
Multipath bonding at Layer 3

Maciej Bednarek
ETH Zurich

Guillermo Barrenetxea
Kobas

Swisscom

Mirja Kühlewind
ETH Zurich

Brian Trammell
ETH Zurich

ABSTRACT
Recent work has applied Multipath TCP proxies to the prob-
lem of bonding a customer’s multiple access interfaces to
the Internet, in order to augment available bandwidth, es-
pecially in areas with marginal fixed connectivity. However,
such proxies only apply to TCP traffic, and while UDP-
based media streams can be tunneled through bonded TCP
connections, this would lose the advantages of loss-tolerant
media-oriented transports. We therefore propose an ap-
proach to do interface bonding at layer 3, design a scheduling
algorithm to shift traffic between fixed and mobile lines, im-
plemented Linux-based bonding gateways, and tested them
within a testbed on Swisscom’s production DSL and LTE
networks.

CCS Concepts
•Networks → Middle boxes / network appliances;
Packet scheduling;

Keywords
multipath; bonding; UDP; DSL; LTE

1. INTRODUCTION
Multipath TCP (MPTCP) [6] allows an endpoint to simul-

taneously use multiple paths over multiple interfaces (e.g.,
wifi and LTE) for a single TCP session. As MPTCP does
not require any modification in the application, it can be
used any time if both the client and the server support it.
However, as MPTCP is not yet widely deployed, another
approach to provide its advantages involves the creation of
multipath tunnels between MPTCP proxies [3], which run
all traffic between the proxies over the multiple paths be-
tween them. When placed on a customer’s access router,
the proxy allows the customer’s TCP traffic to benefit from
the aggregation the DSL and the mobile network link ca-
pacity, and for network providers to offer better service than
would be available with DSL alone. For this reason, Various

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ANRW ’16, July 16, 2016, Berlin, Germany
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4443-2/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2959424.2959439

network providers are currently experimenting with use of
multipath proxies to increase the bandwidth they can offer
to their customers by aggregating the DSL and the mobile
network link capacity on a customer’s access router.

An MPTCP proxy can only be applied to TCP traffic,
however. Running other traffic such as IPTV or VOIP ap-
plications over UDP in a multipath TCP tunnel can lead to
poor performance. We therefore propose a new approach for
multipath bonding at layer 3, which is independent of the
transport protocol and therefor applicable to UDP traffic as
well. The proposed design aims to minimize loss while fully
utilizing the available bandwidth and avoiding reordering.

We targeted our prototype at a specific scenario: a cus-
tomer in an area with marginal, low-bandwidth DSL con-
nectivity but with good mobile connectivity, where a single
traffic flow (e.g. high quality video) momentarily exceeds
available DSL capacity. Here, the strategy is to keep the
DSL link full, and to use the LTE link to provide excess
capacity when necessary. The degrees of freedom of our
architecture, however, allow it to be generalized to other
scenarios. The architecture is described in section 2. The
primary problem in building such a generic proxy is to send
each packet over the appropriate interface. The design of
the scheduling algorithm (in section 3) is therefore a key
contribution of this work.

We implemented the proposed system in a lab testbed
using a DSL connection and an LTE interface. Our testbed
evaluation (section 5) demonstrates that our prototype can
reach our goals of high utilization with low loss within our
target scenario, even with dynamic network and cross-traffic
conditions.

1.1 Related Work
The present work can be understood as a generalization

of [3] to layer 3 and optimized for our described scenario
where the fixed access network does not provide enough ca-
pacity to serve a bandwidth-consuming (multimedia-)service.
In addition, Deutsche Telekom and Huawei have proposed a
related approach to the present work, describing extensions
to Generic Routing Encapsulation (GRE) to enable signal-
ing for tunnel setup [8], but does not describe a scheduling
algorithm for deciding which packets go over which tunnel.
These extensions could be used to implement our approach
over GRE.

This is a large number of related scheduling approaches in
literature, including scheduling schemes proposed for MPTCP,
e.g. [9]. While we only propose a scheduling that controls the
bandwidth usage on each link, these proposal often also take
higher layer information at the endpoint into account to de-

cide which packet should be scheduled over which path [13].
While it would be easy to make our proposed algorithm flow-
aware to ensure that, for smaller flows, all packets of one flow
would be router over the same link, we did not further con-
sider this extension in this paper, as he have concentrated
here on a scenario where one flow already would need more
capacity than provided by the fixed network link, in our case
DSL.

