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Abstract—High-throughput RNA sequencing (RNAseq) pro-
duces large data sets containing expression levels of thousands
of genes. The analysis of RNAseq data leads to a better un-
derstanding of gene functions and interactions, which eventu-
ally helps to study diseases like cancer and develop effective
treatments. Large-scale RNAseq expression studies on cancer
comprise samples from multiple cancer types and aim to identify
their distinct molecular characteristics. Analyzing samples from
different cancer types implies analyzing samples from different
tissue origin. Such multi-tissue RNAseq data sets require a
meaningful analysis that accounts for the inherent tissue-related
bias: The identified characteristics must not originate from
the differences in tissue types, but from the actual differences
in cancer types. However, current analysis procedures do not
incorporate that aspect.

As a result, we propose to integrate a tissue-awareness into the
analysis of multi-tissue RNAseq data. We introduce an extension
for gene selection that provides a tissue-wise context for every
gene and can be flexibly combined with any existing gene selection
approach. We suggest to expand conventional evaluation by
additional metrics that are sensitive to the tissue-related bias.
Evaluations show that especially low complexity gene selection
approaches profit from introducing tissue-awareness.

Index Terms—RNAseq, gene selection, tissue-awareness,
TCGA, GTEx

I. INTRODUCTION

RNA sequencing (RNAseq) delivers a snapshot of a cell’s

gene activity by measuring the expression levels of each single

gene [1]. Studying these expression levels reveals unknown

gene functions, interactions, and their associations to diseases.

Eventually, this leads to a deeper understanding of the molecu-

lar characteristics of diseases, helps to improve diagnosis, and

results in more effective treatments [2].

For example, studying expression levels from cancer tissues

helps to identify expression profiles that are unique for a

specific cancer type. This kind of RNAseq analysis typically

encompass processing steps for dimensionality reduction, pat-

tern mining, and evaluation. Dimensionality reduction removes

noise and redundancy from the data by reducing the high-

dimensional space from tens of thousands of genes to a few

hundreds. Pattern mining algorithms then separate samples

into distinct categories, e.g. via clustering or classification,

which eventually allows the identification of category-specific

expression profiles. Genes that show a specific behavior for

the respective category, i.e. marker genes, are then evaluated

according to both their discriminative ability for classification

and biological relevance. From the aforementioned processing

steps, dimensionality reduction plays a crucial part in achiev-

ing good classification results. Feature selection — in the

context of analyzing RNAseq data referred to as gene selection

— is one method for reducing a high-dimensional data space.

A proper gene selection must remove noise and redundancy,

but also identify those genes in the data that have highest

discriminative ability.

Large-scale expression studies on multiple cancer types

aim to identify expression profiles that are unique for the

respective cancer types [3–5]. However, current procedures

do not account for an important aspect of the analysis: The

tissue-related bias that is introduced when comparing samples

from different tissue origin. For example, when comparing

samples from colon and lung cancer we must ensure that the

identified differences do not originate from the differences

between colon and lung tissues but are indeed derived from

the differences between the respective cancer types.

Resulting from these considerations, we aim to introduce

a tissue-awareness into the analysis of multi-tissue RNAseq

data sets. Our contribution with this paper is two-fold: First,

we present a novel approach for gene selection that aims to

identify and eliminate what we call tissue-wise housekeeping
genes: Genes that show a uniform expression behavior for a

distinct tissue and for the corresponding cancer type. These

genes do not contribute to the unique behaviour of a tumor,

but are rather necessary for both the normal tissue and the

cancer. Second, we provide multiple evaluation measures that

assess the quality of classification results in the context of

the respective tissue types. These measures can be used to

enhance more complex, iterative gene selection like wrapper

approaches, but also to evaluate clustering or classification

results in the last step of RNAseq analysis.

The remainder of the paper is structured as follows: Sect. II

reviews related work on existing gene selection approaches

and relevant concepts. Sect. III presents the details of our

tissue-aware approaches for gene selection and evaluation.

Sect. IV describes the experiments conducted and provides

evaluation results. Sect. V discusses our approach in a broader

context. Sect. VI summarizes our key findings.
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II. RELATED WORK

There exist various studies examining the differences be-

tween normal and cancerous tissue [6–8]. Such studies aim

to identify marker genes that show a distinctive behavior

for the respective disease and are thus good candidates for

further investigation. Few studies add the tissue context to

their analysis and focus on identifying tissue-specific path-

way interactions, expression Quantitative Trait Loci (eQTLs),

or tissue-specific gene regulations [9–12]. In addition, the

Genotype-Tissue Expression (GTEx) project aims to facilitate

studies on the relationship between genetic variation and

gene expression and provide an open-access RNAseq data set

spanning samples from all major human tissues across a large

number of individuals [11].

