the low mode, i.e., provided that the job is not executed in degraded
mode.

3.2. Energy Supplier Model
The energy supplier unit consists of an energy harvester and a corresponding super-
capacitor. In an abstract view, we consider that the continuously arriving energy is
buffered into an intermediate reservoir, and it is added to the super-capacitor at regu-
lar intervals called epochs. This is a common design for an energy harvesting device,
where the energy in the intermediate reservoir, for example a capacitor, is converted
using a voltage regulator, and then transferred to the super-capacitor and used by
the energy consumer (see [Whitaker 2010; Hao and Garcia 2014]). Depending on the
source of energy and characteristics of the energy harvester, the capacity of reservoir
and the epoch length P are determined. A smaller epoch length better approximates
the continuous energy arrival and provides the chance of earlier use of the harvested
energy; a larger P , however, reduces the computational complexity of our analysis
method (see Section 5.4). We consider that P divides the hyperperiod Π. A schematic
view to the system can be seen in Fig. 1.

We can obtain an energy Probability Density Function (PDF) H for the energy har-
vested during an epoch. H(e), which can be obtained through profiling, describes the
relative likelihood for the energy harvested within an epoch of length P to take on the
value e (including the dissipated power of the reservoir and the energy transfer over-
head), similar to what is obtained for energy resources like solar [Jin et al. 2014], wind
[WindPower Program 2015], piezoelectric [Abdeddaïm et al. 2014], and radio frequency
[Nishimoto et al. 2010]. For resources like solar which may have noticeable changes at
different hours a day, H can change at different epochs/dozens of epochs, e.g., it can be
different for every hour during the 24 hours of the day. This property is not in the focus
of this paper; it does not change the principles of the forthcoming analytical solution,
but makes its presentation more complex and increases the notational overhead.
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The super-capacitor, as another part of the energy supplier, is defined by a tuple
(Emax , C,ECO ,Dis), where Emax is its maximum stored energy, C its capacity, ECO is
the cutoff energy (the minimum stored energy with which the system can still operate),
and Dis specifies the dissipated power. Dis consists of super-capacitor self-discharge
which occur during frequent charging-discharging cycles of the super-capacitor [Chai
and Zhang 2015].

The Energy Iteration Equation model proposes a piecewise linear approximation of
the dissipated power Dis [Yang and Zhang 2013; Zhu et al. 2009]. Let V (t) and E(t)
denote the super-capacitor voltage and the respective energy at time t. Then, for an
interval during which task τi is executing with power Pow i, we have:

E(t) =
1

2
CV 2(t) (1)

dE(t)

dt
= −Pow i −Dis(E(t)) (2)

where the dissipated power Dis(E(t)) is defined as follows [Zhu et al. 2009]:

Dis(E(t)) =


a1E(t) + b1 ER1

≤ E(t) ≤ ER2

a2E(t) + b2 ER2
< E(t) ≤ ER3

· · · · · ·
anE(t) + bn, ERn

< E(t) ≤ ERn+1

(3)

Here ER1
= 0, ER2

denotes the cut-off energy with ER2
= ECO , and ERn+1

= Emax . We
denote the kth interval constraint in Dis(E(t)) as

Disk(E(t)) ≡ ERk
< E(t) ≤ ERk+1

for 1 ≤ k ≤ n. For example, suppose that there is no energy arrival for some time
interval starting at t0 and that the energy E(t) satisfies Disk(E(t)) for that interval;
then the dissipated power is defined by a single linear function Dis(E(t)) = akE(t)+bk.
As a result, for t > t0 we obtain:

E(t) = −Ak(Pow) + (E(t0) +Ak(Pow))e−ak(t−t0) (4)

where Ak(Pow) = Pow+bk
ak

and Pow is the power consumption within that time interval.
Accordingly, the Time-To-Constraint-Change (TTCC) starting at time t0, i.e., the time
it takes that the active constraint changes from Disk (because ERk

< E(t) ≤ ERk+1
) to

Disk−1 will be

TTCC (E(t0)) = − 1

ak
ln

ERk
+Ak(Pow)

E(t0) +Ak(Pow)
(5)

3.3. Problem Definition and the Solution Approach
Considering the mentioned system model and regarding the details of the energy har-
vester, the super-capacitor, and the tasks, the goal of this paper is broken into solving
three problems in the following order.

PROBLEM 1. While considering the uncertainty in the energy arrival and the phys-
ical characteristics of the energy storage, determine the steady-state success ratio of jobs
for a given schedule. Given a schedule, we formally define the success-ratio of job τi,k as

Rτi,k ≡ probability that ∀t at which τi,k is scheduled: E(t) ≥ ECO (6)

where E(t) and ECO are the super-capacitor energy at time t and the cut-off energy,
respectively. �
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PROBLEM 2. Determine a time- and energy-feasible schedule in a standard (i.e., a
non-mixed-criticality) setting. The steady state success ratio of each job τi,k is required
to be greater than or equal to the threshold αi. �

Before giving the third problem, we provide the following definition to formally state
our notion of feasibility in a mixed-criticality setting:

Definition 3.1 (Feasible Schedule). A mixed-criticality schedule for a task set is
called time-energy feasible, or simply feasible, if the following two conditions are sat-
isfied:

(1) ∀i ∈ [1,m] with li = LO, ∀k ∈ [1, Π
πi

]: When the system operates in low criticality
mode for enough time that it exhibits its steady-state behavior, then the steady-
state success-ratios satisfy Rτi,k ≥ αi and all jobs τi,k meet their real-time con-
straints.

(2) ∀i ∈ [1,m] with li = HI, ∀k ∈ [1, Π
πi

]: The steady-state success-ratios satisfy Rτi,k ≥ αi
and all jobs τi,k meet their real-time constraints. �

In other words, while the timing behavior of tasks should respect the constraints of a
standard mixed-criticality model, from the energy viewpoint, the jobs of low criticality
need to satisfy their success-ratio constraints only if the system is in low criticality
mode whereas jobs of high-criticality tasks need to satisfy them always.

PROBLEM 3. According to Definition 3.1 which states conditions for feasibility,
even with multiple scheduler mode switches between high criticality and low criticality
modes, the steady-state success-ratio of HI jobs must be protected and the corresponding
constraint must not be violated. Thus, the last problem that we consider is to determine
a feasible schedule in a mixed-criticality setting. �

For the first problem, we propose an analytical method to obtain the PDF of the
super-capacitor energy content at different time instants. According to the analysis,
the calculation of the job success-ratio (defined in (6)) and other important quantities
is presented.

Based on this analytical method, we provide an algorithm for Problem 2 that al-
lows us to schedule a task set such that both, temporal and steady-state success-ratio
constraints are satisfied for a non-mixed-criticality setup, e.g., considering only HI-
criticality tasks.

Finally, the third problem, namely feasible scheduling of the mixed-criticality sys-
tem is addressed. The proposed method is based on the solution to Problem 2 and the
constraint that job start times remain unchanged either i) when all jobs exhibit their
low criticality behavior or ii) when the system scheduler is in the high criticality mode
as at least one HI-criticality task instance has exceeded its low execution time bound.
This algorithm is run offline to determine static start times for LO and HI jobs at dif-
ferent scheduler criticality modes. The above mentioned analytical method is used to
determine the super-capacitor energy probability distribution at different moments in
time, while considering the stochastic energy arrival and the possibility of a sudden
scheduler mode switch. In fact, depending on different time instants when the sched-
uler mode switch may happen, the scheduler reacts in an online manner such that the
feasibility of schedule based on Definition 3.1 remains valid. Moreover, we specify the
conditions under which the system can safely transit back to the scheduler low mode.

4. ENERGY ANALYSIS
In this section, we consider a system with an architecture as shown in Fig. 1 and
some fixed static schedule for the tasks. We propose an analytical method to calculate
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the super-capacitor energy availability at different time instants. In order to provide
guarantees independent of the run-time behavior of jobs, we suppose that execution
times equal the WCETs.

At first, we introduce the notion of state for our stochastic analysis. Next, the state
energy and the steady-state analysis are described. Finally, we discuss the calculation
of the job success-ratio as well as the wasted energy.

4.1. State Space Representation
In the following, we discuss the notion of state for a given static schedule. Such a sched-
ule has a number of scheduling points throughout the hyperperiod Π, determined by
the start and end points of jobs (or job segments resulted from preemptive schedul-
ing) on the timeline. Considering the scheduling points and the epoch starting points,
the timeline is divided into some intervals, where each is called a Power Usage Mono-
tonicity Interval (PUMI); a PUMI is defined as an interval during which the system
power requirement does not change and the super-capacitor is not charged. Remem-
ber that only at the starting times of an epoch the super-capacitor is charged from the
intermediate reservoir, and that the epoch length P divides the hyperperiod Π.

We represent the hyperperiod as a sequence of intervals PUMI 1,...,PUMI k, where
PUMI i = [PUMI si ,PUMI ei ], i.e. it starts at PUMI si and ends at PUMI ei . There exist
n constraints for the power dissipation Dis for different levels of the super-capacitor
energy content, indexed as Dis1,..., Disn, see also (3).

Due to the energy-dependent dissipated power according to (3), we are faced with a
piecewise linear energy loss as well as a constant energy usage within a PUMI. As a
result, to calculate the energy stored in the super-capacitor during such an interval, we
need two types of information: the current PUMI with its scheduled task or idle power
consumption, and the sequence of active interval constraints Dis in (3). Therefore, we
define the notion of a state as a tuple si,j = (Disi,PUMI j) for 1 ≤ i ≤ n, 1 ≤ j ≤ k,
where Disi denotes one of the interval constraints in (3) and PUMI j denotes one of the
power usage monotonicity intervals within the hyperperiod Π.

Transitions between states can be caused by a change in the energy dissipation
relation according to (3) or by moving from one PUMI to the next. More formally, two
types of events can result in a transition from si,j to some other state:

— The active interval constraint Disi in (3) changes which leads to a transition to state
si−1,j , 1 < i ≤ n.

— The current time reaches the end of the monotonicity interval PUMI ej . If the end of
the interval does not coincide with the end of an epoch, then we observe a transi-
tion to the adjacent state si,(j mod k)+1. Otherwise, the energy that was harvested
during the epoch is added to the super-capacitor and the transition from si,j is not
necessarily to an adjacent state, i.e., the destination state can be si′,(j mod k)+1 where
i ≤ i′ ≤ n. The corresponding active dissipation interval constraint is Disi′ according
to (3).

An Illustrative Example: A sample task set is provided in Table I. Fig. 2 shows a cor-
responding example schedule. The epoch length is P = 2. Fig. 3 shows the partial state
space of this schedule for the time interval t ∈ [0, 4] between the start of PUMI 1 and
the end of PUMI 3 for a dissipated power Dis with three interval constraints, namely
Dis1, Dis2 and Dis3. Remember that Dis1 denotes the constraint where the system is
below the cutoff energy. Therefore, if the system executes a job and enters a state that
is associated to Dis1, the system stops the job execution and the job execution fails.
The system may enter Dis1 due to either job energy consumption or super-capacitor
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Table I. An example to introduce PUMI and state.

Task li πi (~εi[LO],~εi[HI]) αi Pow i
τ1 - 4 (1, 1) - -
τ2 - 6 (3, 3) - -

Fig. 2. A schedule for task set of Table I, and the corresponding PUMIs.

Fig. 3. Partial state space corresponding to interval [0, 4] of Fig. 2.

power dissipation. It will remain in Dis1 at least until the start of the next epoch at
which the super-capacitor is charged.