Further, there is an even larger set of proposals that dis-
cuss multipath routing, in various scenarios and based on
different assumptions. Our approach differs from previous
multipath routing work, such as [1, 10]: as we address a dif-
ferent goal with fixed preference, full utilization of a lower-
cost fixed link while using a higher-cost wireless link to han-
dle additional demand, therefore our approach can be much
simpler than a generalized approach. The same is true for
more generalized approaches as presented in [5, 2] as well
as bandwidth aggregation in vehicular networks [11]. While
these approaches and architectures concentrates on schedul-
ing, The scheduling on our approach is simple, but the in-
telligence of our system lies in the outbound bonding box
that performs the reordering.

We would further like to note that on-going work focuses
in addition on middlebox and path signaling mechanisms [12].
If such mechanism would be in place, they could further be
used to provide additional guidance for our multipath bond-
ing proxy. E.g. if it would be know that a certain flow is
not sensitive for re-ordering, our approach could be further
simplified.

2. BONDING ARCHITECTURE
Our architecture consists of two gateways, one at the cus-

tomer site and one operated by the access network provider,
connected by at least two tunnels. One of these tunnels runs
over a terrestrial (DSL) internet connection, and one over a
mobile (LTE) connection; the approach could, however, be
easily generalized to n access interfaces. The proxies build a
“bonded” interface across these two connections. Each proxy
consists of two components: an “ingress” which accepts traf-
fic, assigns it to one of the two bonding interfaces based on
interface conditions, and schedules its transmission; and an
“egress” that takes traffic from the two bonding interfaces,
merges it in the correct order, and sends it out. Each gate-
way therefore acts as a transparent proxy. The customer
gateway is designed either to be integrated into Customer
Premises Equipment (CPE) with multiple access interfaces,
or to be deployed as a separate middlebox connected to CPE
for each interface. The provider gateway is connected to the
Internet and/or to provider-hosted services (such as VoIP or
video on demand).

The customer side gateway sends upstream traffic to the
provider’s bonding server, and the provider’s gateway sends
downstream traffic to the customer side bonding server. The
two proxies cooperate with each other to determine link con-
ditions on each of their bonded interfaces, as input to the
scheduling algorithm used by each gateway. This arrange-
ment is shown in Figure 1.

The ingress uses a scheduling algorithm that, for each in-
coming packet, decides which tunnel to use. This ingress
adds global (per bonded gateway pair) and local (per in-
terface) sequence numbers to each packet. These sequence
numbers are used by the opposite gateway’s egress to emit
outgoing packets in order and detect loss on both links. The

Customer
Bonding
Gateway

In
gr

es
s

Eg
re

ss

Provider
Bonding
Gateway

In
gr

es
s

Eg
re

ss

DSL
Access

LTE
Access

Internet

Provider-
Hosted
Services

A
cc

es
s

Po
in

t

Customer
Devices

Figure 1: Architecture

egress periodically reports loss information back to the peer
gateway, as input to the scheduling algorithm.

When splitting a single traffic flow across multiple access
links, the delay over the total bonded link is limited to the
maximum delay across the access links. In the case of LTE
and DSL, as we target, this delay difference can be quite
high. The egress must have enough buffering capacity to
hold packets from the lower delay link so they can be rese-
quenced before transmission.

3. SCHEDULING ALGORITHM
The scheduling algorithm at the ingress is based on a

Weighted Round Robin (WRR) [7] scheduler. At a given
point in time, a certain fraction of traffic is assigned to each
bonded interface (either the mobile or fixed line) based on
the weights for each.

These weights are calculated dynamically based on the
loss ratio reported back from the peer’s egress, under the
assumption that loss is an indication that a link is at its
capacity. Since LTE access is more costly than DSL, one of
our goals is to fill the fixed link first, and use the mobile link
for excess traffic demand only. Therefore, the scheduling
algorithm we implemented uses a constant fixed link weight
and only adapts the mobile link weight; a generalization of
this approach to meet other goals could use both loss rates
and adapt both weights independently.

The global sequence number is used to detect loss, and the
local sequence number identifies the link on which the loss
occurred. A loss is assumed when an expected packet has
not arrived at the egress before a timeout Tlto. The egress
reports the number of losses pktlost within a given interval
Treport back to the ingress. For our evaluation, we only
used fixed-size packets and therefore we only feed back the
number of lost packets. However, the proposed algorithm
could easily be adapted to reflect the actual packet size.