Kryuchkova-Mostacci et al. have evaluated a broad range of

existing tissue specifity measures [13]. They concluded that

Tau is the most robust method [14]. Tau groups expression

values per tissue, normalized by the maximum expression

value, and applies the corrected average deviation to 1. To

the best of our knowledge, YARN is the only approach that

provides a seamless integration of tissue specificity into the

analysis workflow [15]. YARN is an R package providing a

software pipeline for preprocessing RNAseq data, e.g. quality

control, filtering, and normalization. YARN’s tissue-aware

gene filtering applies the most simple method of counting in

how many tissues a gene is expressed. The tool removes all

genes that have less than one Count Per Million (CPM) in half

of samples from the smallest sample group, i.e. samples for a

particular tissue. To filter genes, YARN requires a gene to pass

a particular count threshold, which is softened by considering

only a restricted, tissue-specific number of samples.

The measures for tissue specificity all have in common that

they are not set into context, e.g. to a data set of normal

samples. However, a gene can be both tissue-specific and

show a distinctive behavior in tumor and normal samples, i.e.

be involved in a disease. The existing measures for tissue

specificity cannot consider that aspect because they only

analyze samples of the same condition. As a result, they would

remove genes with the aforementioned characteristics and with

that lose relevant genes for the analysis. In contrast, our

approach accounts for that aspect by putting tissue specificity

into context of tumor and normal data for every tissue type.

A. Gene Selection

Literature classifies gene selection approaches according to

their characteristics into filter, wrapper, embedded, hybrid and

ensemble categories [28, 29]. While the simplest statistical

methods (filter) are in favor for feasibility and usability

reasons, more complex approaches achieve a higher result

set accuracy by applying machine learning methods (wrapper

and embedded) or combining multiple gene selection methods

(hybrid and ensemble). Table I provides an overview on

recent gene selection methods according to this classification.

In the following, we focus on approaches that are relevant

specifically for our conducted experiments.

Filter approaches build on statistical tests that determine

discriminant scores for each gene to describe their influence on

the classification result. Genes with the highest discriminative

scores are selected for the final candidate set for classification.

There exist several statistical tests such as χ2, F-test in

Analysis of Variance (ANOVA-F), and information gain [16].

They all measure the correlation or dependence between a

feature and the class label. As biological processes consist

of gene interactions, univariate filters like the aforementioned

cannot adequately reflect and identify the underlying bio-

logical processes in the data. ReliefF is an advanced filter

approach that optimizes sample separability by considering

data points in the local neighborhood and can deal with noisy

and incomplete data and multi-class problems [17].

In contrast to filter approaches, embedded methods are

modeling algorithms that perform gene selection as part of

the modeling phase. Although they inherit a higher compu-

tational complexity and thus longer runtime, they are able to

deliver more accurate results. An example for embedded gene

selection is the decision tree that recursively divides the data

points regarding a feature [30]. To decide on the feature to split

on, measures like Gini impurity assess how often we would

label a random data point from a split incorrectly if we would

label it based on the probability distribution of the labels of

all data points of this split.

Wrapper approaches quantify the quality of solutions and

therefore rely on a fitness score as a black box evaluator.

For example, sequential forward selection (SFS) is a greedy

bottom-up algorithm that starts from an empty set of features

and interactively joins the best remaining feature based on a

fitness score [31].

B. Concepts of Expression Behavior

Findings from expression studies have further resulted in the

definition of housekeeping, tissue-specific, and tissue-selective

genes. Housekeeping genes are assumed to be involved in ba-

sic cellular functions [32, 33]. Thus, they are expected to show

uniform expression behavior across all kind of cells, regardless

of tissue type or condition. Housekeeping genes are also

used as reference genes in control-condition studies [34, 35].