4.2. State-Based Energy Analysis
In each state, the super-capacitor is discharged due to task power consumption (or idle
power) and power dissipation according to (3). On the other hand, at the beginning
of an epoch the super-capacitor is charged by a probabilistic amount according to the
energy probability density function H. We are interested to know the PDF of the avail-
able energy in the super-capacitor at different time instants. This result will be utilized
later on for the calculation of job success-ratio and the wasted energy. When talking
about the stored energy, we always refer to the available energy in the super-capacitor.
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We define the following random variables:
Zini,j ≡ Time of entering state si,j , (7)

Eini,j ≡ The stored energy when entering si,j . (8)

The entering time to a state and energy level of the super-capacitor upon entering that
state are related to the time and energy level when the system leaves the previous
state. These quantities are defined as follows:

Zouti,j ≡ Time of leaving statesi,j , (9)

Eouti,j ≡ The stored energy when leavingsi,j . (10)

As the first step in our energy analysis, we are interested in calculating the joint
PDF of Zouti,j and Eouti,j for an arbitrary state si,j as a function of the joint PDF of Zini,j
and Eini,j . To this end, we first specify Zouti,j and Eouti,j as functions of Zini,j and Eini,j :

Zouti,j =

{
Zini,j + TTCC (Eini,j) if Zini,j + TTCC (Eini,j) < PUMI ej
PUMI ej otherwise (11)

Eouti,j =

{
ERi

if Zini,j + TTCC (Eini,j) < PUMI ej
E(PUMI ej) otherwise (12)

where ERi
denotes the lower bound of the relevant interval constraint Disi in (3),

TTCC is the time to constraint change provided in (5), and the stored energy
E(PUMI ej) = −Ai(Pow j) + (Eini,j +Ai(Pow j))e

−ai(PUMI e
j−Z

in
i,j) is determined by (4) using

the task power consumption Pow j within PUMI j .
These relations are based on the fact that there are two reasons for a state transition:

In the first criteria of (11) and (12), the transition happens due to a change of the active
interval constraint to Disi−1, and in the second criteria due to moving to the next power
usage monotonicity interval PUMI j+1. In the former case, the value of Eouti,j is fixed and
known, i.e. it is equal to ERi , while in the latter case the time of transition Zouti,j is fixed
to PUMI ej .

To calculate the joint PDF fZout
i,j ,E

out
i,j

(zouti,j , e
out
i,j ), we employ the well known method

of calculating a joint PDF of functions of two random variables. In our case, these
functions (g and h in Lemma 4.1 below) are actually those defined in (11) and (12).

LEMMA 4.1 (JOINT PDF OF FUNCTIONS OF TWO RANDOM VARIABLES). Suppose
X and Y are random variables with a joint PDF of fX,Y (x, y). Moreover, Z and W
are random variables which are functions of X and Y , i.e.,

Z = g(X,Y ) (13)

W = h(X,Y ) (14)
Then, Z and W are random variables with a joint PDF

fZ,W (z, w) =
fX,Y (x1, y1)

|J(x1, y1)|
+ · · ·+ fX,Y (xn, yn)

|J(xn, yn)|
(15)

in which x1,...,xn,y1, ...,yn are the roots of equations (13) and (14), and J(x, y) is the
Jacobian matrix, calculated as

J(x, y) =

∣∣∣∣ ∂Z∂X ∂Z
∂Y

∂W
∂X

∂W
∂Y

∣∣∣∣
X=x,Y=y

(16)

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 S. Asyaban et al.

PROOF. See [Papoulis 1990].

We will treat the two cases as shown in (11) and (12) separately and start with
the first one. If Eouti,j = ERi

, then Zouti,j = Zini,j + TTCC (Eini,j), and thus, we have
fZout

i,j ,E
out
i,j

(zouti,j , e
out
i,j ) = fZout

i,j ,E
out
i,j

(zouti,j , ERi
). Note that as Eouti,j is constant in this case,

the joint PDF has only one free variable Zouti,j , while this variable is a function of two
random variables (see (11)). In order to use Lemma 4.1, we add the missing random
variable Eini,j to this function which results in fZout

i,j ,E
out
i,j ,E

in
i,j

(zouti,j , ERi
, eini,j). As ERi

has a
fixed constant value, this new function depends on two random variables now. There-
fore, based on Lemma 4.1, we find

fZout
i,j ,E

out
i,j ,E

in
i,j

(zouti,j , ERi , e
in
i,j) =

fZin
i,j ,E

in
i,j

(zini,j , e
in
i,j)

|J |
(17)

where

J =

∣∣∣∣∣∣
∂Zout

i,j

∂Zin
i,j

∂Zout
i,j

∂Ein
i,j

∂Ein
i,j

∂Zin
i,j

∂Ein
i,j

∂Ein
i,j

∣∣∣∣∣∣ =

∣∣∣∣ 1 · · ·
0 1

∣∣∣∣ . (18)

In order to calculate fZout
i,j ,E

out
i,j

(zouti,j , ERi
), we integrate (17) over the augmented vari-

able Eini,j and consider that |J | = 1. We obtain

fZout
i,j ,E

out
i,j

(zouti,j , ERi
) =

∫
eini,j

fZin
i,j ,E

in
i,j

(zouti,j − TTCC (eini,j), e
in
i,j) de

in
i,j . (19)

Now, we study the other case in (11) and (12), i.e., we have Zouti,j = PUMI ej . Using (4)
we find

Eouti,j = −Ai(Pow j) + (Eini,j +Ai(Pow j))e
−ai(PUMI e

j−Z
in
i,j) (20)

Then, similar to the previous case, fZout
i,j ,E

out
i,j

(zouti,j , e
out
i,j ) is augmented with the missing

random variable Zini,j and we obtain

fZout
i,j ,E

out
i,j ,Z

in
i,j

(PUMI ej , e
out
i,j , z

in
i,j) =

fZin
i,j ,E

in
i,j

(zini,j , e
in
i,j)

|J |
(21)

where

J =

∣∣∣∣∣∣
∂Eout

i,j

∂Zin
i,j

∂Eout
i,j

∂Ein
i,j

∂Zin
i,j

∂Zin
i,j

∂Zin
i,j

∂Ein
i,j

∣∣∣∣∣∣ =

∣∣∣∣ · · · e−ai(PUMI e
j−z

in
i,j)

1 0

∣∣∣∣ (22)

As a result, we can calculate fZout
i,j ,E

out
i,j

(PUMI ej , e
out
i,j ) as

fZout
i,j ,E

out
i,j

(PUMI ej , e
out
i,j ) =∫

zini,j

fZin
i,j ,E

in
i,j

(zini,j , (e
out
i,j +Ai(Pow j))e

ai(PUMI e
j−Z

in
i,j) −Ai(Pow j))

|J |
dzini,j

(23)

where |J | = e−ai(PUMI e
j−z

in
i,j).

With (19) and (23), we have determined the joint PDF of Zouti,j and Eouti,j for an arbi-
trary state si,j as a function of the joint PDF of Zini,j and Eini,j . As the next step, we want
to calculate the joint PDF of Zini,j and Eini,j , i.e., fZin

i,j ,E
in
i,j

(zini,j , e
in
i,j).
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To obtain the joint PDF fZin
i,j ,E

in
i,j

(zini,j , e
in
i,j) for state si,j , we consider all possible

transitions from predecessor states si′,j′ to si,j and add the respective joint PDFs
fZout

i′,j′ ,E
out
i′,j′

(zouti′,j′ , ERi′ ) or fZout
i′,j′ ,E

out
i′,j′

(PUMI ej′ , e
out
i′,j′), each one multiplied by the corre-

sponding probability of the predecessor state Prob(si′,j′). Finally, each resulting joint
PDF is normalized such that its integral equals 1.

What is still missing is the probability to be in some state si,j , i.e., Prob(si,j). To this
end, we determine the probability that a state is passed during a hyperperiod, which in
turn depends on the transition probabilities. Remember that there are two reasons for
a transition from si,j , i.e., the super-capacitor energy reaches ERi or the time reaches
PUMI ej . We need the probability of each type of these transitions for each state. The
probability of the former, i.e., the probability of a constraint change Prob(CC i,j), can
be obtained by integrating fZout

i,j ,E
out
i,j

(zouti,j , ERi) as follows:

Prob(CC i,j) =

∫
zout
i,j

fZout
i,j ,E

out
i,j

(zouti,j , ERi
) dzouti,j . (24)

Accordingly, the probability of the latter transition can be obtained as 1−Prob(CC i,j).
Using these results, the state probability can be calculated by summing the probabil-

ities of all the transitions leading to that state. More precisely, if the state probability
of si,j is denoted as Prob(si,j), and the transition probability from a predecessor state
si′,j′ to si,j is denoted as Prob(si′,j′ → si,j), then we find:

Prob(si,j) =
∑

si′,j′∈Pred(si,j)

Prob(si′,j′)Prob(si′,j′ → si,j), (25)

where Pred(si,j) is the set of predecessor states of si,j .
Finally, we would like to shortly describe the special case when the start of

the interval PUMI sj coincides with the start of an epoch, and we want to de-
termine fZin

i,j ,E
in
i,j

(zini,j , e
in
i,j). In this case, for all predecessor states which are left

due to the change of the PUMI , we first add the normalized version of PDFs
fZout

i′,j−1
,Eout

i′,j−1
(PUMI ej−1, e

out
i′,j−1) for 1 ≤ i′ ≤ n while considering the state probabili-

ties. Afterwards, we convolve the obtained combined PDF with the energy probability
density function H, i.e., with the harvested energy at the start of PUMI j . Here we
consider the maximum energy of the super-capacitor by collecting the density of en-
ergies higher than Emax as a weighted Dirac delta function on point Emax . Then, the
obtained PDF is partitioned according to the energy interval constraint related to each
state, see (3). Finally, for time PUMI sj it is specified with what probability each state
will be entered. The remaining calculations are straightforward.

4.3. Steady-State Analysis
We described in the previous subsection how the joint PDF of exiting a state can be
determined, given the joint PDF of entering that state. This provides a simple ap-
proach for the transient analysis of the available energy in the super-capacitor. To this
end, suppose an initial energy in the super-capacitor. One can now start with the first
states of the hyperperiod, for which the entering time is known to be t = 0, and the
entering energy is determined according to the harvested energy PDF H while consid-
ering the initial energy in the super-capacitor. Then, by performing the analysis for all
subsequent states by the method presented above, the PDFs for the states of the first
hyperperiod can be determined. Continuing these steps for subsequent hyperperiods
until a fixed behavior is arrived yields the required steady-state analysis.
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4.4. Calculation of Success Ratios
In this section, we calculate the steady-state success-ratio RJ of some job J as intro-
duced in Section 3 and (6). In other words, we are interested in finding the probabiliy
that enough energy is available in the super-capacitor to successfully execute the job
J , i.e., the probability that the super-capacitor energy will not drop below the cutoff en-
ergy ECO while executing that job. Two cases are considered for the job success-ratio
calculation: i) the job execution falls within one PUMI, namely it is a single-segment
job, ii) the job execution spans several PUMIs, i.e., it is multi-segment.
Single-segment jobs: In this case, the successful execution of job J which executes
only in PUMI j requires that the state s1,j is not entered. In the previous section, we de-
termined the steady state probability of si,j denoted as Prob(si,j). Using the definition
of success-ratio of a job according to (6), we can simply derive:

RJ = 1− Prob(s1,j). (26)

Multi-segment jobs: In this case, the execution of a job is distributed over two or
more PUMIs. The reason can be twofold: i) An epoch boundary happens between the
start and finish time of a job and thus, the job executes beyond one PUMI, or ii) a job is
preempted at the end of a PUMI and continues its execution at the beginning of some
other PUMI. Then, in a probabilistic view, the event of successful execution of the job,
i.e., the job success-ratio, is determined as the intersection of the probabilistic events
of successful execution of all the respective segments. Obviously, if a job segment faced
with lack of energy, it will be meaningless to execute the further segments of that job;
this event impacts the super-capacitor energy availability. Therefore, in case of multi-
segment jobs, the state-based analysis as described in Sections 4.2 and 4.3 needs to be
based on an extended state-space.

