
ETHzürich

EEGEyeNet: a Simultaneous Electroencephalography

and Eye-tracking Dataset and Benchmark for Eye Movement Prediction

Ard Kastrati 1, Martyna Beata Płomecka 2, Damian Pascual 1, Lukas Wolf 1, Victor Gillioz 1, Roger Wattenhofer 1, Nicolas Langer 2 1: ETH Zurich, Department of Electrical Engineering, Distributed Computing Group 2: University of Zurich, Department of Psychology, Methods of Plasticity Research

	# Participants				# Samples			
Dataset	Total	Train	Validation	Test	Total	Train	Validation	Test
Left-Right	329	229	50	50	30842	21042	4980	4820
Angle/Amplitude	27	19	4	4	17830	12275	2836	2719
Abs. Position	27	19	4	4	21464	14706	3277	3481

Benchmark Results

	Left-Right	Angle/A	Abs. Position	
Model	Accuracy	Angle RMSE	Amp. RMSE	RMSE
KNN	90.7 ±0	1.26 ±0	59.3 ±0	119.7 ±0
GaussianNB	87.7 ± 0	-	-	-
LinearSVC	92.0 ± 0	-	-	-
RBF SVC/SVR	89.4 ± 0	1.88 ± 0	75.9 ± 0	123 ± 0
Linear Regression	-	1.39 ± 0	64.6 ± 0	$118.3 \ \pm 0$
Ridge Regression	-	1.39 ± 0	64.2 ± 0	$118.2\ \pm0$
Lasso Regression	-	1.38 ± 0	63.9 ± 0	118 ± 0
Elastic Net	-	1.38 ± 0	63.6 ± 0	$118.1 \ \pm 0$
Random Forest	96.5 ±0	1.09 ± 0.01	59.8 ±0.1	116.7 ±0.1
Gradient Boost	97.3 ± 0.1	1.11 ± 0.01	60 ± 0.1	117 ± 0.1
AdaBoost	96.3 ± 0	1.43 ± 0.01	65 ± 0.1	119.4 ± 0.1
XGBoost	97.9 ±0	1.11 ± 0	61.3 ± 0	118 ± 0
CNN	98.3 ±0.5	0.33 ±0.05	32 ±3.6	70.2 ±1.1
PyramidalCNN	98.5 ± 0.2	0.34 ± 0.04	30.7 ±1	73.6 ± 1.9
EÉGNet	98.6 ± 0.1	0.70 ± 0.08	46 ± 5.2	81.7 ± 1.0
InceptionTime	97.9 ± 1.1	0.44 ± 0.16	43.6 ± 21.85	70.8 ± 0.8
Xception	$\textbf{98.8} \pm 0.1$	$0.47 \pm \! 0.28$	$32.2 \ \pm 1.9$	78.7 ± 1.6
Naive Baseline	52.3	1.90	74.7	123.3

Mean and standard deviation of 5 runs of the considered models on the three benchmark tasks. Angle is measured in radians, Amplitude and Absolute Position in mm.

Our evaluation reveals that deep learning models are superior to other statistical techniques in estimating gaze position from EEG data. Although this is not surprising, given the complexity of the task and the larger expressive capacity of neural networks, it confirms that EEGEyeNet is a valuable resource for developing large neural models. We expect that future work will surpass our scores advancing EEG-based eye tracking.

Paradigm	Preproc.	# Fixations	# Saccades	# Blinks	Total time
Pro- Antisac.	min	357115	358384	56179	38 h
	max	358587	359856	57991	38 h 6 mins
Large Grid	min	68075	68245	11108	7 h 52min
	max	69013	69185	11237	7 h 58 min
VSS	min	43384	43443	971	1 h 29 min
	max	43279	43339	945	1 h 28 min
Total	min	468574	470072	68258	47 h 21 min
	max	470879	472380	70173	47 h 33 min

Distribution of the Distribution of the saccade angle fixation positions Fixations : Locatior Angle, Amplitude, <u>ම</u> 200 Absolute 300 position tasks: 225 300 400 500 Horizontal position [pix] 270° 90° Fixations : Locations 135 100 Left-باط 200 Right 300 task: 400 225% 400 500 300 270° Horizontal position [pix] Contact us:

www.eegeye.net

akastrati@ethz.ch, martyna.plomecka@uzh.ch

600