However, there is a low consent on how housekeeping genes

are defined. For example, Eisenberg and Levanon argue that

the notion of housekeeping genes should be redefined with

the upcoming of RNAseq technology [36]: Housekeeping

genes should be genes that generally show a low variability

across tissues and conditions. In contrast, tissue-selective and

-specific genes are rather exclusive by being predominantly

expressed in particular tissues [37]. While tissue-selective

genes are restricted in their expression behavior to one single

tissue, tissue-specific genes can have enriched expression for

a group of tissue types that are biologically similar. Tissue-

specific and -selective genes are assumed to be a good starting

point for further investigation regarding their roles in tissue

functions, possible drug targets, or disease markers.

Regarding gene expression data, a traditional gene selection

algorithm would discard housekeeping genes, as they show

2

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 07,2020 at 10:02:45 UTC from IEEE Xplore.  Restrictions apply. 



2161

TABLE I
OVERVIEW ON TRADITIONAL GENE SELECTION APPROACHES AND THEIR CLASSIFICATION. FILTER APPROACHES HAVE LOWEST COMPLEXITY, WRAPPER

AND EMBEDDED APPROACHES APPLY MACHINE LEARNING STRATEGIES, HYBRID AND ENSEMBLE APPROACHES COMBINE MULTIPLE APPROACHES.

Category Functionality Characteristics Selected Approaches
filter only intrinsic data + independent of classifier Information Gain (IG) [16]

characteristics used + low complexity Relief-F [17]
+ good generalization mRMR [18]

wrapper learning algorithm + detects gene dependencies Genetic Algorithms (GA) [19]
evaluating genes / interacts with classifier Sequential Forward Selection [20]

− high complexity
− risk of overfitting

embedded gene selection embedded + detects gene dependencies SVM-RFE [21]
into learning algorithm / interacts with classifier Random Forest [22]

FS-Perceptron [23]
hybrid multiple approaches / intermediate complexity SVM-RFE + mRMR Filter [24]

applied sequentially − risk of slight overfitting Multiple-Filter-Multiple-Wrapper (MFMW) [25]
ensemble group of gene + good for small sample domains Ensemble Gene Selection by Grouping (EGSG) [26]

rankings aggregated + less prone to overfitting MCF-Based Recursive Feature Elimination (MCF-RFE)
− computationally expensive [27]
− difficult to interpret

the lowest variability and thus low discriminative power.

Instead, the output would be a mixture of predominantly

tissue-specific/-selective and cancer-specific/-selective genes.

With our work, we aim at extracting those genes that are

important for the cancer type while discarding those that are

merely tissue-specific.

III. METHODS

Based on our hypothesis that there is a need for considering

tissue-specific behavior when comparing across multiple can-

cer types and conditions, we aim to integrate this aspect into

the analysis. Fundamental to our approaches is the availability

of both tumor and normal samples, e.g. tumor samples from

lung cancer and normal samples from lung tissue.

We introduce new approaches into the analysis by imple-

menting a tissue-aware gene filtering and an adapted evalu-

ation metric. The tissue-aware gene filtering generates a dis-

criminative score for each gene in context of the tumor/normal

samples and can be combined with any traditional gene

selection approach. The tissue-aware evaluation is an extended

evaluation scheme that assesses classification results based on

multiple criteria that relate to the discriminative ability for

both tumor and normal samples. The evaluation measure can

be applied both during gene selection with wrapper approaches

and at the end of the overall analysis.

A. Tissue-aware Gene Filtering

When differentiating cancer types of different tissue origin,

we need to consider that the tissues themselves already are

heterogeneous in their expression profiles. Without accounting

for tissue type, gene selection approaches can end up in iden-

tifying a certain underlying tissue instead of cancer type. To

address this challenge, we need to take the specific expression

behavior of tissue types into account. In the following, we in-

troduce three straightforward and comprehensible alternatives

to realize tissue-awareness that can be combined with any

gene selection approach: 1) Subtracting discriminant scores

from each other, 2) excluding tissue-separating genes, and 3)

excluding tissue-wise housekeeping genes.

1) Subtracting Discriminative Scores
With our first approach, we aim to identify genes that

can separate samples into their distinctive cancer type and

simultaneously have low discriminative ability for normal

samples. For that, we carry out two distinct gene selections on

both normal and tumor data, respectively, and then combine

their results. This approach requires a gene selection approach

that computes a discriminative score for each gene, e.g. χ2.

Equation 1 depicts the general procedure: For a given gene x,

we subtract discriminative scores scoretumor and scorenormal

for tumor and normal data set, respectively, from each other.