In particular, suppose that a job is partitioned into a sequence of PUMIs and j is
one of them, but not the last one. Then, outgoing transitions of the failure state s1,j

enter a modified copy of the states graph corresponding to subsequent PUMIs. In this
copy, the remaining segments of the multi-segment job are not executed. Therefore,
there is no energy consumption in the subsequent PUMIs of the multi-segment job.
The original state graph and its modified copy merge again after the last PUMI that
contains a segment of the job. As an example, let us assume the two-segment job that
spans PUMI 3 and PUMI 4 in Fig. 2. The resulting partial state graph for the interval
[2, 7] is depicted in Fig. 4. In case of several multi-segment jobs, the above construction
is applied recursively.

To calculate the job success-ratio, we first need to calculate the steady-state proba-
bilities Prob(si,j) using the state-based analysis as described in Sections 4.2 and 4.3
for the extended state graph. Before describing the general case, let us determine the
success ratio of job J for the example shown in Fig. 4, which can be calculated as
RJ = 1 − (Prob(s1,3) + Prob(s1,4)). This relation is due to the fact that the job fails if
the execution passes state s1,3 or state s1,4, and the corresponding events are mutually
exclusive due to the construction of the state graph.

In the general case, let us suppose that a job J is executed in PUMI j1 ,..., PUMI jn .
Then the success ratio of a job J satisfies RJ = 1 − FJ , where FJ denotes the failure
probability. FJ is given by the sum of steady state probabilites Prob(s) for all states
s that are determined using the following rules: (1) Include state s1,j1 in an initially
empty set F . (2) Repeat the following rule for all 2 ≤ k ≤ n: Include state s1,jk in F ,
that s1,jk is not reachable from states already included in set F .

Due to the 2nd rule, all considered state events are mutually exclusive. Moreover, the
fact that we consider all mutually exclusive failure states guarantees that all failure
events and the corresponding probabilities are taken into account.
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s3,3

s2,3

s1,3

s3,4

s2,4

s1,4

PUMI3 PUMI4

s3,2

s2,2

s1,2

PUMI2

s3,5

s2,5

s1,5

PUMI5

s'3,4

s'2,4

s'1,4

PUMI4 without job execution

Fig. 4. Partial state space corresponding to interval [2, 7] of Fig. 2 with the two-segment job spanning
PUMI 3 and PUMI 4.

4.5. Calculation of Wasted Energy
An important measure that describes the efficiency of a scheduling policy as well as
the dimensioning of the overall system is the wasted energy, which is defined as the
amount of energy in one hyperperiod Π that arrives at start of epochs but cannot be
stored due to a full super-capacitor.

We are interested to find the PDF of the wasted energy. Suppose an interval PUMI j
whose finishing time (PUMI ej) coincides with the start of epochk. Then we find as the
PDF of the wasted energy at this time the following expression

WEk(e) =

n∑
i=1

Prob(si,j) ·max (H(e) ∗ fZout
i,j ,E

out
i,j

(PUMI ej , e)− Emax , 0) (27)

where n is the number of interval constraints. The PDF of the total wasted energy in
one hyperperiod can now be determined by means of convolution

WE = WE 1 ∗WE 2 ∗ ... ∗WEΠ/P (28)

5. THE SCHEDULING ALGORITHM
In this section, we will present a heuristic scheduling algorithm for the introduced
mixed-criticality system in the presence of energy uncertainty. The super-capacitors

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 S. Asyaban et al.

are supposed to have no power dissipation. We propose a static scheduling algorithm
with preemption of jobs, i.e., jobs can be executed as a sequence of segments. The
starting times of all segments are determined at compile-time such that the timing as
well as the success-ratio constraints in both scheduler modes are satisfied.

— The system starts operation in low mode, where all job segments are started following
the computed schedule.

— If a HI job executes longer than its LO execution time, then the scheduler switches
to high mode. Job segments of LO tasks are not executed anymore.

— If a certain condition is satisfied, the scheduler switches to its low mode and jobs of
LO tasks are being executed again.

At first, we will derive some general properties of the system we are looking at. They
form the basis for the construction of a static schedule where feasibility is determined
by the analytical method presented in Section 4. Details of the algorithm are then dis-
cussed in the following order: i) Scheduling of HI jobs in the high scheduler mode. This
can also be considered as a solution to non-mixed-criticality systems, namely Problem
2 of Section 3.3, and ii) accommodating the jobs of LO tasks in appropriate places on
the timeline for the low mode. In this way a solution to Problem 3 of Section 3.3 is
provided as well.

For the sake of simplicity, we first present properties and an algorithm for single-
segment jobs, and then we discuss its extension to the multi-segment case.

5.1. Basic Definitions and Properties
In this section, we restrict ourselves to scheduling of single-segment (non-preemptive)
jobs [Jeffay et al. 1991]. We will generalize the discussions to multi-segment jobs
later. A scheduling method that guarantees real-time and success-ratio constraints
in a mixed-criticality system with energy uncertainty has not been studied previously.
As the problem is intractable in general, we will present a heuristic approach which is
based on a set of non-trivial results that are described next.

Definition 5.1 (Safe Points for Scheduler Mode Change). The proposed scheduling
algorithm is expected to work such that, for a feasible schedule, it has the following
safe points for a scheduler mode change:

— The scheduler can safely transit from its low mode to its high mode whenever a HI
job violates its LO execution-time bound.

— The scheduler can safely transit from its high mode to its low mode whenever (i) a HI
job completes by respecting its LO execution-time bound at some time t and (ii) the
super-capacitor energy content E(t) is equal to or greater than the maximum super-
capacitor energy at t as determined by the steady-state analysis of the system in the
low scheduler mode. �

According to Definition 5.1, it must be guaranteed that there is no success-ratio
problem for the HI jobs in case of a low-to-high scheduler mode switch, i.e., the mode
switch should be safe. Thus, when determining the starting time of LO jobs, one needs
to make sure that even in case of a low-to-high scheduler mode switch, the energy
PDFs at the start of HI jobs guarantee the success-ratio constraints for all HI tasks.

Given some specific time-feasible schedule, one can use the steady-state analysis of
Section 4 to determine the job success-ratios and compare them to the constraints. But
the use of a brute-force method to determine a suitable static schedule might be im-
possible due to combinatorial explosion. Therefore, we follow the strategy of iterative
improvement: Starting from an initial solution we add and/or remove jobs, we change
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the order of jobs and we shift the starting times of jobs. The following properties pro-
vide the necessary background for such an efficient search heuristics.

Monotonicity in energy distribution and power consumption:. At first, we define a
partial order of energy PDFs that allows us to compare two energy PDFs at the start
of a PUMI. This way we can determine whether one or the other is better in terms of
success-ratios of subsequent jobs.

LEMMA 5.2. Let us consider the starting time PUMI sj of PUMI j with two corre-
sponding super-capacitor energy PDFs

fE(e) =

n∑
i=1

Prob(si,j) · fZin
i,j ,E

in
i,j

(PUMI sj , e)

f ′E(e) =

n∑
i=1

Prob(si,j) · f ′Zin
i,j ,E

in
i,j

(PUMI sj , e)

Let us denote as FE(e) and F ′E(e) the corresponding Cumulative Distribution Functions
(CDFs). If the condition

∀e ≥ 0 : FE(e) ≤ F ′E(e),and (29)

holds then F ′E is not better than FE (equivalently, the PDF f ′E is not better than fE). If
in addition

∃e > 0 : FE(e) < F ′E(e) (30)

then F ′E is worse than FE (or equivalently, the PDF f ′E is worse than fE).

PROOF. In the context of this paper, a better PDF at the starting time of a job
provides a larger success-ratio. Suppose a job J , scheduled at PUMI j , has an energy
requirement of EJ . Then, the job success-ratio considering the super-capacitor energy
CDF of FE(e) is

RJ = P (E ≥ EJ) = 1− P (E ≤ EJ) = 1− FE(EJ) (31)

Similarly, R′J can be calculated based on F ′E(e). Then, (29) implies that

∀e ≥ 0 : 1− FE(e) ≥ 1− F ′E(e)⇒ RJ ≥ R′J (32)

If (30) holds as well, then ∃e > 0 such that 1 − FE(e) > 1 − F ′E(e), indicating that we
have RJ > R′J in addition if J had an energy requirement of e.

LEMMA 5.3. Let fE(e) and f ′E(e) be two alternative initial PDFs at the start of a
hyperperiod, and consider that the f ′E(e) is not better than fE(e). Then the energy PDFs
at the starting times of all PUMIs within the hyperperiod of the two alternative systems
have the same relation.

PROOF. According to the relation between fE(e) and f ′E(e) at PUMI s1 (based on
Lemma 5.2), and the assumption that both systems have the same schedule, the proof
is immediate for PUMI s2. Taking PUMI s2 as the new time origin, the same reasoning
can be repeated until reaching any further PUMI. Thus, the proof is completed induc-
tively.

COROLLARY 5.4. Assume that fkE(e) and fk
′

E (e) denote the PDFs at the start of hy-
perperiods k and k′ with k < k′, respectively. If fk

′

E (e) is not worse than fkE(e), then the
super-capacitor energy PDFs fk

′′

E (e) at the start of hyperperiods k′′ are not worse than
fk
′

E (e) for all k′ < k′′.
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Lemma 5.3 and Corollary 5.4 have important implications to make sure that the
low-to-high scheduler mode switch is safe for an obtained schedule, see Subsection 5.2.

LEMMA 5.5. Suppose a given schedule and the energy PDF fE(e) at the start of
the hyperperiod, which is obtained via a steady-state analysis. Reducing the power con-
sumption Pow of an arbitrary job results in the energy PDF f ′E(e) at start of the hy-
perperiod. Then, fE(e) is not better than f ′E(e). The same relation holds for all energy
PDFs of PUMI s within the hyperperiod before and after the power change.

PROOF. The steady-state analysis is based on an iterated transient analysis until a
fixed-point is reached. Without loss of generality, we consider that the PUMI with the
reduced power consumption is the last one in the hyperperiod, say PUMI k. The first
transient analysis of the modified system starts from some initial fE(e) and therefore,
the PDFs at the start of consecutive PUMIs are as before, up to PUMI sk. However,
as the power consumption has been reduced during PUMI k, then fE(e) is not better
than the resulting energy PDF at start of the next hyper-period. Applying standard
arguments on fixed-points as well as the monotonicity result of Lemma 5.3 leads to
the statement of the Lemma.

Shifting the starting times of jobs:. As mentioned, we are investigating the impact
of different changes in a schedule. For simplicity, in the following, first we consider a
fixed job ordering (no reoredering is permitted when changing a schedule) and only
investigate moving a job within one epoch or between consecutive epochs, when there
are idle times to do so. Later on, we discuss job reorderings.

LEMMA 5.6. Consider an epoch which contains idle intervals, i.e., time intervals
where no job is scheduled to run. Then, moving a job within the epoch (with no job
reordering) does not affect the steady-state energy PDFs at the start time of any job.

PROOF. Consider a job J within an arbitrary epoch with some idle intervals around
it. Let f1 and f2 denote the super-capacitor energy PDFs at the start of the idle PUMI
immediately before, and at the end of the idle PUMI immediately after that job, re-
spectively (see Fig. 5). Also, assume that the super-capacitor energy PDFs at the start
and end of the PUMI corresponding to J are denoted as fs and fe, respectively. As we
consider an ideal super-capacitor with no power dissipation, with moving J the energy
available in the super-capacitor does not change from the start of the preceding PUMI
to the start of J , and also from the end of J to the end of the subsequent PUMI. Thus,
it is obvious that f1 ≡ fs and fe ≡ f2.

