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Abstract—Epilepsy is a chronic neurological disorder affecting
more than 65 million people worldwide and manifested by
recurrent unprovoked seizures. The unpredictability of seizures
not only degrades the quality of life of the patients, but it
can also be life-threatening. Modern systems monitoring elec-
troencephalography (EEG) signals are being currently developed
with the view to detect epileptic seizures in order to alert
caregivers and reduce the impact of seizures on patients’ quality
of life. Such seizure detection systems employ state-of-the-art
machine learning algorithms that require a large amount of
labeled personal data for training. However, acquiring EEG
signals during epileptic seizures is a costly and time-consuming
process for medical experts and patients. Furthermore, this data
often contains sensitive personal information, presenting privacy
concerns. In this work, we generate synthetic seizure-like brain
electrical activities, i.e., EEG signals, that can be used to train
seizure detection algorithms, alleviating the need for sensitive
recorded data. Our experiments show that the synthetic seizure
data generated with our GAN model succeeds at preserving the
privacy of the patients without producing any degradation in
performance during seizure monitoring.

Index Terms—Synthetic Brain Activities, Generative Adversar-
ial Networks (GANs), Epilepsy Monitoring, Seizure Detection,
Privacy.

I. INTRODUCTION

Epilepsy is the fourth most common chronic neurological
disorder worldwide [1], affecting over 65 million people.
Epilepsy manifests itself by recurrent unprovoked seizures due
to abnormal activity in the brain. One third of the epilepsy pa-
tients suffer from drug-resistant uncontrolled seizures, which
time of occurrence is usually unpredictable. The length of the
seizures can range from few seconds to several minutes with
a large variety of symptoms, including sensory auras, loss of
awareness, behavioral arrest, automatic movements and full
body convulsions [2]. Epilepsy not only degrades the quality of
life of the patients, but it is also associated with a mortality rate
5 times higher among patients with recurrent seizures than in
the corresponding group of the general population [3], [4]. In
epileptologists terminology, ictal samples are those extracted
from the seizure segments, while inter-ictal samples are those
extracted from non-seizure segments.
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A promising solution to reduce mortality and to improve
the living standard and independence of epilepsy patients is
continuous real-time monitoring using wearable devices [5]–
[10]. Wearable devices can continuously collect and process
EEG signals from the patient in real time during extended
periods of time in order to detect ictal periods. In this manner,
upon occurrence of an epileptic seizure, an alert can be sent
automatically to caregivers or family members.

However, a fundamental barrier in developing reliable
epileptic seizure detection systems is the lack of sufficient
volume of training data. Indeed, modern detection systems are
driven by machine-learning-based algorithms [11], [12] that
require a considerable amount of samples of recorded ictal
periods in order to reliably detect future seizures. Collecting
and labeling EEG data from epilepsy patients is a costly
process that currently requires the patients to suffer seizures
while being recorded in a monitoring unit. Such recordings are
performed in clinical practice in a minority of patients and over
short periods of time, typically a week, enabling to only record
a few seizures per patient [13]. The privacy concerns that
exist around sharing medical data exacerbates this problem.
In particular, the possibility of patient re-identification from
anonymized datasets [14] and the risk of data leakage hinders
sharing medical data.

In this work, to address the aforementioned problems,
we propose EpilepsyGAN, a Generative Adversarial Network
(GAN) [15] that produces high quality synthetic epileptic
seizure signals and we demonstrate the effectiveness of the
proposed framework. To the best of our knowledge, this is the
first time that seizure EEG samples are generated and used
to train epilepsy detection algorithms. Then, we leverage the
generative power of our model to address the privacy concerns
for the case of epilepsy monitoring. To this end, first, we show
that training an epilepsy monitoring system with synthetic data
does not degrade the seizure detection performance compared
to training based on real data. Further, we highlight the poten-
tial privacy concerns in the context of biomedical applications
and, in particular, epilepsy, and demonstrate that the use of
synthetic data hinders the re-identification of the patients. This
constitutes a real-life application of GANs with a direct impact
on healthcare and medical data privacy. Therefore, the main
contributions of our work are summarized as follows:

1) A generative model capable of producing realistic syn-
thetic seizure signals that can train an epilepsy monitor-
ing system with a similar performance as the real seizure
signals, in terms of detection of epileptic seizures.

2) Application of synthetic data for privacy preservation
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and a comparative study of the vulnerability of real and
synthetic ictal data to patient re-identification, showing
that synthetic data is up to 7.2 times less vulnerable
when compared to the real data.

II. RELATED WORK

The field of synthetic data generation has undergone extraor-
dinary progress thanks to GANs. In recent years, GANs have
attained outstanding results in a wide variety of challenging
areas such as computer vision [16], [17], audio [18], [19] or
natural language processing [20], [21]. However, their success
in the medical domain has been more limited.

The generation of reliable synthetic data for medical appli-
cations has been extensively studied in the literature during the
last years. Several studies have used synthetic data in areas
such as medical imaging [22]–[24] and Intensive Care Unit
(ICU) monitoring [25]–[27] to augment existing training sets
in order to improve detection accuracy. Although this data
augmentation approach has proved effective, previous attempts
to train only with synthetic data have reported such a strong
degradation in performance [23], [25] that it has not been
possible so far to dispense with real training data. Therefore,
the scenario where no real training data can be accessed and
only a purely synthetic training set may be available remains
unsolved. This is, however, a common scenario in several
medical applications, including epilepsy, given the difficulties
and privacy concerns associated with collecting and sharing
medical data [28].