The result forms the new discriminative score score′ for that

respective gene x. Finally, we rank genes according to their

updated discriminative scores and select the top n genes.

score′(x) = scoretumor(x)− scorenormal(x) (1)

2) Excluding Tissue-separating Genes
The second approach also splits up the data set into tumor

and normal categories and runs any desired gene selection sep-

arately to receive two ranked gene sets Gtumor and Gnormal.

Gtumor allows the best classification of tumor samples into

their corresponding disease types. Gnormal allows the best

classification of normal samples into their corresponding tissue

types, but contains only the top n genes. Equation 2 shows

how we combine both gene sets into the final set of candidate

genes: We exclude all genes of Gnormal from Gtumor.

G′ = Gtumor \Gnormal (2)

Equation 2 removes genes that work particularly well on

classifying normal samples. The more similar Gnormal is to

Gtumor, the smaller |G′| will be. In cases of small |G′|
we adapt the selection threshold n for Gnormal and Gtumor

respectively, until we receive a sufficient |G′|.
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3) Excluding Tissue-wise Housekeeping Genes
Our third approach aims to avoid a significant drawback

from the aforementioned two approaches: While a gene could

show a significant expression behavior for a specific tissue,

it could additionally show a significant expression behavior

for the respective cancer type. For example, a gene could be

generally low expressed in normal samples for a particular

tissue type, but be generally high expressed in tumor samples

for the same tissue. With the aforementioned approaches, we

would remove those genes and thus lose a potentially good

discriminator for the respective cancer type. As a result, our

third approach aims to circumvent that by following the notion

of housekeeping genes on a per-tissue basis. We aim to identify

and eliminate what we call tissue-wise housekeeping genes:

Genes that show a low expression variance between tumor and

normal samples for a particular tissue, as these do not seem

to be involved in the corresponding cancer and would rather

induce a tissue-based instead of cancer-based classification

later on. By eliminating tissue-wise housekeeping genes from

the analysis, we expect to be left with the genes that truly

separate cancer types and thus are promising candidates for

further analysis and pattern mining.

To achieve this, we split up the original data set — con-

taining both tumor and normal samples — into subsets per

tissue type. For each subset, we compute the variance for each

gene and mark those with lowest variance, e.g. lowest 10%,

as tissue-wise housekeeping genes. The union of these genes

over all tissue types form the set Ghousekeeping. We then run

gene selection on the tumor data set to receive a ranked set

of genes Gselect. From this list, we remove all tissue-wise

housekeeping genes to form G′, as shown in Equation 3.

G′ = Gselect \Ghousekeeping (3)

B. Tissue-aware Evaluation

For a meaningful evaluation in the context of tissue-

awareness, we need to redefine the commonly used evaluation

measures, e.g. F1 score. An evaluation measure can be used for

two parts of the analysis: To assess the final results at the end

of the analysis, but also during gene selection in conjunction

with a wrapper gene selection approach. Wrapper approaches

perform multiple iterations on candidate gene sets that rely on

intermediate evaluations. The higher the evaluation score, the

better is the quality of the selected gene set and thus the better

is the gene selection approach. To integrate tissue-awareness

into the evaluation, we need to extend the existing evaluation

scheme by further criteria that are sensitive to the tissue-wise

heterogeneity in expression profiles. We aim at an evalua-

tion that examines three properties: 1) The resulting cluster

consistency, 2) discriminative ability to separate samples into

their respective cancer or tissue type, and 3) discriminative

ability to distinguish tumor from normal samples. All three

measures can be treated separately during evaluation at the end

of the analysis to sustain interpretability. However, all of them

provide the same range of [0,1] and can thus be combined to

a single measure, e.g. by computing their arithmetic mean.

1) Cluster Consistency
The cluster consistency score cons specifies how consistent

the formed clusters for tumor and normal data sets are, respec-

tively. Optimally, clusters formed from tumor samples have a

high consistency, while clusters from normal samples have low

consistency when using the same gene set for classification.

The silhouette score is a classical evaluation metric that

measures how tightly data points are grouped within a clus-

ter [38, 39]. It measures for each object how similar it is to its

own cluster and how well it would fit into another cluster. A

low silhouette score between -1 and 0 indicates an object was

assigned to the wrong cluster, while a high silhouette score

between 0 and 1 indicates that it has been correctly assigned.

A silhouette score of 0 indicates that it is not clear to which

cluster an object should belong.