Now, we investigate the effect of job backwarding, namely moving a job to a former
epoch.

LEMMA 5.7. Consider two consecutive epochs epochj and epochj+1. Backwarding
the first job, say J , of epochj+1 to be executed as the last job of epochj does not worsen
the energy PDF at the start of the successor of J in epochj+1. If the super-capacitor is
full before adding the non-zero harvested energy at the end of epochj then backwarding
the job J results in a better super-capacitor energy PDF at the end of epochj+1, while the
success-ratio of the backwarded job does not change.

PROOF. Suppose an initial schedule that the super-capacitor energy at the end of
epochj is e1 and the harvested energy at start of the succeeding epoch is eh (sampled
from a distribution with PDF H). Also, suppose eJ denotes the energy needed by the
first job J of epochj+1. Then, in the initial schedule, the super-capacitor energy when
starting to execute the successor J ′ of J in epochj+1 is

e2 = Max(Min(e1 + eh, Emax )− eJ , 0). (33)
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Epoch

Job J Other jobs

fs(.) fe(.)

Epoch

No energy usage 

fs(.) ≡ f1(.),  fe(.) ≡ f2(.)

Idle PUMI

fs(.) ≡ f1(.) fe(.) ≡ f2(.) f2(.)

(a)

(b)

D
en

si
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f2(.)

Fig. 5. Moving a job within one epoch describing Lemma 5.6: (a) before movement, (b) after movement.

In the modified schedule where J has been moved to the end of epochj , the super-
capacitor energy at start of J ′ is

e′2 = Min(Max(e1 − eJ , 0) + eh, Emax ). (34)

By some algebraic transformations it can be shown that e′2 ≥ e2 and therefore, there is
never less energy in the capacitance for every scenario. As the super-capacitor is full
before adding the harvested energy at the end of epochj , it can be concluded that there
is no job running in epochj . Therefore, the capacitor is full at the start of job J even
when backwarded to epochj . As a result, its success-ratio does not change. From the
above relations we find e′2 = Min(e2 + eh, Emax ) for e1 = Emax . Therefore, e′2 > e2 if
eJ > 0 and eh > 0.

The effect of job forwarding, namely moving a job to a later epoch, can also be inves-
tigated based on the results of job backwarding. For instance, suppose that the last job
of epochj is forwarded to epochj+1. Then the energy PDFs after movement are equal
or worse for subsequent jobs as this change may cause more wastage of the harvested
energy due to a full super-capacitor at the end of epochj .

COROLLARY 5.8. Suppose a given schedule has been analyzed in its steady-state.
According to Lemma 5.7, backwarding a job, i.e., executing it sooner, may decrease the
success-ratio of the same job but is neutral or positive for the success-ratio of the others.
Inversely, forwarding a job, i.e., executing it later, may improve its success-ratio but is
neutral or negative for the success-ratio of all other jobs.

According to the above corollary, more control is possible through job backwarding,
since the movement does not invalidate the possible energy-feasibility of other parts
of the schedule.
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COROLLARY 5.9. Consider that we have the steady-state energy PDFs of the super-
capacitor at start and end of every job. Following Lemma 5.7 we backward a job. Cal-
culating the success-ratios of all jobs based on the energy PDFs as obtained from the
steady-state analysis before the movement gives a pessimistic view to all job success-
ratios.

The justification for Corollary 5.9 is as follows: Suppose all energy PDFs have been ob-
tained based on the steady-state analysis introduced earlier. Then, a job is backwarded
and its degraded success-ratio R is calculated based on the given PDFs with no fur-
ther steady-state analysis, i.e., its initial energy PDF is equal to the energy PDF at the
end of its new predecessor job. All following jobs are provided with an equal or better
energy PDF which may have a positive impact on their success-ratios, see Lemma 5.7
and Lemma 5.3. According to Corollary 5.4, the fixed point calculations can only lead
to equal or better PDFs.

Reordering of jobs:. Finally, we consider job reordering and we determine the corre-
sponding consequences in terms of success-ratios.

LEMMA 5.10. Let us consider a schedule containing two adjacent jobs that are ex-
ecuted in a single epoch. They are in the Success-Ratio-Constraint Monotonic (SRCM)
order, i.e., the job with the lower success-ratio constraint is scheduled first. At least one
of the two jobs violates its success-ratio constraint. Then, exchanging the order of the
jobs does not make the schedule energy-feasible.

PROOF. The two jobs J1 and J2 have energy requirements E1 and E2, and their
success-ratio constraints satisfy α1 > α2. Consider the two different orderings: J1; J2

and J2; J1. We show that if the two jobs meet their success-ratio constraints in the sec-
ond ordering, then they meet their success-ratio constraints in the first ordering too.
Let Es be the initial super-capacitor energy at start of the first job. Then, to success-
fully execute both jobs in the first ordering, we need to have

P (E0 − E1 ≥ ECO) ≥ α1 (35)

P (E0 − E1 − E2 ≥ ECO) ≥ α2 (36)

where ECO denotes the cut-off energy. In order to successfully execute the jobs in the
second ordering, we require

P (E0 − E2 ≥ ECO) ≥ α2 (37)

P (E0 − E2 − E1 ≥ ECO) ≥ α1 (38)

If (38) holds, then it is obvious that (35) holds as E0 − E1 > E0 − E2 − E1. As α1 > α2,
(36) also holds.

Applying the previous Lemma 5.10 to any two adjacent jobs of a given schedule in an
epoch indicates that the job with the highest success-ratio constraint should run first
(considering no timing violation). With the same reasoning, other jobs should also be
scheduled in the decreasing order of their success-ratio constraints.

5.2. The Mixed-Criticality Scheduling Algorithm
In this section, we present a heuristic non-preemptive scheduling algorithm for single-
segment jobs with the following properties (suppose THI = {τi|li = HI} and TLO =
{τi|li = LO}):

(1) When the scheduler is in its low mode, jobs of all HI- and LO-criticality tasks are
executed in a manner that their time and success-ratio constraints are satisfied,
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(2) when the system transitions to HI mode, i.e., when at least one HI-criticality job
exceeds its LO execution time bound, it is guaranteed that all HI-criticality jobs
satisfy their time and success-ratio constraints in steady-state, and

(3) the start times of all jobs in the non-preemptive schedule at both scheduler modes
remain intact, resulting in no impact on the jobs which are run in both scheduler
modes (namely, THI); in other words, they even do not experience any transient
problem resulted from the scheduler mode change in their steady-state success-
ratio.

We use the following algorithms as parts of the overall Mixed-Criticality Success-
ratio-Constrained Scheduling algorithm (MC-SCS):

— No Criticality Change algorithm (NCC): This algorithm attempts to find a time- and
energy-feasible schedule for a given task set at a fixed scheduler mode. We employ
it to schedule THI when they exhibit their HI-criticality behavior. NCC may also be
employed for the scheduling of non-mixed-criticality systems.

— Low Scheduler Mode algorithm (LSM): This algorithm attempts to add jobs of TLO

tasks to the schedule obtained by NCC as used in the low criticality scheduler mode.

MC-SCS:. We first discuss how the two algorithms are assembled to build MC-SCS
using the pseudo-code summarized in Algorithm 1. At first the set THI, namely the
HI tasks which run in both scheduler modes, are scheduled using NCC based on a
given schedule SHI (Line 3). Failure of NCC in finding a feasible schedule means un-
schedulability of T using this algorithm (Lines 4-6). Then, the LO tasks are scheduled
using LSM which leads to the final schedule S (Line 7).

ALGORITHM 1: MC-SCS
Input: T = {τi : (li, πi,~εi,Pow i, αi)} ; SC = (Emax , ECO ,Dis, P,H)
Output: S: A feasible schedule for T. S = null means T is un-schedulable by this algorithm.

1 THI = {τi ∈ T |li = HI};
2 TLO = {τi ∈ T |li = LO};
3 SHI = NCC(THI, SC);
4 if SHI = null then
5 return null
6 end
7 S = LSM(THI,SHI,TLO, SC);
8 return S

NCC:. This algorithm works on top of any given single-segment time-feasible sched-
ule. Based on what is emphasized in Corollary 5.8, we use job backwarding in our
proposed idea to have a better control over the changes of the job success-ratios. Thus,
we consider that the time-feasible schedule tends to schedule the jobs as late as possi-
ble, so that job backwarding is enabled as much as possible.

As a basic scheduling algorithm, we use Earliest Deadline as Late as possible (EDL)
[Chetto and Chetto 1989] and modify it for non-preemptive scheduling. Due to the non-
optimality of non-preemptive EDL, this approach may result in the failure of NCC at
the early stages, even if the task set is time-feasible. On the other hand, EDL tends
to schedule the jobs as late as possible and leads to opportunities for job backwarding.
The proposed non-preemptive version of EDL first calculates idle times corresponding
to each release-time, see [Chetto and Chetto 1989]. After the idle times passed, jobs
with the earliest deadline are scheduled.
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Table II. A sample task set for the description of the
scheduling algorithm.

Task li πi (~εi[LO],~εi[HI]) αi Pow i
τ1 HI 6 (1, 2) 0.94 0.33
τ2 HI 15 (1, 3) 0.98 0.2
τ3 LO 5 (1, 1) 0.9 0.1
τ4 LO 30 (4, 4) 0.9 0.12

A pseudo-code for NCC is provided in Algorithm 2. To have a better insight on the
way how NCC works, we describe it while applying the algorithm to the sample task
set given in Table II. The harvesting system is characterized by Emax = 12, P = 10,
and the PDF of the harvested energy H has a uniform distribution in [1, 2].

Step 0 of Fig. 6 relates to Line 2 of Algorithm 2. As can be seen, this gives a time-
feasible schedule, thus passing Lines 3-5. After running Line 6 and obtaining the job
success-ratios for the schedule, the while loop is executed and the jobs with acceptable
success-ratio are added to SHI iteratively (Lines 7-11); in the case that we find a job
with unsatisfied success-ratio constraint (τ2,2 in our example, specified by symbol ′×′
in Step 0 of Fig. 6), then Lines 12-18 must be followed. The algorithm first tries to
solve the problem locally in the same epoch, through SRCM (Line 14), since it has no
impact on the success-ratio of jobs in other epochs. The term "temporal commutative"
in that line means that no timing problem occurs when exchanging the jobs. If the
problem persists, the next choice is to use Lemma 5.7, namely to backward a job that
is scheduled ahead of the job with unsatisfied success-ratio. The first applicable choice
for our ongoing example to improve the success-ratio of τ2,2 is Line 14. Here, the jobs
whose success-ratio might be degraded by the reordering must be returned from SHI to
the set of unscheduled jobs S (τ1,5 in our example). Then, Line 17 applies the analysis
method to the schedule obtained through merging the scheduled (SHI) and unscheduled
(S) jobs on the timeline. Function merge(SHI,S) preserves the place of jobs in SHI and
S on the timeline. As can be seen in Step 1 of Fig. 6, applying Line 14 results in
solving the problem of τ2,2 but making the success-ratio of τ1,5 unacceptable. In this
example, one more round is needed to solve the problem of τ1,5 through Line 15, by
backwarding τ1,2 (Step 2 of Fig. 6). Backwarding τ1,4 would have invalidated its own
success-ratio. The success-ratios are reported in Step 2 of Fig. 6. The reason that the
other success-ratios in the example have also been improved through the backwarding
relates to what was emphasized in Lemma 5.7 and Corollary 5.8. We continue the
algorithm till either S gets empty and a feasible schedule is obtained in SHI (Line 20)
or the algorithm fails (Line 16). We see that a feasible schedule for the HI tasks of our
example was returned in this way.