In the specific case of brain signals, the application of GANs
to the generation of realistic synthetic signals has obtained
very limited success so far: [29] generated EEG-like signals,
without demonstrating the quality of the synthetic data in any
specific task or pathology detection. [30] generated synthetic
EEG data to augment existing real training sets for Brain-
Computer Interfaces, but they did not evaluate on fully syn-
thetic training sets. [31] used a GAN to upsample the spatial
resolution of EEG signals and, despite the improvement in
visual quality, the resulting training set produced a degradation
of 4–9% of accuracy in a mental imagery classification task in
comparison to the original training set. Nevertheless, despite
targeting the generation of synthetic EEG, the current literature
has not addressed epilepsy, and specifically the generation of
ictal samples.

Furthermore, in the last years, GAN models have attracted
attention because of their ability to generate realistic synthetic
data in privacy-sensitive applications. In the context of medical
applications with sensitive data, DPGAN [32] and PATE-
GAN [33] propose differentially private GAN models, where
the privacy is obtained by adding noise to the gradients of
the model. Their evaluation indicates that both PATE-GAN
and DPGAN suffer from a substantial quality decrease in
high dimensional datasets, such as, the UCI Epileptic Seizure
Recognition dataset [34]. Differential privacy techniques in-
troduce a well-known trade-off between privacy level (i.e., the
magnitude of added noise) and performance [35]. That is, as
we increase the noise magnitude, the synthetic data becomes
more differentially private at the cost of a gradual loss of
utility.
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Fig. 1: Encoder and decoder blocks of the EpilepsyGAN
generator. The encoder consists of convolution and pooling
layers. Gaussian noise Z is added to the encoder’s output. The
decoder has de-convolution and dilation layers to increase their
outputs length, as well as decreasing the depth. The weighted
skip connections between the encoder and decoder are also
shown in this figure.

A second class of privacy preservation techniques, such
as MedGAN [36], generates high-dimensional synthetic dis-
crete variables by a combination of an autoencoder and a
GAN. Their results show that the 1-to-1 mapping between
the generated data and the corresponding training records is
weak, which means that the synthethic data preserve patients’
privacy. MedGAN obtains impressive results on electronic
health record (EHR) data, however, this data is discrete in
nature and hence this type of models cannot be used for
generating continuous biomedical signals such as EEG.

In this article, we propose the use of GANs to generate
synthetic ictal data, which are rare events in the EEG record-
ings, and we evaluate the quality and utility of the generated
samples on the task of seizure detection. Moreover, we show
the possibility of patient re-identification and demonstrate that
using synthetic signals produced by our EpilepsyGAN model
alleviates the privacy concerns associated with sharing sensi-
tive medical data in the epileptic seizure detection problem.

III. GENERATIVE MODEL

GANs are a class of deep generative models in which two
neural networks are trained simultaneously, while competing
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in a two-player minimax game. One network is a discriminator
that estimates whether a sample is real or synthetic. The other
network is a generator whose task is to generate realistic
synthetic samples that maximize the probability of the discrim-
inator making a mistake. During training, the discriminator
improves its ability to recognize synthetic samples while
the generator learns to produce increasingly realistic samples
to deceive the discriminator. In this adversarial setting, the
equilibrium is reached when the generator produces realistic
samples such that the discriminator cannot distinguish whether
they are real or synthetic.

EpilepsyGAN is a conditional GAN [37] that, given inter-
ictal EEG samples at the input, it generates EEG samples
of epileptic seizures. The rationale behind our design is that,
while epileptic seizures are very costly to record due to their
unpredictability and low frequency of occurrence, inter-ictal
signals can be easily recorded in any moment. As a result,
we condition the network on inter-ictal samples from the
target patient in order to provide additional information to
the generator that can be exploited to produce more realistic
seizure samples. In this way, we can use an already existing
database to train our GAN and then use the GAN to generate
seizure samples for a new patient.

The architecture of our GAN is modeled after the SEGAN
from [38], [39]. Our generator, depicted in Fig. 1, is a U-
net [40] convolutional autoencoder network with weighted
skip connections. Generally, an autoencoder consists of two
symmetric parts, an encoder that processes the input sample
and generates a latent code, and a decoder that restores the
original sample by decoding the latent code. However, in
our case, the decoder does not restore the original inter-ictal
sample but translates the latent code into an ictal sample. In
order to obtain sample variety, stochasticity is introduced into
the model by concatenating Gaussian noise with mean 0 and
standard deviation 1 to the latent code. The skip connections
multiply the feature maps at each layer of the encoder with a
weight which is learnt during training and then, the result of
that operation is added to the corresponding feature map of the
decoder. Thus, the weights of the skip connections regulate the
amount of information that is fed from the encoder into the
decoder. The discriminator of our GAN has the same structure
as the encoder of the generator, but it includes an additional
fully connected layer at the output. This way, the discriminator
outputs a single value between 0 and 1, where 1 represents the
real class and 0 the synthetic class.

