
Learning Lower Bounds for Graph Exploration With
Reinforcement Learning

Jorel Elmiger
ETH Zurich

elmigerj@ethz.ch

Lukas Faber
ETH Zurich

lfaber@ethz.ch

Pankaj Khanchandani
ETH Zurich

kpankaj@ethz.ch

Oliver Richter
ETH Zurich

richtero@ethz.ch

Roger Wattenhofer
ETH Zurich

wattenhofer@ethz.ch

Abstract

We explore the usage of reinforcement learning for theoretical computer science.
Reinforcement learning has shown to find solutions in challenging domains such
as Chess or Go. Theoretical problems, such as finding the worst possible input for
an algorithm come with even more vast, combinatorial search spaces. In this paper,
we look at the example of online graph exploration. Here we want to find graphs
that yield a high competitive ratio for a greedy explorer. The search space consists
of having every edge being either present or absent. Given there are quadratically
many possible edges in a graph and each subset of edges is a possible solution, this
yields unfeasibly large search spaces even for few nodes. We show experimentally
how clever constraints can keep such search spaces manageable. As a result, we
can learn graphs that resemble those known from literature and even improve them
to yield higher competitive ratios.

1 Introduction

We have seen reinforcement learning achieve some remarkable results in recent years. Some of the
remarkable results, in our opinion, show the ability to navigate search spaces for games such as Chess
or Go [Silver et al., 2017], achieving superhuman performance. While these games have perfect
information, the models evaluate positions deeply, which requires navigating a combinatorially
exploding search space. At the same time, we have seen that machine learning finds solutions to
classical difficult combinatorial problems such as the traveling salesman problem [Khalil et al., 2017]
or the satisfiability problem [Selsam et al., 2019]. These papers show that machine learning is
promising in finding solutions, even when we know the problems are difficult (NP-hard) and come
with large combinatorial spaces. In this paper, we turn this setting around. We look at a problem,
that is not yet fully understood (graph exploration). For graph exploration, we want to more closely
understand the limits of a particular solution (greedy exploration). To understand this better, let us
first give a brief introduction to (online) graph exploration.

Online Graph Exploration. Online graph exploration is closely related to the traveling salesman
problem (TSP). Both problems have an explorer that wants to visit all nodes in the graph while
minimizing the edge traversals. In TSP, we are given the complete graph as input. On the other hand,
graph exploration is an online algorithm. That means the input graph is gradually revealed as we
walk around. At every point, the explorer only received information about the explored nodes and
which nodes are adjacent to them (see Figure 1 for an example). The relevant metric for comparing
the two problems is the competitive ratio. This ratio measures the ratio of the best possible online

1st Workshop on Learning Meets Combinatorial Algorithms @ NeurIPS 2020, Vancouver, Canada.



0

2

1 3

(a) Information in travelling sales-
man

0

2

1 3

(b) Information in graph explo-
ration

Figure 1: Comparison of information for travelling salesman (left) and graph exploration (right).
Dark nodes are explored, bright nodes part of the input. Non-colored nodes and dashed edges are not
part of the input.

graph exploration algorithm versus the best possible offline graph exploration algorithm (i.e., a TSP
solution). That is, how much more difficult the problem becomes by not having full information
about the input from the very beginning.

From the perspective of competitive ratio, graph exploration is not yet well understood. On the one
hand, we know that the competitive ratio is at least 10

3 [Birx et al., 2020] which is a very recent
improvement over the old lower bound of 2.5 [Dobrev et al., 2012]. This bound means that no matter
the exploration algorithm, there exists a graph where the offline computed TSP tour will be shorter
by a factor of at least 10

3 . The theoretical gap here is that we do not know how “correct” this factor is
or even if this factor is independent of the number of nodes. For a particular approach to solve graph
exploration, we know more: the greedy explorer is an intuitive, reasonable heuristic that always goes
to the nearest unexplored node. For greedy we know, that its competitive ratio is indeed dependent
on the graph size; the greedy explorer has a competitive ratio of Θ(log n) [Hurkens and Woeginger,
2004].