LSM:. Suppose that a feasible schedule SHI is given for THI. We present a heuristic
non-preemptive scheduling algorithm which accommodates jobs of tasks belonging to
TLO into the time gaps of SHI when the HI tasks show their LO execution time be-
havior, considering that SHI can be changed if needed. For a simpler presentation, we
propose some rules underlying the policies in the heuristic scheduling algorithm:
Rule 1: Let SHI and SLO be the static schedules in the high and low scheduler modes,
respectively. Also, consider fSHI and fSLO as the corresponding steady state super-
capacitor energy PDFs at the start of hyper-period when the scheduler is in the high
and low modes. If the low-to-high mode change occurs during PUMI i (PUMI i certainly
belongs to a HI job), we obtain a new schedule SLO,transient for that hyper-period con-
structed from two partitions: It is the same as SLO during interval [0,PUMI si ], and the
same as SHI during interval [PUMI si ,Π]. Then, for all such PUMIs in which a low-to-
high scheduler mode change is possible, at least one of the following conditions must
be satisfied to be sure that every low-to-high scheduler mode change is safe:
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ALGORITHM 2: NCC
Input: T = {τi : (li = HI, πi, εi = ~εi(HI),Pow i, αi)} ; SC = (Emax , ECO ,Dis, P,H)
Output: SHI: A feasible schedule for T where

SHI = null means that T is un-schedulable by this algorithm.
1 Π = LCM (π1, ..., π|T |, P );
2 S = EDL(T,Π) ; // S must be a possible time-feasible schedule
3 if S = null then
4 return null
5 end
6 RJ = SS_EnergyAnalysis(S, SC) ; // For all jobs J, based on Section 4
7 SHI = null ; // SHI must be a time- and energy-feasible schedule of jobs
8 while S 6= null do
9 determine the first job of S (i.e., τi,k) & its epoch (epochj);

10 if Rτi,k ≥ αi then
11 move τi,k from S to SHI ; // to the same place on the timeline
12 else
13 case select the first applicable option from the following list do
14 1: find the nearest temporal commutative job J ahead of τi,k in epochj with α < αi;

move J and the following jobs from SHI to S; reorder τi,k and J according to SRCM;
see Lemma 5.10;

15 2: find the first epochk from epochj down to epoch2 in SHI which the following is
applicable to: in epochk, among the jobs ahead of τi,k, subject to job timing
constraints, select the first job J of epochk and backward it to epochk−1 in SHI; see
Lemma 5.7 and Corollary 5.8;

16 3: otherwise return null;
17 end
18 RJ = SS_EnergyAnalysis(merge(SHI,S), SC);
19 end
20 end
21 return SHI

— Condition 1: Based on Lemma 5.3 and Corollary 5.4, fSLO
(PUMI si ) be not worse

than fSHI(PUMI si ).
— Condition 2: This is a more relaxed condition in comparison to Condition 1. The

success ratios of all jobs belonging to SLO,transient need to be satisfied when carrying
out a transient analysis starting from PUMI i and considering the initial energy PDF
fSLO

. Moreover, during a steady-state analysis, the energy PDFs at the start of the
hyper-periods need to satisfy the following condition: Let us define as fkSHI

with k ≥ 1
the energy PDF at the start of the kth hyperperiod in the fixed-point iteration, where
f0
SHI

= fSHI . Now, the success-ratios of all HI jobs must be satisfied until we find a
hyper-period with energy PDF fkSHI

that is not worse than at least one of the previous
energy PDFs f iSHI

, 0 ≤ i < k.

Rule 2: The jobs of tasks belonging to TLO can be placed in time gaps. These time gaps
come from two sources: i) the free times between jobs belonging to THI considering
their HI execution time, and ii) ~εi(HI)− ~εi(LO) for each job τi,k.
Rule 3: If it is required to perform backwarding of a HI job to expand the time gap
needed for accommodating a job of TLO or to improve the success-ratio of such a LO
job, the timing and the degraded success-ratio of the HI job in the high scheduler mode
must be checked to be sure that the change does not invalidate the feasibility of SHI.
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τ1,2 τ1,3 τ1,4 τ1,5τ2,1 τ2,2

1.0 1.0 1.0 0.9838 1.0 0.9905 0.9340

τ1,1 τ1,2 τ1,3 τ1,4 τ1,5
τ2,1 τ2,2

1.0 1.0 1.0 0.9838 1.0 0.9930 0.9340
Reordering τ1,5 and τ2,2

τ1,1 τ1,2 τ1,3 τ1,4 τ1,5
τ2,1 τ2,2

1.0 0.9750 1.0 0.9910 1.0 0.9949 0.9431

τ1,1

Backwarding τ1,2

1.0 0.9750 1.0 0.9910 1.0 0.9949 0.9431
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(3)
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N
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τ1,1 τ1,2 τ1,3 τ1,4 τ1,5τ2,1 τ2,2

τ1 τ2 τ3 τ1 gap τ2 gapτ4

Epoch boundaries

(9-10)

Backwarding τ1,1 (Theorem 1)

τ1,1 τ1,2 τ1,3 τ1,4 τ1,5τ2,1 τ2,2 τ3,6τ3,5τ3,4τ3,3τ3,2

τ1,1 τ1,2 τ1,3 τ1,4 τ1,5τ2,1 τ2,2 τ3,6τ3,5τ3,4τ3,3τ3,2τ4,1τ3,1

(11)

0     1     2     3     4      5     6     7     8     9     10  11   12   13    14  15    16   17   18   19   20   21   22  23   24    25   26   27   28  29   30

NP-EDF schedule of LO tasks

0     1                          5      6                         10     11                      15    16                    20  21                          25    26                       30
τ3,2 τ3,4τ3,3 τ3,5 τ3,6τ3,1 τ4,1

Fig. 6. Applying NCC and LSM on the example of Table II.

Rule 4: Backwarding HI jobs (as well as LO jobs) is done in a parsimony manner
to conserve the option of further backwarding which may be needed to address the
possible success-ratio problems of next jobs not scheduled yet.

These rules define the major idea of the LSM algorithm. A pseudo-code for LSM is
provided in Algorithm 3. The algorithm works in three main steps.
Step 1 (Initialization): Lines 1-2 extend the schedule of the HI scheduler mode to
the new hyperperiod expanded by considering TLO. As LSM assumes that the sched-
uler is in its LO mode, some additional time gaps will be available, as defined in the
description of Rule 2. We use NP-EDF (Non-Preemptive EDF) to determine the order
of jobs belonging to tasks in TLO (Line 3).
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Step 2 (Time-Feasible Job Accommodation): This step tries to move the jobs which
have been temporarily scheduled on the TS timeline to appropriate places on SLO

(Lines 4-23). In this step, we find appropriate time gaps (Line 7), backward jobs be-
longing to THI if necessary regarding the time requirements of jobs of TLO (Lines 8-21),
and we preserve the EDF order from TS (Lines 5, 13, 14, 22). Each unsuccessful trial is
undone and tagged to prevent repeating the same experience by the algorithm (Lines
9, 17-20). To be able to backward LO or HI jobs for solving the possible success-ratio
or energy PDF problems (see Rule 1), we start accommodating jobs from the last job,
as late as possible, and according to First-Fit in the reverse order. In this way, more
maneuver is possible as the time gaps ahead of jobs remain free as much as possible,
supporting Rule 4.
Step 3 (Success-Ratio Tuning): As the accommodated jobs may not pass the corre-
sponding success-ratio constraint for jobs of TLO or may invalidate Rule 1, some re-
ordering among the LO jobs, backwarding of LO jobs, or backwarding of HI jobs might
help. This is done in Lines 24-28. Again if some trial for change in the schedule has
been ineffective or creates new timing/success-ratio problems, the change is undone
and other choices are examined. Depending on the outcome, either null or the finalized
schedule S will be returned.

To continue the example of Fig. 6, we consider that τ3 and τ4 of Table II are to be
added by the LSM algorithm, where their corresponding non-preemptive EDF sched-
ule (Line 3 of Algoritm 3) is shown in Fig. 6. The result of applying Line 2 of LSM is
shown in Step 3 of Fig. 6. Finding appropriate time gaps for τ3,6, τ3,5, τ3,4, τ3,3, and
τ3,2 is done in the first trial of Line 7 for each job (Steps 4-8 in Fig. 6). Also, an ap-
propriate time gap for τ4,1 is simply found by the first trial (in the time gap of [0− 4]).
However, as we have a problem in finding such a gap for τ3,1, we are forced to use back-
warding (Lines 9-15). The only option is to backward τ1,1 for 1 time unit. According to
Lemma 5.6 backwarding is safe in terms of success ratio constraint. Based on Line 13
of Algorithm 3, τ4,1 is returned to TS and based on Line 14, τ4,1 is selected again for
placement. In this way, τ4,1 is placed in the time gap of [4, 8], and then τ3,1 is scheduled
in the time gap of [2, 3] (see Step 9-10 in Fig. 6). The obtained success ratios of all jobs
in the low scheduler mode are equal to 1.0, thus they are not reported in the figure.
The energy CDFs at the start of PUMIs corresponding to the HI jobs in both low and
high scheduler modes have been depicted in Step 11 of Fig. 6. As can be observed, all
of them satisfy Rule 1.

5.3. Extending the Algorithm to Multi-Segment Jobs
In this section, we extend the proposed single-segment heuristic to multi-segment jobs
obtained from preemptive scheduling; it must be emphasized that we use a pessimistic
view in this section due to the reasons described in the following.

Suppose that we apply the preemptive versions of EDL and EDF, respectively, to the
HI and LO jobs when we initially schedule them at start of the proposed algorithms.
Then we have some predetermined segments for each job, where the difference be-
tween their LO and HI execution times is interpreted as: i) some job segments have
equal LO and HI execution times equal to the segment length, ii) possibly one segment
has different non-zero LO and HI execution times (this is the segment in which the
scheduler mode switch may occur), and iii) some segments which have LO execution
time of zero and HI execution time equal to the segment lengths.