We compute two separate silhouette scores siltumor and

silnormal for tumor and normal data sets, respectively. Equa-

tion 4 depicts how we construct the final score cons from the

respective silhouette scores: First, we normalize siltumor and

silnormal to fit into a range of [0, 1]. Second, we combine the

siltumor score and the complement of silnormal to account for

tight clusters in tumor data and loose clusters in normal data.

cons =
1

2
· siltumor + 1

2
+

1

2
·
(
1− silnormal + 1

2

)
(4)

2) Classification into Cancer Types
With our second score we aim to quantify the discriminative

ability of the selected genes for the tumor data set depending

on the normal data set. In other words, while the selected

genes must yield a good classification for tumor samples, it

must not be able to do the same for normal samples.

To achieve this, we train two decision trees for both normal

and tumor data sets and apply 3-fold cross-validation [40].

For each tree, we then compute F1 measure as the harmonic

mean of precision and recall for both tumor and normal

data separately to receive two scores F1tumor and F1normal,
respectively [41]. Equation 5 depicts how we compute the final

disttumor tumor from the aforementioned scores. Analogous to

our cons score, we combine the original F1tumor score and

the complement of F1normal, both in the range of [0, 1].

disttumor tumor =
1

2
· F1tumor +

1

2
·
(
1− F1normal

)
(5)

3) Classification into Tumor and Normal Categories
Our third score disttumor normal examines a selected gene

set’s discriminative ability on tumor and normal data. Here we

examine how well a gene set can separate tumor from normal

data for a specific tissue type. To achieve this, we train one

classifier per tissue type — again, we use decision trees with 3-

fold cross-validation —- and compute the respective F1 scores.

Equation 6 depicts how we construct the final disttumor normal

score by computing the average from all scores F1tx , with T
being the set of tissue types for which to train classifiers.
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disttumor normal =

∑n
x=1 F1tx

n
, tx ∈ T, |T | = n (6)

IV. RESULTS AND EVALUATION

We conducted experiments to evaluate our tissue-aware

approaches in comparison with existing state-of-the-art tech-

niques and applied our proposed evaluation scores.

In our experiments, we used two datasets that constitute

tumor and normal data, respectively: The primary data set is

cancer data from The Cancer Genome Atlas (TCGA) and used

for gene selection and subsequent classification. The secondary

data set originates from GTEx and is incorporated during

gene selection and evaluation. We manually mapped TCGA’s

cancer types to corresponding GTEx tissue types and only

selected cancer and tissue types for which we could find a

direct tissue mapping; e.g. sarcoma affect multiple tissue types

and could therefore not be directly mapped. For both primary

and secondary data set, we downloaded the raw count data,

filtered genes with missing expression values, normalized by

library size, and applied log-transformation. From TCGA, we

selected only those samples that were marked as primary solid

tumor (tissue type TP) [42]. Although available in TCGA, we

did not use normal samples marked as tissue normal (TN)

because they are only available in low quantities for selected

cancer types. Table II depicts details on the final data sets and

the covered tissue and cancer types, respectively.

TABLE II
SETUP DETAILS OF THE EXPERIMENT DATA SET. WE SELECTED DATA

FROM NINE TCGA CANCER TYPES AND MAPPED THEM TO THE

CORRESPONDING GTEX TISSUE TYPES.

TCGA GTEx #Samples
Cancer Type Tissue Type TCGA GTEx

OV Ovary 374 133
THCA Thyroid 503 504
PRAD Prostate 498 204
BLCA Bladder 414 30
STAD Stomach 375 294
KIRC Kidney – Cortex 538 117
BRCA Breast – Mammary Tissue 1102 403
COAD Colon – Sigmoid, Transverse 478 548
ESCA Esophagus – Gastroesophageal-

Junction, Mucosa, Muscularis
161 1032

We integrated our approaches into three gene selection

approaches: χ2 and ANOVA-F as filter approaches, and se-

quential forward selection (SFS) combined with ANOVA-F as

wrapper approach [20]. For its internal evaluation function, we

used our disttumor tumor score.

We ran all three gene selection algorithms a) without tissue-

aware gene filtering (none), b) with our subtract approach

(subtract), c) with our exclude approach, where we set Gnormal

to the top 25% (exclude), and d) with our tissue-wise house-

keeping approach, where we set Ghousekeeping to the 10%

of genes per tissue type showing lowest variability (house-
keeping). Due to infeasible execution runtimes of SFS, we

reduced the number of input genes for SFS to the top thousand

genes based on ANOVA-F and and the respective tissue-aware

extension. We performed each experiment five times and report

the mean values in our evaluation. The standard deviations for

these runs were comparably small below 0.01, which is why

we did not include them in our graphs.