Reinforcement Learning for Online Graph Exploration. In this paper, we take a closer look at
this asymptotic bound, and we want to better understand this bound in terms of constant factors hidden
inside the asymptotic notation. In this paper, we focus our analysis on unweighted undirected graphs.
Hurkens and Woeginger [2004] show a construction yielding a competitive ratio of 1

4 (3 + log n).
We explore if we can improve this lower bound using reinforcement learning. Doing this, we want
to advance the research to find the still unknown worst competitive ratio for the greedy explorer in
non-asymptotic terms. Note that for a graph with n nodes, there are n·(n+1)

2 many possible edges,
each of which can be independently present or not. Thus, the search space is in the order of 2Θ(n2)

and explodes even for small values of n, while the solutions constitute a small part of this space only.
Thus, we present heuristics to keep this search space manageable. Indeed, experiments show that we
can discover structures such as those in Hurkens and Woeginger [2004] and modify them to reach
larger competitive ratios. We found that without these heuristics, models fail to learn good solutions
and converge before sufficient exploration of the space.

2 Related Work

Reinforcement Learning for Combinatorial Problems. Previous work has used machine learn-
ing, and in particular reinforcement learning, to provide good solutions for several combinatorial and
NP-hard problems [Khalil et al., 2017, Vinyals et al., 2015, Bello et al., 2017, Selsam et al., 2019,
Amizadeh et al., 2019]. In these works, the authors give a well-understood problem class and use
machine learning to solve instances of these problems. The other way around, Sato et al. [2019] want
to learn a generative model that constructs difficult problem instances of a difficult problem class.
Our work is more in the second spirit, we learn instances that are expensive for a given algorithm (the
greedy explorer) to solve.

Algorithm Inference with Machine Learning. In the related field of algorithm inference, learning-
based methods infer algorithmic structures from input-output examples and execution traces. The
learning is enhanced with new architectures [Kaiser and Sutskever, 2016, Freivalds and Liepins,
2017, Neelakantan et al., 2016, Velickovic et al., 2020], differentiable storage components [Graves
et al., 2014, 2016, Grefenstette et al., 2015, Zaremba and Sutskever, 2016], composition of smaller
sub-programms [Reed and de Freitas, 2016, Zaremba et al., 2016], recursion Cai et al. [2017], or

2



logic reasoning [Evans and Grefenstette, 2018, Dong et al., 2019]. The case of this paper instead is to
learn more about the limitations of a known, given algorithm.

3 The Reinforcement Learning Model

We learn a construction agent (constructer) to create a graph with a maximal competitive ratio
against an exploring agent (explorer). Principally, the constructer plays the explorer in rounds in a
problem-setter versus problem-solver framework. The constructer is given the current position (a
node) of the explorer and decides how to connect this node to the rest of the graph. Then, the explorer
decides which node to visit next. In our scenario of the greedy explorer, it computes the distances to
all nodes that are adjacent to at least one explored node and moves to the closest one. In the case of
ties — that might happen since we look at unweighted graphs — the explorer tiebreaks to the node
with a lower node ID. After moving to this node, the constructer takes another turn to connect this
node, . . . until all nodes have been explored.

State Space. We design the state space to provide “full” observability, where full refers to all
the available information of the graph reinforcement learning framework. For this, the constructer
receives three inputs:

• The ID of the currently explored node given as a one-hot vector
• A binary vector denoting which nodes have already been explored
• The adjacency matrix of the graph up to this point. In the scope of this paper, we look at

undirected graphs so it suffices to only give the upper triangle of the adjacency matrix

Action Space. The action space are n binary decision variables. Per action each of these variables
decides whether to add an edge or not. Concretely, if the explorer currently is on node c, the i-th
variable decides if we add the edge {c, i} to the graph. We ignore self edges (c = i) and edges that
we already decided on before (if i is already explored). This is because we tackle undirected, that is
symmetric, graphs.

Managing the state space dimensionality. Even with uniform weights and undirected edges, there
are n·(n−1)

2 possible edges. Each subset of those edges is a valid solution, giving the constructer a

total of 2
n·(n−1)

2 possible graphs to search. Exploring this state-space becomes very quickly infeasible,
even for moderately small numbers of nodes. Thus, we employ heuristic constraints on the state space.
Let us consider the initial situation, where the constructer connects node 0 to other nodes. Principally,
the exact nodes to connect to are less important than the number of nodes. All different combinations
of a certain number of edges lead to isomorphic graphs that largely behave the same (apart maybe
from some cases of tiebreaking). However, the constructer is oblivious to this isomorphism and has
to learn the properties of every graph individually. For adding k edges, there are

(
n·(n−1)/2

k

)
many

possibilities. We propose to choose one canonical representative for this set of graphs that we use
consistently instead. This collapses all permutations to just one, giving an exponential speedup in the
search space — per round.