To obtain the network parameters of the model, an opti-
mization problem is solved iteratively in the training phase,
during which the loss functions of the generator and the
discriminator are alternatively minimized. In our model, these
losses are based on the Least Squares GAN (LSGAN) [41].
Consequently, the minimization objective of the discriminator
is given by:

min
θD
LD(θD) = Ex∼pdata(x)[(D(x; θD)− 1)2]+

Ex̂∼pdata(x̂)[(D(G(x̂); θD))
2],

(1)

In this objective, the function D corresponds to the dis-
criminator and G to the generator. As mentioned before, the

output of the discriminator lies between 0 and 1. The θD are
the network parameters of the discriminator. The input data x
is a real ictal signal sampled from the real data distribution
pdata(x). In the second term, G(x̂) is a synthetic ictal sample
generated from the inter-ictal input x̂. The first term of the loss
function pushes the discriminator to output 1 when the input
is a real ictal sample x, whereas the second term is minimized
when the discriminator outputs a 0 given a synthetic sample.

On the other hand, the loss function of the generator, with
network parameters θG, is given by:

min
θG
LG(θG) = Ex̂∼pdata(x̂)[(D(G(x̂; θG))− 1)2]+

λ||G(x̂; θG)− y||1, (2)

Where y denotes the reference ictal signal paired with the
inter-ictal sample x̂. To make the training more stable, the
generator’s loss includes a weighted L1 regularization term.
This term ensures that the generated signal is similar to the
reference ictal signal y. We observed that without this regu-
larization term the parameters of the network quickly saturate
during training, generating meaningless outputs. In Equation
2, λ is a hyperparameter that we tuned to 100 using the
validation set in order to scale both terms of the loss function
to a comparable magnitude, preventing the regularization term
from dominating the optimization problem. Furthermore, the
first term of the generator loss encourages the generator to
produce synthetic samples that are classified as 1, i.e., real,
by the discriminator, which is adversarial with respect to the
discriminator’s loss function. Hence, the competing interests
of the generator and the discriminator during training drive the
generator to produce more and more realistic samples.

A. Architecture Details

The input to the generator are samples of length 2048 points.
The encoder consists of eight blocks that alternate a convolu-
tional layer with a max-pooling layer of size 2 and stride 2.
The 1D filters used in the convolutions have size 31 and stride
1. As shown in Fig. 1, the number of filters increases gradually
in the encoder. The encoder’s input has shape of 2048x1, while
its output is 8x1024. The Gaussian noise Z concatenated to the
latent code has that same shape, i.e., 8x1024. In the decoder,
the filter size of dilations and deconvolutions are the same
as the poolings and convolutions in the encoder. This way,
the U-shaped encoder-decoder structure of the generator is
symmetric, with an output shape of 2048x1.

The activation used is the leakyReLu function [42], except
for the last block of the decoder, where we use the hyperbolic
tangent function. All convolutions and deconvolutions are
unbiased and spectral normalization [43] is applied before each
block in both the generator and the discriminator. On top of
that, in the discriminator we apply virtual batch normalization
[44].

To train the model, we use the Adam [45] optimizer with 0
and 0.9 for the values of β1 and β2, respectively, and learning
rates 0.0001 for the generator and 0.0004 for the discriminator.
We found through a hyperparameter search that these values,
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which coincide with those in [38], perform the best also in
our application. The size of the minibatches of data employed
during training is 100 samples.

B. Real-World Scenario

Generation of synthetic seizures is of special importance in
the scenario where a new patient needs to be monitored and
no seizure data is available to train the monitoring system.
Instead of bringing the patient into an in-hospital recording
unit until she suffers enough epileptic seizures to train the
system, the hospital could use a generative model trained on
data from other patients to generate synthetic data for the
new patient. This is the scenario considered in this work,
which is divided in two parts: training the generative model
(Section III-C); and generation of synthetic ictal data and
real-time seizure monitoring using the generated samples for
training (Section V).

A high-level picture of this setting is depicted in Fig. 2.
Given N patients, we consider that in the real-world scenario
we have ictal data for N − 1 patients and that the i-th patient
not included in the N−1 patients is a new patient that requires
monitoring and whose ictal data is not available. However,
given that inter-ictal data is straightforward to record and can
be done efficiently at any moment, we assume that we have
inter-ictal data also for the i-th patient. Then, (1) we train our
generative model using the data from the N − 1 patients, and
(2) we generate ictal data from inter-ictal data for the new
patient i. Note that the model does not need to be retrained
for every new patient; after training it once, synthetic data
for any number of new patients can be generated. Once we
have trained the EpilepsyGAN and produced synthetic ictal
data for the target patient i, we use this synthetic data to
train a classifier (e.g., Random Forest) for the task of seizure
detection. Specifically, the task is to detect the real ictal
samples of patient i training on the real inter-ictal and synthetic
ictal samples of patient i. The performance of this classifier
gives us an understanding of the quality of the synthetic data,
i.e., how suitable it is to train monitoring algorithms.

C. Generative Model Training

To train EpilepsyGAN, we use the data from the EPILEP-
SIAE project database [46], which is one of the world’s largest
public databases for seizure detection. The dataset contains
recordings from 30 different epilepsy patients with a total of
277 epileptic seizures that sum up to a duration of 21,001
seconds altogether. The EEG data is collected at a sampling
frequency of 256 Hz and it is divided into recordings of one
hour, each one corresponding to one recording session. The
number of one-hour recordings varies for each patient in a
range between 96 and 281 sessions.

In this work, we target the setup of real-world and stigma-
free wearable monitoring devices [47] and thus we consider
only the electrodes F7T3 and F8T4 in the standard 10–20
system [48], which can be easily hidden in glasses [7].amir
These electrodes are most likely to capture the temporal lobe
epilepsy. In the EPILEPSIAE database, 25 patients out of
30 experienced at least one seizure session localized in the

temporal lobe. We use samples of four seconds of duration,
since this length is effective to detect epileptic seizures. Given
that the data was recorded at a frequency of 256 Hz, this results
in samples of length 2048, i.e., 1024 per electrode. The four-
second long ictal samples are collected with three seconds
of overlap in order to augment the amount of training ictal
samples, while the inter-ictal samples are collected with no
overlap from recordings where no seizure occurred. Moreover,
we do not apply any filtering or preprocessing step to the data
and we work directly with the raw EEG signals.