One major problem is that Lemma 5.5 is not valid for multi-segment jobs, and thus
many other results presented in Section 5.1 cannot directly be applied to such situ-
ations. First, we concentrate on the reason for the invalidity of Lemma 5.5 using a
simple example.
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ALGORITHM 3: LSM
Input: THI = {τi : (li = HI, πi,~εi,Pow i, αi)}; SHI: A feasible schedule for THI;

TLO = {τi : (li = LO, πi,~εi,Pow i, αi)}; SC = (C,ECO ,Dis, P,H)
Output: SLO: A feasible schedule for THI ∪ TLO. SLO = null means that THI ∪ TLO is

un-schedulable by this algorithm.
1 Π = LCM(π1, ..., π|T |, P ) for τi ∈ T = THI ∪ TLO;
2 SLO = repeated SHI throughout Π, according to ~εi(LO) of tasks;
3 TS = EDF(TLO) throughout Π;
4 while TS 6= null do // Accommodating TLO in SLO in a time-feasible manner
5 select the last job τi′,k′ from the TS timeline;
6 set interval [R,D] based on release-time & deadline of τi′,k′ ;
7 τi,k = First-Fit(τi′,k′ , SLO, D, R) ; // searches SLO from D back to R for the job τi,k

after which τi′,k′ can be accommodated or returns the dummy job τ0,0 if the gap is
at the start of the hyper-period; otherwise it returns null

8 if τi,k = null then
9 τi,k = Find-Closest-Gap(τi′,k′ , SLO, D, R) ; // selection is done amongst untagged

gaps (see Line 18); Rule 4 is also supported by minimalistic backwarding
(see Line 15)

10 if τi,k = null then
11 return null
12 end
13 all jobs belonging to TLO which are scheduled before τi,k are moved from SLO to TS

which is ordered by EDF;
14 update τi′,k′ and [R,D] ; // similar to Lines 5 and 6
15 Backward(τi,k) regarding the extra gap needed for τi′,k′ ; update SHI;
16 Ri,k = SS_EnergyAnalysis(SHI, SC) ; // since SHI has been changed
17 if Ri,k < αi then // Supporting Rule 3
18 undo all changes performed from Lines 9-15 on SHI, SLO, and TS ; // all the

undone trials are tagged, so they will not be repeated
19 continue from Line 4;
20 end
21 end
22 move τi′,k′ from TS to the latest possible time after τi,k in SLO ; // Supporting Rule 4

23 end
24 RJ = SS_EnergyAnalysis(SLO, SC) ; // This is the pre-requisite for trying to make

TLO jobs energy-feasible
25 case doing steps similar to Lines 7-20 of NCC on SLO, and select the first applicable option

from the following list for each job of TLO with unsatisfied success-ratio constraint or each job
of THI for which Rule 1 is not satisfied, to address the problem do

26 1: reordering and backwarding jobs of TLO: try reordering with backwarding the
nearest possible LO job ahead of the job in SLO which needs improvement;

27 2: backwarding jobs of THI: try backwarding the possible nearest HI job ahead of the job
in SLO which needs improvement, regarding validity of Rule 3 (SHI feasibility) and Rule 1
(for the backwarded HI job in SLO);

28 3: otherwise return null
29 end
30 return SLO

Suppose a sample task set as shown in Table III and a given multi-segment schedule
for the high scheduler mode, as shown in Fig. 7. Here, we consider Emax = 12, P = 10,
and the harvested energy PDF H is uniform in [1, 2]. In Table IV, which includes the
success-ratios calculated based on the analysis, by "normal analysis" we mean that
upon failure of the first segment of a job, the job second segment does not run. Look-
ing at job success-ratios under the normal analysis, we see that when the system is in
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Table III. A sample task set showing invalidity of Lemma 5.5
for multi-segment jobs.

Task li πi (~εi[LO],~εi[HI]) αi
1 Pow i

τ1 HI 30 (10, 11) - 0.2
τ2 HI 30 (2, 2) - 0.6
τ3 HI 30 (2, 2) - 0.3
τ4 HI 30 (4, 4) - 0.25

1 This parameter has not been used in this example.

low scheduler mode, in spite of reducing the energy consumption of τ1 by using its LO
(rather than HI) execution-time, the success-ratio of τ4,1 decreases, which contradicts
Lemma 5.5. Justification for such a scenario is as follows: When the energy consump-
tion of τ1,1 decreases in reducing its execution time from 11 to 10, the energy PDF
at start of τ3,1 gets better. Therefore, the success probability of the first segment of
τ3,1 increases, and thus, with a higher probability (with respect to the high scheduler
mode) we start executing the second segment of τ3,1 which might consume the energy
harvested at start of the third epoch (time 20). This results in a worse energy PDF at
start of τ4,1, degrading its success-ratio.

Similarly, we can find an example which shows that backwarding a job, which re-
duces its own success-ratio and thus reduces the job power consumption, can have a
similar impact on the schedule. Therefore, the success-ratio of some jobs in the sched-
ule might decrease with the backwarding which, for multi-segment jobs, contradicts
some results which are valid for single-segment jobs.

According to the above discussion, to have a safe success-ratio calculation and to
be able to use Lemma 5.5 and other useful results proposed in Section 5.1, we can
employ a pessimistic analysis by considering that the system consumes the energy of
all segments of a job, even if it failed in one of its early segments. The corresponding
results for the mentioned example are shown in Table IV. In this table, the maximum
energy consumptions of τ3 and τ1 with ~ε1[LO] are considered in the low scheduler mode;
and, the maximum energy consumptions of τ3 and τ1 with ~ε1[HI] are considered in the
high scheduler mode (only jobs of τ1 and τ3 are multi-segment in this example). As
can be observed, according to the pessimistic view, it is certain that the success-ratios
are better in the low scheduler mode. Although it is pessimistic with respect to the
normal analysis, since usually the desired success-ratio constraints are high values,
this pessimism is not too problematic. For example, if αi = 0.99 for a typical task τi,
then the second (or later) segment(s) of a job can fail with probability of at most 0.01,
and thus, by taking the maximum energy consumption of that segment(s) into account
for the calculations, we are at most 1% pessimistic about the energy consumption of
that segment of the job.

Then, regarding a few points which must be noticed, the theorems and rules pre-
sented for the scheduling of single-segment jobs can be used for individual segments
of multi-segment jobs.

First, we focus once more on the calculation method for the success-ratios of multi-
segment jobs. As mentioned in Section 4.4, the calculated success-ratio of an individual
job is decreasing from one segment to the next. The resulting job success-ratio is equal
to what is obtained when the analysis reaches the last job segment (e.g., for the job of
Fig. 4, the job success-ratio obtained until end of its first segment is 1−Prob(s1,3), and
what is obtained until end of the second segment is 1−Prob(s1,3)−Prob(s1,4)). In this
regard, we should take care that at none of the steps of accommodating a job segment
into the schedule, a job should experience a calculated success-ratio smaller than its
corresponding constraint. For instance, if a four-segment job satisfies a success-ratio
constraint of 99%, it is almost definite that the calculated success-ratio has been very
close to 1 at its early segments, and in a decreasing order, the job success-ratio at the
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0                         6               10                            17     19     21     23              27         30   

E E E

τ1,1 τ2,1 τ3,1 τ4,1 Idle time

Fig. 7. A multi-segment schedule for the task set of Table III in the high scheduler mode.

Table IV. Success-ratio of jobs in the high and low scheduler modes under normal
and pessimistic analyses.

Scheduler mode & Type of analysis τ1 τ2 τ3 τ4
ε1 = ~ε1[HI] = 11 (Normal) 0.9983 0.6087 0.3734 0.9714
ε1 = ~ε1[LO] = 10 (Normal) 1.0000 0.7934 0.6078 0.9694
ε1 = ~ε1[HI] = 11 (Pessimistic) 0.9938 0.4556 0.2538 0.7535
ε1 = ~ε1[LO] = 10 (Pessimistic) 1.0000 0.6502 0.4423 0.7997

fourth segment is at least 99%. Based on this property, we propose a pessimistic view
to the energy usage of a multi-segment job to have a simpler multi-segment scheduling
algorithm. More precisely, although in case of failure of an early segment of a job its
further segments are not executed (ignorance of their execution occurs at most in 1%
of times for the above example), we pessimistically consider that all the segments are
executed and consume energy.

According to the above discussion, when a change in a schedule occurs, more ex-
tensive changes occur in the success-ratios, when compared to single-segment jobs.
For example, if a job segment is backwarded, the success-ratio of the job it belongs
to, calculated until that segment, decreases (see Lemma5.7). Based on the above men-
tioned decreasing order of calculated success-ratios throughout multiple segments of
that job, this affected success-ratio is an upper bound for the overall job success-ratio.
Similarly, we can discuss about backwarding and reordering of some job segments,
and their positive and negative impacts on several segments, which may be extended
to other segments of the respective jobs.

Overall, it is more complex to schedule job segments in such a way that their success-
ratio thresholds be satisfied, since upon every action on the schedule, several segments
belonging to each affected job must be taken into account. Therefore, we pay more at-
tention to the reordering and backwarding decisions: if we want to improve the success-
ratio of a job segment to address its success-ratio problem, we do not perform an ac-
tion which may have a negative impact on the success-ratio of any previous segment
belonging to the same job. Further, in the low scheduler mode, we must take care of
energy PDFs according to Rule 1 presented in Section 5.2 for the segment in which the
mode switch might occur (containing the end of LO execution time of that job) and the
segments before which corresponding to the same HI job. In this way, the low-to-high
scheduler mode switch will be safe according to Lemma 5.3 and Corollary 5.4. Follow-
ing the same pattern, we will find whether the mixed-criticality task set is schedulable
by the algorithm or not.

5.4. Computational Complexity
The most time consuming part of the scheduling algorithm is related to the analytical
analysis (to calculate the job success ratios) in each step. Thus, the complexity of the
algorithm can be stated as the number of times that the analysis is run, which depends
on the number of jobs (or job segments) during one hyper-period. In fact, the time
complexity of the scheduling algorithm is only implicitly affected by the number of
tasks. More details are given below.
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Complexity of the analysis: Time complexity of the proposed analytical method de-
pends on:

(1) the number of the generated states throughout one hyper-period (Section 4.1), and
(2) the number of iterations (i.e., hyper-periods) needed to reach steady-state in the

analysis (Section 4.3 ).

The number of the generated states is equal to n.k, where n is the number of criteria
in the Dis definition and k is the number of PUMIs in one hyper-period. Considering
non-preemptive scheduling, the maximum value of k will be k = (

∑
τi

2.Π
πi

)−1+( Π
P +1),

where term (
∑
τi

2.Π
πi

)− 1 denotes the maximum number of distinct instants which are
resulted from the start-time and finish-time of the released jobs during one hyper-
period, and term Π

P + 1 is the number of distinct instants resulted from epochs in
one hyper-period. It should be noted that the worst number of released jobs

∑
τi

Π
πi

is
exponential w.r.t. the number of tasks [Cai and Kong 1996].

In order to calculate the steady-state energy PDF, we assume that the super-
capacitor is empty at the start of the first hyper-period. Then we calculate the en-
ergy PDF at the start of consecutive hyper-periods iteratively; we stop by observing
that the PDF converges (this depends on the accepted precision âĂŞ if better preci-
sion is needed, later convergence will be resulted). Therefore, the number of required
iterations nΠ to reach steady state is at least 1. The maximum number of iterations
depends on the accepted precision in calculation, hyper-period length, super-capacitor
characteristics, pattern of power consumption and the energy harvester properties.
Therefore, the time complexity of the analysis will be of O(nΠ.((

∑
τi

2.Π
πi

)−1+( Π
P +1))).

Complexity of the scheduling algorithm: As mentioned above, the most time-
consuming part of the scheduling algorithm is the computation of job success ratios
using consecutive running of the analysis. Thus, the analysis complexity is the domi-
nant factor.
For the NCC algorithm (Algorithm 2), the major part is the while-loop, in which the
analysis method is invoked and the success ratio of one job (the first job in S) is ver-
ified (Lines 9-10). If the success ratio constraint of the first job in S is satisfied it is
added to SHI; otherwise, it is tried to fulfil the success ratio constraint by reordering
and/or backwarding. To satisfy the success ratio of a job, at most one reordering and,
if needed, zero or more backwarding are done (Lines 14-15). Thus, to fulfil the success
ratio of each job, multiple iterations of the while-loop might be required.

Considering the single-segment case, time complexity of the algorithm (based on
the number of times that the analysis method is invoked) is O(x.(

∑
τi

Π
πi

)), where x

is the maximum number of times that the while-loop should be iterated for each job.
x depends on some factors like the number of jobs that are completely executed in
one epoch, power consumption of the candidate job for backwarding, the number of
epochs before the current epoch, and the release-time and deadline constraints of the
scheduled jobs (jobs in SHI). Since the number of jobs in one hyper-period is exponential
w.r.t. the number of task, time complexity of the scheduling algorithm (based on the
number of times the analysis is run) is at least exponential in the number of tasks. It
should be noted that we can determine an upper limit for the value of x to have an exact
bound on the time complexity of the algorithm while the performance of the algorithm
is preserved. This is because of the fact that when we want to improve the success-
ratio of a job by backwarding a preceding job, the backwarding losses its impact when
the distance between the two jobs gets larger, so we can bound the distance someway.