Our algorithm consists of three parts: Adaptive Weight
Increment (AWI), Initial Weight Increment (IWI), and De-
layed Weight Decrement (DWD), detailed in the subsections
below. The algorithm is controlled by the k parameter to
AWI, which controls the responsiveness of the AWI stage
and thereby the responsiveness to traffic and link condition
changes; and tdwdwait, which controls the responsiveness of
the DWD stage, and thereby the aggressiveness of the al-
gorithm with respect to other traffic on the fixed link. In
section 5 we show how tuning these parameters changes the
algorithm’s behavior.

3.1 Adaptive Weight Increment (AWI)
Upon the reception of a report that indicates that loss

occurred, AWI updates the weight for the mobile link:

wmobile += k ∗ pktlost
pktsent

∗ wfixed (1)

The increment of weight wmobile is linearly proportional
to the ratio of packets lost in the last reporting interval
Treport vs. sent packet as counted by the gateway since the
last report was received, for the fixed line only. k is a con-
trol parameter to adjust the steepness of the weight increase
and thereby the responsiveness to loss. wfixed is a constant
value, however, the value itself determines the granularity
of the packet scheduling as well as responsiveness. A small
value allows only for a small number of ratios of packet dis-
tributions, while a large value needs longer to converge.

3.2 Initial Weight Increment (IWI)
In Eq. 1 above, a very small loss fraction would not change

wmobile despite congestion on the fixed link. However, in a
situation where congestion is just arising, it is important
to react quickly. Therefore, when wmobile is zero but loss
is reported, IWI increases wmobile by the number of lost
packets.

wmobile is initially zero, and is clamped to a maximum
value wmobilemax. This clamp keeps IWI from overshooting
and shifting too much traffic to the mobile link.

3.3 Delayed Weight Decrement (DWD)
After no loss has been reported for Tdwd, DWD decre-

ments wmobile by one for each interval Treport in which no
loss has been reported. This shifts load back to the fixed
line without inducing loss by shifting the load too quickly.
As loss reports are only received every Treport milliseconds,
Tdwd must be a multiple of Treport.

4. IMPLEMENTATION
We implemented the described approach using two Linux

machines based on Debian Wheezy for experimental evalu-
ation. We intercept packets using the libnetfilter_queue

userspace library1, which forwards packets from a specific
Netfilter kernel queue to a userspace program. Each packet
in the Netfilter queue is associated with an id - used to
issue a verdict and release a packet from the userspace pro-
gram back to the kernel: NF_ACCEPT accepts the packet for
forwarding, NF_DROP discards it, and NF_QUEUE passes it to
another queue.

4.1 Packet Mangling
The bonding gateway registers an outgoing queue in the

OUTPUT chain of the Netfilter architecture. There two types
of incoming packets in this queue: data packets to be sched-
uled for multipath bonding and control packets from the
egress, containing loss reports. The latter are consumed as
input for the schedule and discarded, while data packets
are mangled to add the needed sequence number informa-
tion and will then be forwarded to the scheduler. While a
standards-based implementation of our approach would use
the Generic Routing Encapsulation (GRE) Sequence Num-
ber and Key fields [4] could be used for this purpose, we

1http://www.netfilter.org/projects/libnetfilter queue/

Figure 2: Laboratory setup.

added a custom header between the UDP header and pay-
load.

4.2 Scheduling
The scheduler checks if packets are available in the incom-

ing queue. After making a scheduling decision it applies a
netfilter mark (fwmark) to each packet that is mapped to
the right output queue using iptables. The scheduler also
counts the number of packets sent on each interface, in or-
der to calculate the weights.

4.3 Reordering
The egress implements a Netfilter queue which is hooked

in the PREROUTING chain that intercepts all incoming
UDP packets, forwarding these to a reordering function.
If the sequence number is the next expected number in a
flow (last accepted + 1) or the first one of a new flow, the
packet is forwarded directly and the sequence number stored
as last accepted. If any packets are currently buffered, we
check if last accepted + 1 matches the sequence number of
the first packet in the queue. If so, this packet is forwarded
as well, last accepted updated, and the next packet in the
queue checked, until the queue is empty or no match was
found. If a packet with a larger sequence number than ex-
pected arrives, it is timestamped and buffered. Packets with
a sequence number lower than last accepted are discarded,
as they have been assumed to be lost.