We compared all approaches by applying our evaluation

metrics presented in Section III-B and the traditional F1 score.

For computing the cons score, we used the class labels on

disease and tissue type provided in the datasets to determine

the respective clusters. To retrieve the F1 score, we used the

selected genes from ANOVA-F, χ2, and SFS to train a decision

tree on the TCGA data set. Using 3-fold cross-validation,

we classified samples from the TCGA data set into their

corresponding cancer types.

A. Experiment Results

In the following, we present evaluation results of our

experiments. In general, our tissue-aware extensions for gene

selection only show improvements for the low complex filter

approaches χ2 and ANOVA-F, while for SFS all our extensions

exhibit very similar performances.

Figure 1 shows F1 scores for ANOVA-F, χ2, and SFS

and our tissue-aware adaptations. In general, all approaches

show a similar behavior for F1 score: It is comparably low

for smaller numbers of genes selected for classification, but

increases strongly with an increasing number of genes just

to reach a plateau around seven to ten genes. For both the

simple filter approaches ANOVA-F and χ2, we observe that

introducing tissue-awareness improves classification results

significantly. While the original χ2 approach has a comparably

low performance with an F1 score between 0.19 and 0.40,

our tissue-aware approaches yield F1 scores between 0.49

and 0.86. We observe the same but less drastic effect for

gene selection with ANOVA-F. In general, our tissue-aware

approaches yield F1 scores close to each other, with our tissue-

wise housekeeping approach performing best overall. This

effect cannot be observed for SFS: While the overall results

are better than for χ2 and ANOVA-F, we cannot observe any

improvements on F1 score with our tissue-aware adaptations.

What is even more, our housekeeping approach shows worst

classification performance, while it scored best for χ2 and

ANOVA-F.

Figure 2 depicts cons scores regarding cluster consistency.

Again, the respective tissue-aware approaches outperform the

original gene selection approaches for χ2 and ANOVA-F.

They seem to be better able to identify those genes that

enable tight clusters for tumor data, but loose clusters for

normal data. ANOVA-F, χ2, and their adaptations achieve

cons scores that show little variation for an increasing number

of genes selected. However, the original ANOVA-F shows a

slight decrease for larger gene sets, while our tissue-aware

adaptations tend to slightly increase in their cons score. In

contrast, SFS and its tissue-aware adaptations achieve nearly

equal results.

Figure 3 compares disttumor normal scores for ANOVA-F,

χ2, and SFS and their respective tissue-aware adaptations. All

approaches already show a high ability to separate tumor sam-
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Fig. 1. F1 scores for gene selection with χ2, ANOVA-F, SFS and their respective tissue-aware adaptations. Introducing tissue-awareness has largest effect
on χ2, while it has no visible effects on SFS.

Fig. 2. Evaluation results on cluster consistency for gene selection with χ2, ANOVA-F, SFS compared to their respective tissue-aware adaptations.

Fig. 3. Overall capability of χ2, ANOVA-F, SFS and their respective tissue-aware adaptations to separate tumor from normal samples for a given cancer/tissue
type. Scores are the mean value across all cancer/tissue types.

Fig. 4. Overall capability of χ2, ANOVA-F, and SFS and their respective tissue-aware adaptations to separate tumor samples into their distinct cancer types
in proportion to their capability to separate normal samples into their distinct tissue types.
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ples from normal, with our tissue-aware approaches showing a

very similar overall performance. For SFS, however, we cannot

observe any significant improvements by our tissue-aware

adaptations on the results. What is more, our housekeeping

approach again has lowest scores, while it outperforms all

other tissue-aware adaptations for χ2 and ANOVA-F.

Figure 4 compares disttumor tumor scores for χ2, ANOVA-

F, and SFS and their respective tissue-aware adaptations. Our

tissue-aware approaches outperform ANOVA-F and χ2 signif-

icantly — with housekeeping obtaining best results overall —

and thus show that they are better able to select only genes that

are related to the disease and not to the tissue type. Results for

both χ2 and ANOVA-F show variation in their disttumor tumor

scores for a increasing number of genes selected, which

indicates that ANOVA-F and χ2 might in general not well

suited for filtering out the tissue-wise differences from their

analyses. In contrast, evaluation results for SFS show best

overall performance with a disttumor tumor score of up to 0.80

for tissue-aware adaptations and 0.76 for the original SFS. In

addition, SFS and its tissue-aware adaptations do not show

the same variation as χ2 and ANOVA-F, but instead a similar

behavior as for F1 score — again, with our housekeeping

approach showing lowest performance.