Complexity of the LSM algorithm, similar to NCC algorithm, is at least exponential
in the number of tasks as well.
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6. NUMERICAL EVALUATION
This section focuses on verifying the proposed analytical method by comparing it to
simulation while considering different sources of inaccuracy and imprecision. Also, we
investigate the performance of the proposed scheduling algorithm for both non-mixed
and mixed setups in comparison to classic scheduling algorithms.

6.1. Simulation vs. Analytical Results
This section considers the case of non-ideal super-capacitors which have non-zero
power dissipation and it discusses the accuracy and precision of the proposed analyt-
ical method by comparing it to simulation. The precision is investigated by assuming
the same system model for both, analytical method and simulation.

In the simulations, monitoring and fault detection is implemented as follows:

— Single-segment jobs: The simulator, which knows the power consumption of each job,
the WCET of that job, and the available energy in the super-capacitor, checks to see
whether the job can be successfully completed. If yes, the job is executed and the
simulator time and the super-capacitor energy are updated based on the mentioned
information. If not, the job is encountered as failed, the scheduler simulation time
is updated to the initial finishing time of that job, and the super-capacitor energy
content is updated by considering the extra energy leaked after passing the super-
capacitor cut-off energy.

— Multi-segment jobs: Here, we follow a method similar to what is mentioned above,
but at the granularity of job segments, namely the job failure is encountered when
one segment of that job fails. Then, the next segments of a failed job do not run in the
simulation (please see Section 4.4 and Fig. 4 for details of the extended state graph).

In addition, there exist some inaccuracies in the model that will be investigated
through extensive simulations: i) The power consumption of job segments are vary-
ing in time due to the dynamics of task activities [Mohaqeqi et al. 2014], while in the
analytical method we consider a fixed average value of power consumption. We in-
vestigate how much inaccuracy is introduced by this assumption. ii) We consider an
abstract model for the analytical method by assuming that the intermediate reservoir
energy can be instantaneously transferred to the super-capacitor, while in fact this
transfer takes some time depending on the reservoir capacity and characteristics of
the corresponding circuits. To investigate the inaccuracy enforced by this abstraction,
we compare the results with some simulation setups considering two connected reser-
voirs. While one of them is discharging either to the super-capacitor or to the real-time
tasks, the other one is charged by energy harvesting. At each epoch boundary, the two
reservoirs switch their role. There exist more sources of inaccuracy like the estimation
of the dissipated power or the energy loss in the voltage regulators which will not be
considered further in this paper.

For the aforementioned comparisons, we consider two medium-scale and small-scale
Equivalent Series Resistance (ESR) pulse super-capacitors with nominal capacities of
C = 10F and C = 50mF. Details of these setups are given in Table V. As the power
dissipation of the small super-capacitor is insignificant (Setup2), we consider an arti-
ficial setup with increases the power dissipation (Setup3) in order to more extensively
discuss the precision and accuracy of the analytical method. The energy harvester is
considered to scavenge solar energy.

In the experimental arrangement considered in this section, the system scheduler is
considered to be in a single criticality mode with a single execution time εi. Task sets
are selected for different system utilizations U =

∑n
i=1 ui (where ui = εi/πi), each with

n = 3 tasks (see Table VI). The periods are integer dividers of Π (the hyperperiod) in
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Table V. The system parameters for different setups.

System
Component Parameter Setup1 Setup2 & Setup3

Super-
capacitor(SC)

C 10F 50mF
Vr (rated
voltage) 2.7V 3.6V

C = 1
2
CV 2

r 36450mJ 324mJ

Dis(E): see (3) Given from [Yang
2013]

Setup2: Scaled Dis(E)
of Setup1; Setup3:

Artificially increased
Dis(E) w.r.t Setup2

Reservoir(R)
CR 200mF 1mF

Vr (rated
voltage) 2.7V 3.6V

CR = 1
2
CRV 2

r 729mJ 6.48mJ
Discharge time

= 5RRCR
1000ms (RR = 1Ω) 12ms (RR = 2.4Ω)

Energy
Harvester

P 1000ms 12ms

H(.)

Uniform:
U [300 − 700]mJ or

Triangular:
∆[200, 500, 700]mJ

Uniform: U [2, 3]mJ or
Triangular:

∆[2, 2.5, 3]mJ

Consumer
device

(i.e.,tasks)

Powmax 1200mW 616mW

[πmin, πmax]
Uniform:

U [200 − 60000]ms U [60 − 6000]ms

Π 120000ms 12000ms

the interval of [πmin, πmax]. Power consumptions of tasks are calculated such that the
following equation holds

n∑
i=1

Π

πi
(εi · Pow i) =

Π

P
· Ē, (39)

where Ē is the expected harvested energy in one epoch and Ē
P with epoch length P is

the average harvested power. Further, εi · Powi

πi
on the left side of (39) is the average

power consumption of each job of task τi. Then, we can name the ratio between the
latter and the former as the job energy utilization

uei =
εi · Pow i/πi

Ē/P

where Ue =
∑n
i=1 u

e
i . In other words, (39) states that the energy utilization Ue for the

task set is 1; Ue > 1 leads to the situation where the super-capacitor low energy in
steady-state, and Ue < 1 leads to the reverse, namely an almost full super-capacitor in
average.

The generation of task sets is done as follows: Step 1. The UUniFast algorithm [Bini
and Buttazzo 2005] is used to generate n utilizations u1, u2, ..., un for a task set with
total utilization equal to U . Step 2. The period πi of each task τi is an integer num-
ber generated from the range [πmin, πmax] with a hyper-period limitation technique
[Goossens and Macq 2001] so that the hyper-period will be equal to Π. Step 3. The
WCET of task τi is set to εi = ui · πi. Step 4. Similar to [Abdeddaïm et al. 2014], the
UUniFast algorithm is used to generate n energy utilizations ue1, ue2, ..., uen of the task
set with total energy utilization equal to 1, i.e., Ue = 1. Step 5. The power consumption
of task τi is set to Pow i =

ue
i

ui
· ĒP , considering the maximum power constraint Powmax

in Table V.
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Table VI. Sample task sets used for comparison between analysis and simulation.

Task set πi(ms) εi(ms) Pow i(mW) Utilisation System Setup

A1

A2

τ1 6000 840 454
0.5

Setup2(A1)
Setup3(A1)

τ2 600 66 211
τ3 96 24 486

B
τ1 500 190 234

0.6 Setup2τ2 160 6 22
τ3 1200 219 609

C
τ1 1500 515 439

0.7 Setup2τ2 600 34 594
τ3 800 240 80

D
τ1 480 198 260

0.8 Setup2τ2 1200 241 260
τ3 1500 280 260

E
τ1 300 43 998

0.45 Setup1τ2 2000 580 1185
τ3 40000 667 799

F
τ1 12000 1116 817

0.7 Setup1τ2 7500 254 667
τ3 8000 2985 1076

For the task sets of Table VI we use the above method and select an individual
task set for each configuration. To compute the convolutions needed for the analytical
method, we use the Fast Fourier Transform (FFT) while integrating with the same
granularities for time and energy discretization selected from the list: 1

64 , 1
128 , 1

256 , 1
512 ,

1
1024 . The algorithm is implemented in Java as proposed in [Press et al. 2002]. Fig. 8
shows the absolute error (with respect to simulation) of the expected super-capacitor
energy at the start of PUMIs throughout the hyperperiod for task set A1 as given
in Table VI, scheduled according to EDF, with different discretization granularities.
Fig. 9 gives job success-ratios and their absolute errors throughout the hyperperiod,
along with the expected super-capacitor energy of the respective PUMIs. The errors
are reported for the two extreme granularities of 1

64 and 1
1024 . As can be observed, the

maximum numerical errors occur when the super-capacitor is almost empty.
According to Figs. 8 and 9, from here to the end of paper, we use the granularity

of 1
1024 for computing the analytical results, which gives an acceptable maximum ab-

solute error. To have a better insight into the accuracy of the analytical method, we
consider all task sets given in Table VI and report their task success-ratios, defined as
the minimum success-ratio among the jobs of that task during a hyperperiod (see Ta-
ble VII). For the simulation results, we have reported the average of results obtained
from 100 simulation runs of length 100000 hyperperiods for each task set, with a confi-
dence level of 0.99 within 0.005 for the success-ratios. For one task set of the small-scale
super-capacitor setup (Task sets A1 and A2) and one task set of the medium-scale setup
(Task set F), we have done more diverse experiments by considering EDF scheduling
algorithm and different distributions of harvested energy (uniform and triangular)
with the same mean value.

The comparison between analytical and simulation results are based on the system
model considered in this paper with constant power consumption for each segment
are reported in the column of basic assumptions in Table VII. As can be observed, the
results are almost identical and the errors are due to discretization in the numeri-
cal computations. Throughout the analytical method we find that the super-capacitor
energy PDF at the start of a hyperperiod converges towards a stationary distribution.
The formal proof of this behavior is still an open issue. As an example, the steady-state
energy PDF for the task set A1 (EDF scheduling and uniform energy distribution of
harvested energy) is determined via simulation and analysis, see Fig. 10.
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Fig. 8. Absolute error of expected super-capacitor energy at start of PUMIs for different discretization
granularities.

Next, we discuss the accuracy of the model w.r.t. two assumptions: i) Constant power
consumption during job execution, and ii) instantaneous energy transfer from the
reservoir to the super-capacitor. To check the impact of the former assumption, we use
SimpleScalar [Burger and Austin 1997] and Wattch [Brooks et al. 2000] for the Alpha
21264 processor [Gieseke et al. 1997] to get the power trace of Qsort from the MiBench
benchmark suite [Guthaus et al. 2001], which is one of the most power varying pro-
grams with 55 percent power jitter and 17 percent variance in the power. The obtained
power trace is scaled so that the average power consumption of the job remains equiv-
alent to the constant power considered in the model. In the analysis we still use the
average power consumption of each job segment as a constant value corresponding to
the average of the power trace for that segment. We feed the simulator with that power
trace. The column of variable task power in Table VII shows the results which can now
be compared to the model results (basic assumptions) in Table VII. The difference is
less than 0.0018.

Now, we discuss the second assumption in the model, namely the instantaneous
energy transfer between the reservoir and the super-capacitor. In fact, this energy
transfer takes some time which depends on the resistance of the corresponding RC
circuit model. We simulate this non-ideal energy transfer by considering a pessimistic
linear energy transfer which exaggerates the errors (the constant rate is considered
equal to the ratio between the maximum energy that can be stored in the reservoir
and the epoch size) and compare the results with respect to our model with basic as-
sumptions. The column of non-ideal energy transfer in Table VII shows the results. We
encounter two main reasons for the considerable errors with respect to the model with
basic assumptions: i) If the energy of super-capacitor is near cutoff, the assumption
of an instantaneous energy transfer makes the success-ratios obtained from analysis
optimistic because it creates the illusion of having that amount of energy at the start
of epoch, while in fact the energy can only gradually be transferred to the system. ii)
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Fig. 9. Absolute errors of success-ratio along with actual success-ratios as well as expected super-capacitor
energy at start of PUMIs during the hyperperiod.

On the other hand, if the super-capacitor is almost full, the reservoir plays the role of
an additional container to conserve energy, while in the analysis the reservoir energy
is wasted in the situation of a full super-capacitor. Therefore, in such a situation, the
analysis gives pessimistic success-ratios.

6.2. Investigating the Performance of the Proposed Scheduling Algorithm
In this section, we compare the performance of NCC with a number of well-known
non-mixed-criticality algorithms to show its performance for tasks with success-ratio
constraints in an environment with uncertain energy arrival. Also, we compare MC-
SCS with some known mixed-criticality algorithms to experimentally investigate its
efficiency for systems with two levels of task criticality.