To construct the training set we pair each ictal sample to
an inter-ictal sample picked at random from the same patient.
This means that each inter-ictal sample given at the input of
the generator is associated to an ictal sample that is used as a
reference to guide the training. In this manner, the generator
learns to map inter-ictal samples to ictal samples of the
corresponding patient. Since the ictal samples are overlapped
by one second and the inter-ictal are not, similar ictal samples
(overlapped) are paired to dissimilar inter-ictal samples (not
overlapped), therefore, to learn the transformation the model
needs to understand the relation between ictal and inter-ictal
distributions rather than between arbitrarily paired portions of
signal; this effectively acts as a regularizer.

As explained in Section III-B, in order to train the model,
the leave-one-out strategy is followed: for each target patient
i, EpilepsyGAN is trained using the ictal and inter-ictal data
coming from all other patients (N − 1), and thus, it can be
used to generate synthetic ictal samples for the unseen patient.
The exact number of training samples depends on the number
of seconds of seizure recording available in the database for
all patients except for the left-out patient i and, although it
varies slightly, it is approximately 20,000 samples. Following
this scheme, the GAN is trained independently leaving-out one
patient i each time and thus, we obtain one model per patient,
i.e., 30 models.

IV. PRIVACY PRESERVATION

Seizure signals are considered sensitive data in privacy
because they can disclose the health status of the patients. This
includes the severity of the seizures, the type of epilepsy, and
the very fact that the user suffers from epilepsy. This sensitive
information may be exploited by a byzantine third-party and
therefore, sharing and storing seizure signals can jeopardize
the privacy of the patients. To address this privacy problem
and protect patient confidentiality, we propose to use synthetic
ictal signals instead of the real ictal signals. The synthetic data
is produced by the EpilepsyGAN as presented in Section III.

In this section, we introduce an evaluation procedure to
assess whether privacy is preserved when using synthetic EEG
ictal samples. To compare the real ictal and synthetic ictal
signals in the privacy context, we suppose that these signals
are anonymized, i.e., there is no identity information. We use
the identifiability of the ictal signals as a metric to show the
existence of privacy concerns in epilepsy signals.

A. Patient Identification
We define patient identification as the problem of identify-

ing the person in a dataset to whom an input signal belongs.
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Fig. 2: Real-world scenario considered for training and evaluation of the model.

In this task, a classification model learns to map every input
signal to its corresponding patient. For instance, the accuracy
of random patient identification is 1

N , where N is the total
number of patients considered in the experiment. We consider
this random patient identification, denoted by Exprand , as a
baseline for reference.

Let us now focus on the possibility of patient identification
based on the original ictal signals versus the synthetic ictal
signals. To this end, we propose two experiments: Exporig and
Expsynt . In the first step of both experiments, a convolutional
neural network (CNN) is trained for patient identification
based only on the inter-ictal signals. Then, in Exporig , the
model is tested on the original ictal signals, i.e., to map
each input ictal signal to the patient to whom the ictal signal
belongs. We follow the same procedure in Expsynt , but the
model is tested on the synthetic ictal signals.

B. Classification Model Architecture

The CNN model proposed for the patient identification task
is inspired from ResNet [49] and is illustrated in Fig. 3.

The model takes a sample of normalized EEG signals as
input and generates the output to identify to which patient the
input signal belongs. The total input length is 4136, and it
comprises four parts:

• 4-second EEG signal from the electrode F7T3,
• 4-second EEG signal from the electrode F8T4,
• Discrete Wavelet Transform (DWT) of the first part,
• DWT of the second part.

The first and second parts have 2048 points in total. The
DWT used in the third and fourth parts are Daubechies-4 and
performed up to three levels. We found empirically that adding
the DWT to the input information significantly helps the model
in the identification task. We conjecture that the power in the
different frequency bands are representative features of the

patient identity and hence, providing the DWT of the input
signal eases the task of the classifier.

As shown in Fig. 3, the first layer in the model is a
convolutional layer with 32 filters. Each filter has a length of
5 and stride 2. The model includes four residual blocks: B1 to
B4. All blocks have two convolutional layers and a shortcut
path (residual connection). Also, batch normalization [50]
and rectified linear unit (ReLU) [51] are applied before each
convolution in the blocks. Thus, the overall structure of blocks
follows the pre-activation block design in [52]. In each block,
the first and second convolutional layers have strides of 2 and
1, respectively. Hence, the output of each block is subsampled
by a factor of 2 in comparison to its input. To ensure that
the output of the convolutional blocks is compatible to the
output of the residual connection, i.e., of the same size, we
alternate two downsampling strategies. In blocks B2 and B4
the max pooling operator is applied in the residual connection,
while in blocks B1 and B3 a convolutional layer with a
filter size of 1 and stride 2 is used. This way, we provide a
reasonable number of additional parameters, which determines
the expressive power of the model.

The number of filters gradually increases from 32 in the
first convolution layer to 128 in the convolutions in B4. In this
manner, deeper layers can detect a more complex combination
of patterns. After the residual blocks, the model has two fully
connected (FC) layers and a softmax activation layer. The final
fully connected layer has as many neurons as the number of
patients in the training set N . Finally, the softmax layer returns
a probability distribution over patients.