V. DISCUSSION

All tested approaches achieved stable intermediate cons
scores. An intermediate cons score on clustering consistency

close to 0.5 indicates that silhouette scores for both tumor

and normal data are very similar. As a consequence, even if

the silhouette score for tumor data would rise, the silhouette

score for normal data would do so as well. In other words,

while the selected genes might show a good distinctive ability

for tumor data, they also seem to show a good distinctive

ability for normal data. On the other hand, all approaches

reach high and nearly constant scores for disttumor normal,

showing that the selected genes are very well suited to

separate tumor from normal data. These results suggest that

tissue-specific and -selective genes also play a role for the

respective cancer types. Considering the evaluation results on

the disttumor tumor score, we can see that our tissue-aware

approaches are generally better in filtering out the tissue-

related bias and achieve significantly better results. However,

analogous to our cons score, an intermediate disttumor tumor

score around 0.5 indicates that the selected genes yielded a

good classification performance for separating tumor samples

into their distinct cancer types, but also separating normal

samples into their corresponding tissue types. Additionally,

the high variability across gene set sizes suggests that these

approaches do also have a hard time in separating tissue-

specific from cancer-specific genes — for that particular

reason that there might be a significant proportion of genes

that show both tissue- and cancer-specific expression behavior.

We thus conclude that if tissue-awareness is introduced into

the analysis of RNAseq data, advanced strategies should be

applied that account for that aspect.

Finally, we can conclude from our evaluation results that

introducing a tissue-awareness into gene selection for RNAseq

data generally improves overall analysis results. While we did

not observe major improvements for the highly complex SFS

gene selection, low complexity filter approaches like ANOVA-

F and χ2 benefit from introducing tissue-awareness into the

analysis. Their classification ability can now keep up with

more complex approaches such as SFS, but at a much lower

computational complexity, thus maintaining higher plausibility

of its computations for users. Our observations could also

lead to the conclusions that the more complex approaches

like SFS in general have a better ability to identify biological

patterns in the data, e.g. only the cancer-related differences.

However, more experiments with other wrapper or embedded

gene selection approaches are required to back this conclusion.

In addition, the interpretability of experiment results for SFS

is currently questionable. Due to time constraints, we run

the algorithm only on a subset of thousand genes that were

preselected by ANOVA-F and our respective adaptations.

This reduced execution runtime, but excluded many genes in

advance that could have improved the analysis. In addition, we

only applied our disttumor tumor score as internal evaluation

score for SFS due to feasibility reasons, whilst it would be

interesting to see the effects if the traditional F1 score was

used. As a result, further experiments on SFS on the full gene

set and with other evaluation metrics are necessary to assess

the effects of integrating tissue-awareness into SFS.

There are some limitations to the overall proposed approach

though: First of all, our approach is constructed to optimize

classification tasks for a very specific setting where the target

classes can be mapped to tissue classes. While this is straight-

forward for cancer, it is more challenging for cancer subtypes

or even other diseases. In addition, our approach requires a

specific setup of the data as it must contain both tumor and

normal data. Unfortunately, not all studies provide normal

samples that are sufficiently distributed across all tissue types.

However, GTEx provides a large public data set covering

multiple tissue types that can be used to enrich the data set

while carefully adapting the data for a cross-study comparison.

VI. CONCLUSION

In this paper, we presented strategies to introduce a tissue-

awareness into the analysis of multi-tissue gene expression

data. Our approach can be flexibly combined with traditional

gene selection approaches and also includes evaluation mea-

sures that are sensitive to the tissue context. Our comparisons

with traditional gene selection approaches resulted in two

main findings: First, especially low complex filter approaches

can significantly profit from introducing tissue-awareness.

They can now compete with more complex approaches, at

the same time requiring much less computational runtime

and remaining transparent in their computations. Second,

tissue-selective genes can also show cancer-selective behavior.

Consequently, introducing tissue-awareness into the analysis

requires carefully designed measures that are sensitive to that

aspect. Future work will include further refinements on our

gene filtering approaches and an extension of the experiment
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setting to include further gene selection approaches, e.g. an

embedded approach, additional data sets, and a refinement of

the evaluation scores.
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