Further, for any out-of-order packets we compare the times-
tamp of the first packet in the queue to the current system
time (as provided by the linux time.h library). If the differ-
ence is larger than Tdwd, we assume that the packet we are
waiting for is lost and forward the first packet in the queue,
respectively update last accepted, and check the next packet
in the queue for a match. This mechanism automatically de-
tects multiple missing packets whenever the loss occurred in
a bulk.

The original packet is then recreated and enqueued for fur-
ther forwarding. This simplifies implementation, and make
it possible to selectively disable reordering in a future im-
plementation, e.g. for transports known to be tolerant of
out-of-order delivery.

5. EVALUATION
For the evaluation we performed two sets of experiments:

Experiments with a single UDP flow to evaluate the impact
of different input parameters for k and Tdwd; and experi-
ments to assess the algorithm’s ability to operate in a more
dynamic environment with multiple starting and stopping
UDP flows as well as with adaptive TCP cross-traffic on the
fixed line.

5.1 Experimental setup

Figure 3: Per-link throughput for k = {0.1, 0.5, 1} and Tdwd = {50ms, 250ms, 500ms}.

Figure 2 shows the basic platform used for the evaluation
in all scenarios. Note that in this evaluation, we only send
traffic from the server to the client; the ingress is colocated
with the server, and the egress with the client.

The server generates UDP traffic directly, while TCP cross-
traffic is generated by large file transfer from a well con-
nected public server (cdimage.debian.org) 50ms away from
the client. All generated UDP packets are 1492 bytes long
(28 bytes UDP/IPv4 header, 4 bytes for the global sequence
number, and 1460 bytes of dummy payload).

Each endpoint has two interfaces: a mobile LTE dongle
and one DSL line connected to standard Swisscom router
(Stargate). The available bandwidth on DSL link is shaped
between the CPE and the Digital Subscriber Line Access
Multiplexer (DSLAM) to a maximum rate of 64 Mb/s. The
LTE access is provided using Swisscom’s Huawei E3276s
LTE stick with a maximum rate of about 60Mb/s. The
average latency between client and server for the DSL line
was measured around 13ms and remained stable, whereas
the latency for mobile LTE access varied between 25 - 45ms.

For each evaluation in the subsections below, we chose a
fixed wfixed = 50, and an loss reporting interval Treport =
50ms.

5.2 Single flow
To demonstrate the impact of k and Tdwd, we initially

evaluate a scenario with only one UDP flow. The flow starts
with a sending rate of 63 Mb/s, then increases its rate ex-
ponentially every 200ms for 15 seconds, until it reaches a
maximum of 105Mb/s. It holds this constant sending rate
for 10 seconds and afterwards decreases the rate logarithmi-
cally to finally get back to the initial data rate of 63Mb/s
after another 15 seconds.

wmobilemax = 45 in order to avoid exceeding the maxi-
mum LTE link capacity in our scenario. This is necessary
especially for evaluation with large k values (k = 1) which
can causes an abrupt increase of wmobile during IWI. The

experiment was run for k values of 0.1, 0.5, and 1 and Tdwd

of 50ms, 250ms, and 500ms.
Figure 3 shows the achieved throughputs on each link

where the red, dashed line depicts the ideal throughput for
zero loss on the fixed line. With a small values k of 0.1 not
enough traffic is shifted to the mobile link, leading to perma-
nent losses with an average loss rate of 6.25%, 4.72%, and
4.1% for the different Tdwd values, respectively. However,
the larger k is, the more the traffic load oscillates between
the two links. A value of 1 basically means that as soon
as any loss is reported, we will start shifting traffic to the
mobile link. Due to the IWI scheme that we need for sce-
nario where new traffic flows start as we will show later,
we bascially overshoot, shift too much traffic such that we
underutilize the fixed line, and consequently start to shift
traffic back. A similar behavior can be observed for low
traffic rates with a small k value as the impact of a small
number of losses is higher in these cases.

Further, the larger Tdwd is, the slower our approach adapts
to decreasing traffic demands (as between 25 and 40 s) by
shifting traffic back to the fixed line. However, this counter-
acts the oscillation that we have observed with high k values,
and less oscillation also leads to lower loss rates. Unfortu-
nately, it also decreases the utilization on the fixed line.

For k = 0.5 and k = 1 with Tdwd = 50ms, we still have
a loss rate of 1.79% and 1.14%. However, loss rates are
below one percent for the other combinations: 0.53% and
0.29% with Tdwd = 250ms as well as 0.34% and 0.15% with
Tdwd = 500ms.