Concretely, let V be the set of nodes in the graph. We can partition V into 3 sets: the set E of all
nodes that have been explored, the set B of all nodes adjacent to nodes in E, and the set of remaining
nodes U . Nodes in U are those that the explorer does not know about, yet. This is the property
we exploit. We add a new output to the action space that decides how many edges in U the newly
explored node is connected to. Then we pick this number of nodes in U canonically — in this paper
we take the lowest numbered nodes from U . We ignore all decision variables for nodes in U .

4 Experimental Investigation

We investigate the efficacy of this state-space model, action space model, and search space heuristic
by experimental tests. In particular, we want to investigate if our constructer can find graphs that
match or surpass the competitive ratio of known theoretical constructions. We experiment with
different graphs sizes n = 2i for different i. We follow the known constructions, such as Hurkens
and Woeginger [2004] that use graphs with where the number of nodes is a power of two. We learn

3



0

1 3

2 4

5 6

7

(a) Example triangle structure
found by the constructer.

cl crc

x

(b) Recursive triangle structure. Two smaller structures (left in blue, right in
red) are merged through node c. Node x connects the left and right ends.

the neural networks and outputs with proximal policy optimization [Schulman et al., 2017]. One
episode is a full exploration cycle when the explorer visited every node for which we give a reward
of the achieved competitive ratio minus 1 (ratio 1 means the online algorithm was just as good as
the offline algorithm). In total, we train constructers for 500.000 decisions, which gives a differing
amount of episodes depending on the graph size.

We found that graph construction using the vanilla architecture without the heuristic search space
constraints does not allow us to find graphs with a high competitive ratio, apart from very small
graphs with n = 8 nodes. Without much influence from hyperparameters, the models converge before
they start finding good solutions. We had some success with increasing the exploration-exploitation
tradeoff parameter but this comes with much higher (exponentially more) computational cost. Thanks
to the heuristic, we can cut down this search space to find good solutions also for larger graphs. In
general, the graphs we find this way follow a triangle structure similar to Figure 2a. This structure
resembles the construction from Hurkens and Woeginger [2004].

Triangle Improvements In the second line of experiments, we tried if we can improve on the
construction of Hurkens and Woeginger [2004]. They employ a recursive structure. The base graph is
a triangle with three nodes. Upper levels are constructed by combining two lower-level structures
and merging them to a long chain of triangles, adding a new center node. They also add a node x to
connect the leftmost and rightmost nodes. Refer to Figure 2b for a visualization.

In this set of experiments we run the constructer but mask the edges from Hurkens and Woeginger
[2004] to 1, such that at least these edges are always present. This structure imposes a strong bias
on the constructions for the constructer, so we do not employ our heuristic as well. We find that our
constructer learns to improve on the provided structure systematically.

The idea lies in misleading the greedy explorer to finish the exploration. Consider the situation when
the explorer already explored both recursive structures, thus is at node cr. Now there are three steps
left to do: explore c and x in any order and return to the starting node l. In the construction of Hurkens
and Woeginger [2004], the explorer will first explore c, then x, then return to l. The reinforcement
learning agent learns that exploring x first and then c is better because now it costs n

4 to move back to
l in the end, instead of 1 if c was explored first. In the original construction, the nodes x and c are
equidistant, so the agent learns to create a “shortcut” in the right half. This shortcut connects two
nodes that are two hops away directly. Now x is closer to cr, and greedy explores there first. On the
other hand, this shortcut might also compromise earlier exploration; however, we found that shortcuts
that provide just this intended effect exist. With this approach we are able to improve the known
competitive ratio from 1

4 (3 + log n) to 1
4 (4 + log n)− 3

n .

5 Conclusions and Outlook

We see many interesting avenues to continue this line of research. On the one hand, much remains
unexplored in terms of online graph exploration. Future work could look at training constructers
against other exploration algorithms than greedy. For example, blocking [Kalyanasundaram and
Pruhs, 1994, Megow et al., 2012] is a proposed algorithm that is supposed to perform better than the
greedy explorer. One more alternative would be to realize the explorer through another reinforcement
learning agent and learn both constructers and explorers with self-play. Last, we saw that the
constructer had difficulties catching recursive structures, this might be a promising area to explore
further modeling approaches that come with recursive inductive biases.

4



References
S. Amizadeh, S. Matusevych, and M. Weimer. Learning to solve circuit-sat: An unsupervised

differentiable approach. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial optimization with
reinforcement learning. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Workshop Track Proceedings. OpenReview.net, 2017. URL
https://openreview.net/forum?id=Bk9mxlSFx.