V. EVALUATION PROCEDURE

For certain types of data, such as images or audio, a
person can naturally perceive the quality of a synthetic sample.
Therefore, metrics that correlate well with human perception
can be used in these fields to evaluate synthetically generated
data. However, EEG signals are abstract and so, a metric
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Fig. 3: Model architecture for the patient identification. In the model,
B1, B2, B3, and B4 are blocks with residual skip connections.
Each block has two convolution layers and a skip connection. Each
convolution layer is followed by a batch normalization and a ReLU
activation, which are not shown in this figure. The number of filters
is indicated inside each layer.

derived from human perception is not informative. An alter-
native is to let medical experts evaluate the quality of the
generated samples. Apart from the logistic difficulties derived
from getting access to medical experts, this approach makes
the reproduction of the results and comparison with new
techniques difficult.

In this work, our goal is to generate synthetic ictal samples
for seizure detection. Hence, we propose to directly quantify
the quality of synthetic EEG ictal samples in the seizure
detection problem. We design an evaluation procedure based
on this task that allows us to systematically evaluate synthetic
ictal samples and follows a similar philosophy as the “Train
on Synthetic, Test on Real” method from [25]. This procedure,
corresponds to the second part of the real world scenario
described in Section III-B.

Our evaluation is based on a state-of-the-art classifier that
uses the random forest algorithm [53] to determine whether
an incoming four-second sample is an ictal or an inter-ictal

sample. This classifier uses 500 trees and follows that of [7],
which is tailored to a stigma-free wearable device for epilepsy
monitoring. Therefore, using that same classifier evaluates
the feasibility of using our synthetic samples not only in a
medical environment, but also in the more restrictive setting
of continuous monitoring using wearable technologies.

Each patient i is targeted independently. We divide the
real inter-ictal samples from the target patient i in three non-
overlapping sets that we denote as SGANi , STraini , STesti . Our
procedure considers the scenario where the only data available
for training the seizure detection algorithm are real inter-ictal
samples STraini and synthetic ictal samples of target patient
i generated from SGANi . As a baseline for comparison, we
consider the case where real ictal samples from all other N−1
patients and inter-ictal samples STraini from the target patient
are available. The evaluation procedure can be structured in
four steps:

1) Construction of target training set Ti, baseline training
set Bi, and test set Ei.

2) Identification and extraction of relevant domain features.
3) Training the classifier for seizure detection with the

target training set Ti and evaluation on the test set Ei.
4) Training the classifier for seizure detection with the

baseline training set Bi and evaluation on the test set
Ei.

Therefore, we first build the target training set Ti, baseline
training set Bi, and the test set Ei in the following way:

• Target training set, Ti: consists of 2,000 synthetic ictal
samples (generated using real inter-ictal samples from the
target patient SGANi ) and 2,000 real inter-ictal samples
(STraini ) from the target patient i.

• Baseline training set, Bi: consists of 2,000 samples of real
seizures randomly selected from all the N − 1 patients
in the database except for the target patient i, as well as
2,000 inter-ictal samples from the target patient (STraini ).

• Test set, Ei: consists of all the ictal samples of the target
patient i without overlap and twice as many inter-ictal
samples from the same patient, i.e., STesti .

Note that, the synthetic ictal samples are the only aspect
that differs between the target training set Ti and the baseline
training set Bi. This ensures that the performance difference
between both training sets is due exclusively to the quality
of the ictal samples and not to the real inter-ictal samples
STraini . On the other hand, we build an unbalanced test set
Ei with twice as many inter-ictal as ictal samples; neverthe-
less, the metrics we use to measure the performance of our
system (sensitivity and specificity) are invariant to the ratio
of inter-ictal and ictal in the dataset.The size of the test set
changes slightly among patients, given that a different number
of seizures are recorded for each patient.

Once the data is split in training and test sets, the second
step performed in our procedure is identification and extraction
of relevant features. In this stage, we follow again [7] and
extract 54 features of power and non-linearity per electrode,
and, since we consider two electrodes, the total number of
features is 108. These features are subsequently extracted for
all the samples in both the training and the test sets. To
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Fig. 4: Comparison of a real and a synthetic ictal sample for electrodes T3F7 and T4F8. It is visible how in both cases the
delta-theta rhythm are present in the signals.

calculate the non-linear features, the signal is decomposed
using the discrete wavelet transform down to level seven. The
nonlinear features extracted are: sixth and seventh level sample
entropy [54] for k = 0.2 and k = 0.35; third, fourth, fifth,
sixth and seventh level permutation entropy [55] for n = 3,
n = 5 and n = 7; third, fourth, fifth, sixth and seventh level, as
well as raw signal, Shannon, Renyi and Tsallis entropies. The
power features are: total power, total and relative band power
in the bands delta [0.5,4] Hz, theta [4,8] Hz, alpha [8,12] Hz,
beta [13,30] Hz, gamma [30,45] Hz as well as in the bands
[0,0.1] Hz, [0.1,0.5] Hz, [12,13] Hz.

After the features are extracted, the target training set is
used to train the random forest classifier and the resulting
classifier is evaluated against the test set. The same procedure
is then repeated for the baseline training set, which results are
used as reference. We repeat these experiments 15 times for
each patient, shuffling the data each time, in order to make
our results robust against different splits of data, as well as
against different learnt configurations of the random forest.