After validating the analytical method by means of simulation in Section 6.1, we
only employ the analytical method in this section. The analytical method gets a sched-
ule as input and returns the (single-segment or multi-segment) job success-ratios as
its output, based on the results in Section 4.4. As described in Section 5.3, to have safe
calculation of success-ratios despite the variations in the execution times in the multi-
segment case of the proposed scheduling algorithm, we use a pessimistic analysis by
assuming that all jobs use their maximum energy according to their WCET. For each
schedule generated in the steps of the proposed scheduling algorithm, after the analyt-
ical calculation of the pessimistic success-ratio of individual jobs, if the success-ratio
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Table VII. Comparison between analytical and simulation success-ratio results with different
assumptions. U and ∆ denote uniform and triangular distribution, respectively.

Task set Basic assumptions
Variable

task
power

Non-ideal
energy

transfer Alg. H(.)

Sim. Analy-
sis Sim. Sim.

A1
τ1 0.8619 0.8623 0.8612 0.8573

EDF U [2, 3]τ2 1.0000 1.0000 1.0000 1.0000
τ3 0.7560 0.7558 0.7542 0.8089

A1
τ1 0.9126 0.9126 0.9126 0.9052

EDF ∆[2, 2.5, 3]τ2 1.0000 1.0000 1.0000 1.0000
τ3 0.7636 0.7635 0.7641 0.8143

A2
τ1 0.0000 0.0000 0.0000 0.0000

EDF U [2, 3]τ2 1.0000 1.0000 1.0000 1.0000
τ3 0.1935 0.1935 0.1933 0.2575

A2
τ1 0.0000 0.0000 0.0000 0.0000

EDF ∆[2, 2.5, 3]τ2 1.0000 1.0000 1.0000 1.0000
τ3 0.1127 0.1127 0.1133 0.1805

B
τ1 1.0000 1.0000 0.9999 1.0000

EDF U [2, 3]τ2 0.9999 0.9999 0.9999 0.9999
τ3 0.9861 0.9862 0.9824 0.9862

C
τ1 0.9961 0.9961 0.9960 0.9940

EDF U [2, 3]τ2 0.9911 0.9912 0.9911 0.9883
τ3 0.0.9942 0.9942 0.9943 0.9987

D
τ1 0.9963 0.9962 0.9960 0.9966

EDF U [2, 3]τ2 1.0000 1.0000 1.0000 1.0000
τ3 0.9999 0.9999 0.998 0.9998

E
τ1 0.9915 0.9914 0.9915 0.9956

EDF U [300, 700]τ2 0.9929 0.9929 0.9929 0.9923
τ3 0.9955 0.9955 0.9954 0.9955

F
τ1 0.9970 0.9970 0.9968 0.9972

EDF U [300, 700]τ2 9921 0.9921 0.9921 0.9944
τ3 0.9902 0.9902 0.9900 0.9908

F
τ1 0.9984 0.9984 0.9985 0.9987

EDF ∆[300, 500, 700]τ2 0.9930 0.9929 0.9933 0.9944
τ3 0.9918 0.9918 0.9920 0.9919

is greater than the corresponding success-ratio constraint for all jobs, the schedule is
counted as feasible.

We consider an ideal 5mF super-capacitor, i.e., with no power dissipation, a 0.27mF
capacitor as the reservoir, an epoch size of P = 12ms, and H = U(0.5, 1)mJ.

First, we focus on NCC and compare it with some offline computed static sched-
ules obtained for one hyperperiod using preemptive and non-preemptive versions of
EDF, EDL, and rate-monotonic (RM) scheduling. It should be emphasized that the
contribution of this study relates to the job success-ratio constraints (not the timing
constraints) of real-time tasks, and thus, we only select task systems which are time-
feasible by the mentioned scheduling algorithms and report the proportion of sched-
ules which are (energy-) feasible as well. However, to have a better insight into the
performance of the proposed algorithm, we compare it to the best performance of the
six mentioned algorithms (Best-of-Others), namely preemptive and non-preemptive
versions of EDF, EDL, and RM; by best performance we mean that in case that each of
these algorithms results in a feasible schedule, we count it for Best-of-Others.

The task sets with m = 3 tasks are generated for total utilizations of 0.2 to 0.9, with
steps of 0.1. We consider that the hyperperiod is Π = 600ms, [πmin, πmax] = [20, 300]ms,
Powmax = 616mW, and success ratio constraints (αi) are randomly selected from
{0.95, 0, 96, 0.97, 0.98, 0.99, 1.0}. Then, Steps 1 to 5 mentioned in Section 6.1 are used
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Fig. 10. Comparison between analytical and simulation results of super-capacitor energy PDF at start of
hyperperiod for Task set A1 (EDF and uniform).

to generate the tasks, and the results are averaged over 50 task sets generated for
each utilization.

The results are shown in Fig. 11, where UB shows an upper bound of NCC and
Best-of-Others in terms of the feasibility ratio, namely when either of them results
in a feasible schedule, we count it for UB. As indicated before, we generate the tasks
in a way that (39) holds. An outcome of this relation is that, as the harvesting power
follows the same pattern, the power consumption of individual tasks gets larger when
utilization decreases. Therefore, in the case of low utilization, the time slacks are suf-
ficiently large to easily satisfy timing constraints. However, very small changes in the
schedule of jobs can have considerable impact on the energy behavior of the schedule.
As a result, when the utilization is low, algorithms like EDF, EDL, and RM which do
not necessarily distribute the load equally throughout the hyper-period, may experi-
ence some intervals with very high energy need. This means that in some intervals the
super-capacitor is almost empty and in other intervals, the harvested energy is wasted.
In such a scenario, NCC can work much better, because it distributes the jobs within
the available degree of freedom and increases the possibility of a more uniform energy
usage pattern during the hyper-period. When the utilization increases, the power us-
age has a smoother distribution over time during a hyper-period since jobs have longer
execution-times and lower power consumptions. Therefore, algorithms like EDF, EDL,
and RM might work better, since because of higher utilization, less maneuvers are
possible for NCC, and the resulting schedule might remain more similar to the initial
EDL from which the maneuvers of NCC starts. The reason that at utilization of 0.9
Best-of-Others works better is that NCC in very high utilization is almost the same
as EDL, while other algorithms like EDF and RM might perform better for some task
sets.
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Fig. 11. Comparison between feasibility ratios of NCC and Best-of-Others (among preemptive and non-
preemptive versions of EDF, EDL, and RM) for the non-mixed-criticality setups considering m = 3.

In the experiments related to the mixed-criticality setup, we focus on MC-SCS and
compare it with some offline computed static schedules obtained for one hyperperiod
using the well-known mixed-criticality algorithms Adaptive Mixed Criticality (AMC)
[Baruah et al. 2011] and EDF-Virtual Deadline (EDF-VD) [Baruah et al. 2012]. AMC
is based on fixed-priority scheduling; from the two version of AMC as proposed in
[Baruah et al. 2011] we use AMC-rtb for our experiments. EDF-VD introduces the
concept of a virtual deadline for HI tasks in the low scheduler mode to ensure schedu-
lability during and after a mode change.

Again it should be emphasized that the contribution of this study relates to meeting
the job success-ratio constraints in addition to their timing constraints, and thus, we
only select the mixed-criticality task sets which are time-feasible by both, AMC and
EDF-VD. Then, we report what proportion of the task sets is energy-feasible by either
of the two algorithms (we call it Best-of-Others, with the aforementioned meaning of
best performance) and what fraction of the same task sets is feasible after applying
MC-SCS (see Fig. 12).

To this end, we still need to decide when a task set scheduled by AMC or EDF-VD
is counted as energy-infeasible. First, we recall our previous assumption in this paper,
according to which a HI task can only have two execution times ~εi(LO) and ~εi(HI).
Thus, the switching between the low and high scheduler modes can only happen when
a HI job just overruns ~εi(LO). In this regard, either of the algorithms is counted as
having failed to provide a feasible schedule if at least one of the following conditions is
not valid: i) The schedule in the high scheduler mode is energy-feasible, ii) the schedule
in the low scheduler mode is energy-feasible, iii) the mode switch of the scheduler at
all possible switching instants satisfies Rule 1 as provided in Section 5.2.

The considered task sets have m = 5 tasks (three HI tasks and two LO ones), which
are generated for total utilizations of 0.2 to 0.8 with steps of 0.1. The utilizations more
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Fig. 12. Comparison between feasibility ratios of MC-SCS and Best-of-Others (between AMC and EDF-VD)
for the mixed-criticality setups considering m = 5 (three HI tasks and two LO ones).

than 0.8 are not considered because the time-feasibility of AMC and EDF-VD is too low
at these utilizations.

Some basic parts of the mixed-criticality setup are the same as in the non-mixed-
criticality setup. However, we consider that the utilization of tasks in the low and high
scheduler modes are the same (namely, UHI = ULO, where UHI =

∑
τi|li=HI

~εi(HI)
πi

and
ULO =

∑
τi

~εi(LO)
πi

). We define a parameter β = UHI

UHI
LO

, UHI
LO =

∑
τi|li=HI

~εi(LO)
πi

, which
is used to determine the relation between ~εi(HI) and ~εi(LO) for HI tasks as ~εi(HI) =
β~εi(LO). We consider β ≥ 1.3 in the generated task sets and choose Ue = 1 for the HI
scheduler mode, and Ue = 0.9 in the LO scheduler mode.

The results are shown in Fig. 12, where UB shows an upper bound of MC-SCS and
Best-of-Others for the feasibility ratios, namely when either of them gives a feasible
schedule, we count it for UB. As it can be seen, the feasibility ratio of MC-SCS with re-
spect to the other considered algorithms follows a behavior similar to what is occurred
in the non-mixed-criticality setup, which confirms the applicability of the proposed
algorithm for mixed-criticality setups.

As the final discussion, we concentrate on the relative behavior of the two phases
of MC-SCS, namely, NCC and LSM. Fig. 12 shows the feasibility ratio of NCC for
the HI jobs in the high scheduler mode. As can be observed, when LSM tries to add
LO jobs to the output schedule of NCC, it decreases the feasibility ratio of NCC for
the mixed-criticality setup. As we know, only subsets of task sets which have been
feasible by NCC can remain feasible when the LO tasks are added. However, in case of
low utilization this degradation of the feasibility ratio is almost ignorable. When the
utilization increases, the unsuccessfulness of LSM increases; the reason relates to the
size of the slack after job placement by NCC, which restricts the possible maneuvers
for LO jobs when the utilization increases.
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Fig. 13. Comparison between feasibility ratios of NCC and Best-of-Others (among preemptive and non-
preemptive versions of EDF, EDL, and RM) for the non-mixed-criticality setups considering m = 10.

We repeated the two abovementioned experiments with the same setting except for
the number of tasks. More precisely, we have considered m = 10 for the non-mixed-
criticality setting and m = 13 (ten HI tasks and three LO tasks) for the mixed-
criticality setting. The obtained results are provided in Figs. 13 and 14. As can be
seen in the figures in comparison to Figs. 11 and 12, it is seen that the behavior of
the algorithms has no significant change by the modification in the number of tasks.

7. CONCLUSION AND FUTURE WORK
In this paper, we consider mixed-criticality systems with energy harvesters. Because
of two sources of uncertainty, namely the mixed-criticality behavior of tasks and un-
certainty in the availability of energy, the problem of scheduling tasks is inherently
intractable. We first present an analytical method which determines the steady-state
success probability of individual jobs from the energy viewpoint. Then, based on the
analytical method, we propose a scheduling algorithm which guarantees lower bounds
on the job success probabilities. The scheduling algorithm is based on a set of non-
trivial insights and properties of real-time systems with success-ratio constraints un-
der energy harvesting. The proposed scheduling algorithm can further be extended to
handle non-mixed-criticality as well as mixed-criticality systems with more advanced
loss models.
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