A. Birx, Y. Disser, A. V. Hopp, and C. Karousatou. Improved lower bound for competitive graph
exploration. In Department of Mathematics, TU Darmstadt, Germany, 2020.

J. Cai, R. Shin, and D. Song. Making neural programming architectures generalize via recursion. In
5th International Conference on Learning Representations (ICLR), Toulon, France, Apr. 2017.

S. Dobrev, R. Královič, and E. Markou. Online graph exploration with advice. In Aceto L., Henzinger
M., Sgall J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer
Science, vol 6756. Springer, Berlin, Heidelberg, 2012.

H. Dong, J. Mao, T. Lin, C. Wang, L. Li, and D. Zhou. Neural logic machines. In 7th International
Conference on Learning Representations (ICLR), New Orleans, USA, May 2019.

R. Evans and E. Grefenstette. Learning explanatory rules from noisy data. Journal of Artificial
Intelligence Research, 2018.

K. Freivalds and R. Liepins. Improving the neural gpu architecture for algorithm learning. arXiv
preprint arXiv:1702.08727, Feb. 2017.

A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401,
Dec. 2014.

A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska, S. G. Col-
menarejo, E. Grefenstette, T. Ramalho, J. Agapiou, et al. Hybrid computing using a neural network
with dynamic external memory. Nature, 2016.

E. Grefenstette, K. M. Hermann, M. Suleyman, and P. Blunsom. Learning to transduce with
unbounded memory. In Advances in neural information processing systems, 2015.

C. A. J. Hurkens and G. J. Woeginger. On the nearest neighbor rule for the traveling salesman
problem. In Operations Research Letters Volume 32, Issue 1, July 2004.

L. Kaiser and I. Sutskever. Neural gpus learn algorithms. In 4th International Conference on Learning
Representations (ICLR), San Juan, Puerto Rico, Apr. 2016.

B. Kalyanasundaram and K. R. Pruhs. Constructing competitive tours from local information. In
Theoretical Computer Science Volume 130, Issue 1, Aug. 1994.

E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization algorithms
over graphs. In Advances in Neural Information Processing Systems, pages 6348–6358, 2017.

N. Megow, K. Mehlhorn, , and P. Schweitzer. Online graph exploration: New results on old and
new algorithms. In Even G., Halldórsson M.M. (eds) Structural Information and Communication
Complexity. SIROCCO 2012. Lecture Notes in Computer Science, vol 7355. Springer, Berlin,
Heidelberg, 2012.

A. Neelakantan, Q. V. Le, and I. Sutskever. Neural programmer: Inducing latent programs with
gradient descent. In Y. Bengio and Y. LeCun, editors, 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016. URL http://arxiv.org/abs/1511.04834.

S. E. Reed and N. de Freitas. Neural programmer-interpreters. In 4th International Conference on
Learning Representations (ICLR), San Juan, Puerto Rico, Apr. 2016.

5

https://openreview.net/forum?id=Bk9mxlSFx
http://arxiv.org/abs/1511.04834


R. Sato, M. Yamada, and H. Kashima. Learning to sample hard instances for graph algorithms. In
Asian Conference on Machine Learning, pages 503–518, 2019.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill. Learning a SAT solver from
single-bit supervision. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.
net/forum?id=HJMC_iA5tm.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Ku-
maran, T. Graepel, et al. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

P. Velickovic, R. Ying, M. Padovano, R. Hadsell, and C. Blundell. Neural execution of graph
algorithms. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/
forum?id=SkgKO0EtvS.

O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Advances in neural information
processing systems, pages 2692–2700, 2015.

W. Zaremba and I. Sutskever. Reinforcement learning neural turing machines-revised. arXiv preprint
arXiv:1505.00521, Jan. 2016.

W. Zaremba, T. Mikolov, A. Joulin, and R. Fergus. Learning simple algorithms from examples. In
33rd International Conference on Machine Learning (ICML), New York City, USA, June 2016.

6

https://openreview.net/forum?id=HJMC_iA5tm
https://openreview.net/forum?id=HJMC_iA5tm
https://openreview.net/forum?id=SkgKO0EtvS
https://openreview.net/forum?id=SkgKO0EtvS

	Introduction
	Related Work
	The Reinforcement Learning Model
	Experimental Investigation
	Conclusions and Outlook