The proposed procedure provides a framework to easily
compare different generative models by simply using in the
target training set the synthetic ictal samples generated by
a given model. Furthermore, using the downstream task of
seizure detection in wearable devices as a proxy for signal
quality allows us to directly draw conclusions on the utility of
a set of synthetic ictal samples. Therefore, subsequent work
could rely on this procedure to compare the quality and utility
of synthetically generated ictal data.

VI. RESULTS

A. Model Convergence

To determine the convergence point of EpilepsyGAN, we
randomly select five patients (patients 2, 8, 9, 17 and 30) as
validation set and evaluate the data generated by the model
at different training epochs; we also use this validation set to
determine the other hyper-parameters of the model, described

TABLE I: Mean performance on the validation set for different
training epochs.

Number of epochs Mean Score
60 74.61
70 76.24
80 78.36
90 75.70

100 78.72
110 77.34
120 74.80
130 73.90
140 75.97
150 75.14

in Section III. Patient 8 suffers from frontal lobe epilepsy,
while the other patients in the validation set have temporal
lobe epilepsy. We calculate the performance score of each
model as the geometric mean of sensitivity and specificity,
where sensitivity and specificity are the true-positive rate and
the true-negative rate, respectively. We report the geometric
mean because it is the only correct average of normalized
values [56]. Table I shows the mean performance over the
five patients for different number of epochs. We observe how
training longer than 100 epochs hurts performance, and thus,
we train EpilepsyGAN for 100 epochs.

B. Similarity Between Real and Synthetic Samples

Before performing a quantitative evaluation of the quality
and utility of the samples generated by our GAN model,
we visually inspect the synthetic ictal samples and compare
them with real ictal samples. In this way, we verify that the
model generates samples that can not only train a detection
system, but also are realistic and follow patterns associated
with epileptic seizures. An example is shown in Fig. 4, where
we compare 4 seconds of real ictal EEG signal for the two
electrodes of interest with 4 seconds of synthetic ictal EEG
generated for the same patient. We observe the presence of the
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Fig. 5: Similarity between real ictal signals and between real
and synthetic ictal signals for each patient.

well-known delta–theta rhythm, i.e., rhythmic slow activity
with a frequency of oscillation in 0.5–4 or 4–7 hertz. This
pattern is a clear indication of the correct generation of the ictal
discharge and epileptic seizure segment in the synthetically-
generated EEG signals [57].

Next, we study quantitatively how similar our synthetic ictal
data is to real ictal data. In order to understand the similarity
between synthetic and real ictal samples, we also calculate the
similarity between real samples and use this as a reference.
This way, for each patient we obtain two values: real-to-real
similarity and real-to-synthetic-similarity. To calculate each of
these similarity values we do the following:

1) We select 2000 random pairs of signals from the same
patient. In the real-to-synthetic case, in each pair one
of the signals is real and the other one synthetic; in the
real-to-real case both signals are real and different.

2) For each pair of signals, we calculate the FFT for each
electrode separately; this yields two FFTs per signal, i.e.,
four FFTs per pair.

3) We calculate the cosine similarity between the FFTs of
the corresponding electrodes of each pair; then, average
over both electrodes.

4) Finally, we average over the 2000 pairs, obtaining one
number per patient.

The justification for measuring the similarity between FFTs
instead of between raw signals is that the epileptic seizures
are manifested as changes in certain frequency bands; thus,
the FFT better represents the information we are interested
in. The choice of the cosine similarity is reasonable since this
metric is sensitive to shifts in the data. This way, if two signals
present high values in different frequency bands the similarity
value will be small. The results of this similarity study are
shown in Figure 5. Note that the range of the vertical axis is
narrow, between 0.54 and 0.68.

The results show that in both cases, real-to-real and real-to-
synthetic, signal similarity is in the same range. Furthermore, it
is clear from the figure that in both cases the similarity values
follows the same pattern across patients, i.e., patients with
high real-to-real similarity tend to have high real-to-synthetic

TABLE II: Geometric mean of sensitivity and specificity per
patient of our evaluation.

Patient
ID EEG foci Baseline

(%)
Synthetic

(%)
Difference

(%)

1 Central - Parietal 73.49 80.06 +6.57
3 Temporal 77.59 82.84 +5.25
4 Temporal 76.34 78.33 +1.99
5 Temporal - Frontal 64.86 68.19 +3.33
6 Temporal 74.10 74.74 +0.64
7 Temporal 68.11 68.59 +0.48

10 Temporal - Frontal 66.84 65.87 -0.97
11 Temporal - Central 81.03 83.66 +2.63
12 Temporal 63.00 66.56 +3.56
13 Temporal - Frontal 77.20 78.54 +1.34
14 Temporal 74.32 76.51 +2.19
15 Temporal 74.25 74.07 -0.18
16 Temporal 78.11 80.64 +2.53
18 Temporal 66.20 71.62 +5.42
19 Temporal 76.95 78.13 +1.18
20 Temporal 73.42 68.67 -4.75
21 Occipital 79.18 71.61 -7.57
22 Parietal 26.88 12.62 -14.26
23 Temporal 77.05 78.62 +1.57
24 Temporal 78.28 77.87 -0.41
25 Central 77.02 75.65 -1.37
26 Temporal 74.36 76.15 +1.79
27 Temporal 76.00 78.00 +2.0
28 Temporal - Parietal 81.97 83.07 +1.10
29 Temporal 75.73 78.41 +2.68

Total - 74.39 75.69 +1.3

similarity and viceversa. This experiment gives a first evidence
of the validity of our generative approach.