We have shown here that k and Tdwd provide a trade-
off between agressiveness and responsibility, and therefore
can be used to adapt our proposed algorithm to the desired
goals of the operator in a given scenario. Selection of k = 0.5
and Tdwd = 250ms or Tdwd = 500ms provides the best fit to
optimal load with acceptable loss for the single flow scenario.
As we aim to always utilize the fixed line while most of our
traffic is rather loss- tolerant, we use this parameter setting
in further evaluation scenarios.

Figure 4: Generated UDP input traffic demand.

5.3 Multiple UDP flows
To demonstrate the ability of our proposal to adapt to

changing traffic situations, we start and stop various UDP
flows as shown in Figure 4. Input parameters are k = 0.5
and Tdwd = 250 as these values have shown a good trade-off
between loss and link utilization in our previous evaluation.
Throughput is calculated every 100ms.

We only perform per-packet scheduling, as opposed to per-
flow scheduling, as our target scenario is to handle one flow
that needs a higher data rate than provided by the fixed
line. In a scenario with multiple smaller flows, one could
schedule on a per-flow basis to avoid the additional delay of
the mobile link for flows that are small enough to fit on the
fixed line link.

Figure 5 shows the achieved per-link throughput, over-
all generated data rate and in-order throughput, as well as
number of losses and and the changes in wmobile observed
during the experiment.

The excess load moves quickly from the fixed to the mobile
link whenever the scheduled data rate exceeds the maximum
capacity on the fixed line which is clearly visible when new
UDP flows are being turned on (5s, 20s and 50s). Every
time a UDP flow is terminated, the algorithm shifts the
load back. This happens rather slowly as we use a quite
high Tdwd value of 250ms, e.g. it required about 5 seconds
to reduce load from 11Mb/s to 0Mb/s on the mobile link
(12s - 17s).

The comparison of the output rate and the in-order through-
put as provided by our approach (second plot from the top)
gives an insight on the amount of re- ordering that happens,
in this case with a timeout of 50ms.

Further, bursts of losses occur whenever a new flow starts,
as our algorithm needs at least one interval of Treport time
to detect the changed traffic demand and react accordingly.
However, IWI shifts the traffic quickly and a low loss rate is
maintained afterwards.

5.4 Single TCP flow
In this section we evaluate the behavior of our proposed

scheme in the presence of greedy TCP traffic which due to
it’s adaptive congestion control aims to fully utilize the avail-
able link capacity while still being friendly to cross traffic
that allocates capacity on the same link. In this scenario,
there is a trade-off that allows the operator to decide if it
what to to support this kind of cross traffic by shifting more
UDP traffic to the mobile network, or prioritize his own
UDP-based service over the adaptive TCP traffic. We show
that this trade-off is configurable given the parameters our
algorithm provides.

On the fixed line link, we start one greedy TCP flow at

Figure 5: Behavior with multiple UDP flows.

the beginning of our test and then start one UDP flow after
10s with a constant data rate of 41.5Mb/s (for 200k packets,
until 68.7s) which is lower than the maximum capacity pro-
vided by the fixed line and a second UDP flow around 88.7s
(20 seconds after the end of first UDP flow) with a constant
data rate of 63Mb/s (for 400k packets, until 165.1s), approx-
imately the fixed-line capacity. Further, wmobilemax = 50
in this scenario to ensure that UDP traffic will not be com-
pletely shifted to the mobile link. As it can be seen in Figure
6 the TCP connection is able to fully utilizes the available
bandwidth of the DSL link if no cross traffic is present.

In Figure 6 we show the results for a k value of 1 and
different Tdwd values of 50ms, 500ms, 1000ms. In all three
plots the initial loss burst that is caused by the UDP flow
startup leads to a shift of the traffic load to the mobile link.
However, the smaller Tdwd is, the faster traffic shifts back
to the fixed link. Only with a high value of Tdwd can we
permanently shift some of the UDP traffic to the mobile link
and leave spare capacity for the TCP traffic. Therefore Tdwd

can be used by the operator to decide how TCP-friendly the
algorithm should be. Further note that the achieved sharing
is also influenced by the aggressiveness of the congestion
control algorithm(s) used by the TCP traffic.

