
Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Prof. Dr. Lothar Thiele Zürich, 2011-11-29

Semester/Master Thesis

Fault Tolerant Many-Core Systems

Overview

Design and implementation of a fault tolerant many-core system by means of task replication.

Motivation

Core A Core D

 Bus

1

Core C

3'

Core B

2 43

2'

Figure 1: Fault tolerant system by means of task
replication.

Current trends in microprocessor design include
the integration of many cores on a single chip. For
example, Intel’s newest prototype processor, the
Single-chip Cloud Computer (SCC), is composed
of 48 cores. However, the increase in power
density, the small transistor size, and the low
supply voltage raise the possibility of transient
and permanent faults on a chip and no processing
component in a chip can be assumed to be
permanently available.

In particular, we consider parallel applications
that are specified as a process network and
mapped onto a distributed many-core platform. A promising approach to make a system resilient
to failures is to duplicate the tasks in advance. In particular, when real-time constraints have to be
guaranteed, the overhead to resume a system from a failure state is often unacceptable. Except of
these involved in I/O, all tasks are duplicated, see Figure 1 for an overview of the proposed approach.
The two instances of a task are forced to be mapped on di↵erent cores and running independently.
Therefore, there exist two alternative pipelines of the application and in case of a failure, one pipeline
stays active, keeping the system intact. Obviously, fault-tolerance does not come for free. The costs we
pay are the costs for demultiplexing / multiplexing at I/O tasks and the higher resource requirements.

Project Description

Your task will be to design and implement task replication on a distributed Linux system, namely the
SCC platform. This mainly includes the automatic creation of two parallel instances of the process
network and the creation of a demultiplexing / multiplexing component at the correct positions in the
process network. Furthermore, depending on your interests, this thesis includes the derivation of good
mapping solutions that reduce the latency, but still guarantee a certain number of faults. Finally, you
will evaluate your implementation in terms of overhead and performance.

Requirements

You should be familiar with C and the Java programming language.

Contact

Interested? Please do not hesitate to contact us!

Advisors: Lars Schor, ETZ G 78.1, lars.schor@tik.ee.ethz.ch
Hoeseok Yang, ETZ G 86, hoeseok.yang@tik.ee.ethz.ch

Professor: Prof. Dr. Lothar Thiele, ETZ G 87, thiele@tik.ee.ethz.ch

1

ADVISERS Lars Schor, ETZ G78.1, lschor@tik.ee.ethz.ch | Pratyush Kumar, ETZ G76, kumarpr@tik.ee.ethz.ch

PROFESSOR Prof. Dr. Lothar Thiele, ETZ G87, thiele@tik.ee.ethz.ch

THE PROBLEM
In a computing system, different software tasks share resources.
As an example, in the figure, a cluster of PCs share a networked
memory device. Such sharing leads to interference across tasks:
the timeliness behavior of one task depends on the behavior of
other tasks. Unchecked interference can lead to undesirable
consequences. In the figure, the video playback can become
stuttered when the backup application stresses the memory.

SHAPERS AS A SOLUTION
One solution is to enforce bounds on the resource usage of an
application. For instance, the maximum rate of memory
accesses for the backup application can be bounded. Enforcing
such bounds can be done through the use of shapers [1]. They
are sufficiently general to express different kinds of bounds
and have efficient implementations. In combination with a
scheduling policy, shapers can be used to implement servers
[2] to enable isolation on computing resources.

YOUR THESIS
Tasks
1. Propose and implement a framework for supporting

shapers over POSIX threads on a UNIX environment
2.Demonstrate the utility of the shapers on a cluster

of PCs with a network disk drive
3.Propose a theoretical framework to dimension and

analyze the shapers
4.(Optional) Extend results to multicore processors

MASTER/SEMESTER THESIS

SHAPING FOR TIMELINESS

Existing Infrastructure
As part of the EURETILE [3]
project, we have an
implementation of our
Distributed Application
Layer (DAL) [4] supporting a
cluster of PCs, which can
enable support of shapers.

Requirements
You should be familiar
with programming in
one of the major
languages such as C or
Java.

Prof. Dr. Lothar Thiele Zurich, 10.5.2012

REFERENCES
[1] Le Boudec and Thiran, “Network Calculus: A theory of deterministic queueing systems for the internet”, Spring-Verlag Berlin.
[2] P. Kumar and L. Thiele, “Generalized Resource Reservation: Demand Bound Servers”, in Proc. of EMSOFT 2011
[3] EURETILE: EUropean Referenced TILed architecture Experiment. http://euretile.roma1.infn.it/
[4] DAL: Distributed Application Layer http://www.tik.ee.ethz.ch/~euretile/dal.php

Video playback Backup application

Network Storage

Shaper Shaper

mailto:lschor@tik.ee.ethz.ch
mailto:lschor@tik.ee.ethz.ch
mailto:kumarpr@tik.ee.ethz.ch
mailto:kumarpr@tik.ee.ethz.ch
mailto:thiele@tik.ee.ethz.ch
mailto:thiele@tik.ee.ethz.ch
http://euretile.roma1.infn.it/mediawiki/index.php/Main_Page
http://euretile.roma1.infn.it/mediawiki/index.php/Main_Page
http://www.tik.ee.ethz.ch/~euretile/dal.php
http://www.tik.ee.ethz.ch/~euretile/dal.php