C. Synthetic Signal Performance

After visual examination and the similarity analysis, we run
the experiments according to our evaluation procedure for the
25 remaining patients of the EPILEPSIAE dataset. We high-
light here that the patient evaluated at each time corresponds
to the patient left-out during the training of the GAN and
therefore there is no information leakage between the GAN
and the test set. The detailed results of our experiments for
each patient are reported in Table II. Again, the reported values
are the geometric mean of sensitivity and specificity.

Intuitively, we would expect that training a seizure detec-
tion algorithm with synthetic ictal samples would produce a
degradation in performance. However, our experiments show
that training with synthetic samples yields a 1.3% improve-
ment overall compared to training only with real samples
from a generic database. An explanation for the performance
improvement when using synthetic data is that, since our
GAN generates ictal samples given inter-ictal samples from
the same patient, the model generates synthetic seizures that
retain a number of personal features. This total difference
in performance is calculated as the difference between the
geometric mean of the scores of all patients in the synthetic
case and the geometric mean of the scores of all patients in
the baseline case. These results pass the Wilcoxon statistical
significance test with a p-value of 0.011, when Patient 22 is
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Fig. 6: Performance difference in the classification task between
synthetic and real training sets. The vertical axis represents the
number of patients and the horizontal one the total difference, where
larger is better. As seen, seizure detection for 67% of the patients
improves by 1.3%.

already excluded1, which indicates that the difference between
the results obtained for the baseline and synthetic training
sets is statistically significant. On top of that, as detailed in
Fig. 6, 16 out of 24 patients, i.e., 67%, improve by more than
1%, while only for three out of 24 patients the performance
decreases by more than 1%.

Regarding the patients for whom the performance degrades
most significantly, the seizures from Patient 21 arise in the
occipital lobe and are dominated by repetitive spiking. This
pattern is relatively rare and is not well represented in the
dataset (only 10.5% of the seizures). Therefore, our GAN
does not model this behavior with as much precision as it
does capture other patterns. Moreover, Patient 20 has only 4
seizures in this dataset, which is the lowest number of seizures
in the dataset and hinders robust evaluation of our synthetic
data for this patient.

These results demonstrate the high quality of the synthetic
ictal data that we generate as well as its utility for the real-
world task of seizure detection. In our experiments, we seek to
evaluate the performance of our data in a comparable manner,
and therefore we do not introduce any prior knowledge in the
evaluation. However, in a real-world setting where a patient
needs to be monitored, prior knowledge regarding the patterns
of the seizures suffered by the target patient can be used
to adapt the training of the GAN. This way, EpilepsyGAN
could be trained only with those ictal samples that follow the
same pattern as the target patient and this would potentially
improve the performance of the detection algorithm. We leave
this extension of our experiments for future work.

D. Mode Collapse Evaluation

The adversarial training of GANs may fail, resulting in
Mode Collapse, i.e., the generator collapses to a few modes or
sample types that systematically trick the discriminator [58].

1We observe that Patient 22 performs extremely poorly for both the baseline
and the synthetic training sets and, therefore, it is not a relevant indicator of
the sample quality. This patient suffers from parietal lobe epilepsy, and the
mentioned electrodes hardly sense this lobe. Consequently, this patient has
been removed from the calculation of the total difference in performance.
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Fig. 7: The normalized confusion matrix for the patient identification
among all the synthetic ictal signals. Each row corresponds to one
patient and the diagonal elements show the proportion of correctly
identified patients.

Therefore, if the model suffers from this undesired failure,
the variety of the data generated is limited and the input
conditioning is ignored.

If our model suffered from mode collapse, the data gener-
ated for different patients would converge to the same synthetic
samples. Here, we study if mode collapse occurs during the
training of our GAN model and if so, to what extent. In this
experiment, we use only the synthetic ictal signals from all the
patients and we randomly split these signals into a training set
(70%) and a test set (30%). We consider our CNN architecture
and train the model to map each synthetic ictal signal to its
corresponding patient, i.e., the patient for whom this signal
was generated.

The results of this classification task are normalized and
presented as a confusion matrix in Fig. 7, with 28 out of 30
patients classified with an accuracy of more than 93.5%. Only
two patients present lower accuracy values, 75.9% and 23.3%,
while the average accuracy is as high as 95.4%. The results
clearly show that the synthetic ictal samples generated for
each patient are different and distinguishable, which in turn
indicates that mode collapse does not occur across patients.

E. Patient Identification

To evaluate the patient identification task, we use the same
five patients for validation as above (Patients 2, 8, 9, 17,
and 30). The remaining 25 patients conform the test set,
from which we pick different subsets in our experiments. In
particular, we pick subsets of N = 2, 4, 8, 16, and 25 patients,
randomly chosen from the 25 patients in the test set. On
these subsets, we perform the identification task described in
Section IV, using all the inter-ictal, real ictal, and synthetic
ictal signals in the dataset. The results are shown in Fig. 8. In
this figure, the five groups show the results for the experiments
with N = 2, 4, 8, 16, and 25 patients in the test set. Each group
includes three bars, which represent the identification accuracy
for Exporig , Expsynt , and Exprand , respectively. We note here
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N = 2, 4, 8, 16, and 25 patients in the test set. In each category, the
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indicate the results for the patient identification in Exporig , Expsynt ,
and Exprand , respectively.

that the setup of this experiment, and in particular of Expsynt is
fundamentally different from the mode collapse experiment of
the previous section: in the mode collpase experiment both
training and test set consisted of exclusively synthetic ictal
samples, while here the training set consists of real inter-ictal
data and the test set of real ictal (Exporig ) and synthetic ictal
(Expsynt ) data. Therefore, this patient identification experiment
investigates whether it is possible to establish an association
between inter-ictal and ictal samples (real or synthetic) for
a given patient, regardless of the existence or not of mode
collapse.