We also ran experiments with multiple TCP flows. E.g.
in a scenario where we first start one UDP with a rate of
62 Mb/s and then start one or two TCP flows after 10s, of
course we can see that the two TCP flows are more aggres-
sive and therefore are able to grab more of the capacity (even

Figure 6: TCP cross-traffic on the fixed line.

with a Tdwd value of 500ms). In this scenario with a run-
time of 88s and k = 1, a single TCP flow reaches an average
rate of 7.79Mb/s while the sum of both TCP throughputs
was almost twice as much with 14.30Mb/s. Further we ran
a set of experiments with different value for k. As expected,
k does not have significant influence on the sharing between
TCP and UDP flows.

6. CONCLUSION AND OUTLOOK
In this work, we have demonstrated that a relatively sim-

ple scheduling algorithm can allow multipath bonding to
handle non-TCP, loss-tolerant media traffic in dual DSL/LTE-
connected access networks.

Future work in this area includes interoperation with presently
deployed MPTCP proxies to simultaneously provide bond-
ing for both TCP and non-TCP traffic, tuning our approach
to interoperate with MPTCP’s coupled congestion control.
In addition, further work is planned to improve our algo-
rithms with respect to the right adaptation steps and timing
as well as additional evaluations to assess the latency and
loss impact for real application, such as video streaming or
even real-time media that is even more sensitive to delay.

Finally, we also work on schemes for explicit middlebox
cooperation which would allow endpoints to indicate if re-
ordering is required or not and therefore enable a better
management given the tradeoff between bandwidth and la-
tency in our proposed approach. Integrating these informa-
tion in our approach enables further simplification as well as

a more customized service treatment.

7. ACKNOWLEDGMENTS
This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant
agreement No 688421, and was supported by the Swiss State
Secretariat for Education, Research and Innovation (SERI)
under contract number 15.0268. The opinions expressed and
arguments employed reflect only the authors’ views. The
European Commission is not responsible for any use that
may be made of that information. Further, the opinions ex-
pressed and arguments employed herein do not necessarily
reflect the official views of the Swiss Government.

8. REFERENCES
[1] C. Cetinkaya and E. W. Knightly. Opportunistic

traffic scheduling over multiple network paths. In
INFOCOM, 2004.

[2] K. Chebrolu and R. Rao. Bandwidth aggregation for
real-time applications in heterogeneous wireless
networks. In IEEE ToMC, volume 4, 2006.

[3] G. Detal, C. Paasch, and O. Bonaventure. Multipath
in the Middle(Box). In ACM SIGCOMM
HotMiddlebox’13, 2013.

[4] G. Dommety. Key and Sequence Number Extensions
to GRE. RFC 2890, IETF, Sep 2000.

[5] K. Evensen et al. A network-layer proxy for
bandwidth aggregation and reduction of ip packet
reordering. In IEEE LAN, 2009.

[6] A. Ford et al. TCP Extensions for Multipath
Operation with Multiple Addresses. RFC 6824, IETF,
Jan 2013.

[7] M. Katevenis et al. Weighted round-robin cell
multiplexing in a general-purpose ATM switch chip. In
IEEE Journal on Selected Areas in Communications,
volume 9, 1991.

[8] N. Leymann, C. Heidemann, and X. Li. GRE
Notifications. Internet-Draft
draft-heileyli-gre-notifications-00, IETF, Oct 2013.

[9] C. Paasch et al. Experimental evaluation of multipath
tcp schedulers. In ACM SIGCOMM CSWS, 2014.

[10] A. Qureshi and J. Guttag. Horde: Separating network
striping policy from mechanism. In Proceedings of the
3rd International Conference on Mobile Systems,
Applications, and Services, MobiSys ’05, pages
121–134, New York, NY, USA, 2005. ACM.

[11] P. Rodriguez, R. Chakravorty, J. Chesterfield,
I. Pratt, and S. Banerjee. Mar: A commuter router
infrastructure for the mobile internet. In Proceedings
of the 2Nd International Conference on Mobile
Systems, Applications, and Services, MobiSys ’04,
pages 217–230, New York, NY, USA, 2004. ACM.

[12] B. Trammell and J. Hildebrand. Evolving transport in
the Internet. Internet Computing, IEEE, 18(5):60–64,
Sept 2014.

[13] M. F. Tsai et al. Multi-path transmission control
scheme combining bandwidth aggregation and packet
scheduling for real-time streaming in multi-path
environment. IET Communications, 4(8), 2010.