By comparing the results for Exporig with Exprand , it is clear
that, when we consider the original (real) ictal signals the
patients are significantly more vulnerable to be re-identified
in comparison to the random baseline. The identifiability
ratio, i.e., how many times more identifiable the patients
are, between Exporig (blue bars) and Exprand (yellow bars) are
1.5x, 2.8x, 4.4x, 7.1x, and 9.6x for N = 2, 4, 8, 16, and 25,
respectively.

On the other hand, the results of Expsynt show that patient
identification using synthetic data is much harder than using
real data. Comparing the results of Expsynt (red bars) and
Exprand (yellow bars), we see that the identifiability ratios
are as low as 1.1x, 1.1x, 1.4x, 1.3x, and 1.3x for N =
2, 4, 8, 16, and 25, respectively. Finally, for N = 25 the ratio
between Expsynt and Exporig is 7.2x, which indicates that re-
identifying a patient from its synthetic data is 7.2 times harder
than with real data. These results demonstrate the privacy gains
of our generative approach.

F. Patient-Specific Results

Next, we perform an in-depth study of the identification
results and investigate the identifiability for every patient
individually. Now, for each experiment, Exporig and Expsynt ,
all the ictal signals from the 25 patients are fed to the trained

Fig. 9: Patient-specific recall for the experiments with 25 patients in
the test set.

model in order to be identified. For each patient i, the number
of signals for which the i-th patient is correctly identified is
denoted by TPi. The number of signals for the i-th patient
which are incorrectly associated to other patients is denoted
by FNi. Based on these two key values, we calculate the
Recall (Sensitivity) metric to produce patient-specific results.
The recall metric is defined as follows:

Recalli =
TPi

TPi + FNi
· (3)

For every test patient in every experiment we calculate the
recall value. Fig. 9 shows the patient-specific recall values
when using the real and synthetic ictal signals.

In Fig. 9, each violin shape represents the distribution of
recall values for all the patients in the test set. The left-hand
side violin, corresponds to the recall values of the experiments
with real ictal data. We see that for real ictal data the recall
upper quartile is 58.6%. This underlines the fact that a quarter
of patients can be identified with a probability of more than
58.6% based only on their real ictal data. Note that if we
randomly choose a patient for every input signal, the recall
metric would be 4.0%. Furthermore, eight patients can be re-
identified with more than 50.0% probability. The maximum
for this recall distribution is 74.2%.

On the other hand, the distribution of recall values for the
synthetic data is shown in the right-hand side violin in Fig. 9.
The median is only 3.2%, which means that with synthetic data
the probability of identifying more than half of the patients
is the same as random. This demonstrates that the synthetic
data generated by the EpilepsyGAN are less prone to privacy
vulnerability and re-identification, when compared to the real
data.

G. Discussion

The experiments presented in this section show that:
1) Synthetic seizures can be used to train an algorithm for

seizure detection, i.e., for discriminating real inter-ictal
and real ictal signals.
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2) The generative model does not collapse to a single mode,
i.e., generates different signals for different patients.

3) Given real inter-ictal signals, it is easier to identify the
patient from real ictal samples than from synthetic ictal
samples.

These experiments are complementary since 1) determines
the discriminability between real ictal and inter-ictal samples
given synthetic ictal samples; 2) discriminates synthetic ictal
samples across patients; and 3) studies the relationship be-
tween inter-ictal and ictal samples for a given patient. The
results imply that while synthetic ictal signals are different
across patients (which is desired) it is harder to identify the
patient from synthetic ictal signals than from real ones, without
degradation in the seizure detection task.

VII. CONCLUSION

In this work we have presented EpilepsyGAN, a generative
model that successfully generates synthetic EEG signals of
epileptic seizures. This constitutes a direct application of
deep generative models in healthcare and a step forward in
the treatment of epilepsy. Furthermore, we have proposed
an evaluation procedure that allows us to systematically and
quantitatively evaluate the quality and utility of the generated
synthetic ictal samples. Our results underline that training
using exclusively synthetic seizures can achieve comparable
performance to training with generic real samples.

To the best of our knowledge, for the first time in the
medical domain, we have generated synthetic data sets that
can train detection algorithms and reach (and even improve)
state-of-the-art results based on real data, which demonstrates
the quality of our synthetic data. This solution circumvents
both the costs related to seizure recording and labeling, as
well as the privacy concerns derived from sharing personal and
sensitive data.Although we have shown that our GAN model
can generate realistic seizure signals, further improvement on
the quality of the signals may require modification of the
model and the training strategy. In particular, a variational
version of our model working with unpaired data is a promis-
ing candidate since it should be able to learn the matching
between distributions (inter-ictal and ictal) rather than between
samples. We believe that further research into unpaired and
conditional deep generative models may advance the field
towards personalized medicine based on synthetic data.

Finally, we have shown that it is possible to re-identify
patients from their ictal data and demonstrated that using
the synthetic signals produced by our proposed GAN model
alleviates the privacy concerns associated with sharing data
for epileptic seizure detection without a loss in detection
performance.
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