
Bitcoin Transaction Malleability and MtGox

Christian Decker and Roger Wattenhofer

ETH Zurich, Switzerland
cdecker@tik.ee.ethz.ch, wattenhofer@ethz.ch

Abstract. In Bitcoin, transaction malleability describes the fact that
the signatures that prove the ownership of bitcoins being transferred in
a transaction do not provide any integrity guarantee for the signatures
themselves. This allows an attacker to mount a malleability attack in
which it intercepts, modifies, and rebroadcasts a transaction, causing
the transaction issuer to believe that the original transaction was not
confirmed. In February 2014 MtGox, once the largest Bitcoin exchange,
closed and filed for bankruptcy claiming that attackers used malleability
attacks to drain its accounts. In this work we use traces of the Bitcoin
network for over a year preceding the filing to show that, while the prob-
lem is real, there was no widespread use of malleability attacks before
the closure of MtGox.

Keywords: Bitcoin, Transaction, Signature, Malleability, MtGox, Theft.

1 Introduction

In recent years Bitcoin [1] has gone from a little experiment by tech enthusiasts to
a global phenomenon. The cryptocurrency is seeing a rapid increase in adoption
as well as in value. Bitcoin is inching closer to the stated goal of creating a truly
decentralized global currency that facilitates international trade.

A major contribution of the success that Bitcoin is having today has to be at-
tributed to the emergence of Bitcoin exchanges. A Bitcoin exchange is a platform
that facilitates buying and selling bitcoins for fiat money like US dollars. This
enables a larger public to come in contact with bitcoins, increasing their value
as a means to pay for goods and services. Exchanges also provide the ground
truth for the value of bitcoins by publishing their trade book and allowing mar-
ket dynamics to find a price for the traded bitcoins. Finally, much of the media
attention focuses on the rapid gain in value that these services have enabled.

However, centralized exchanges are also potential points of failure, in a system
that is otherwise completely decentralized. Several high value thefts from these
services have made the headlines, never failing to predict the impending doom
of Bitcoin as a whole. Additionally a small and mostly sentiment driven market,
combined with a quick and easy way to buy and sell bitcoins, facilitates flash
crashes and rapid rallies for no apparent reason.

The first, and for a long time largest, Bitcoin exchange was MtGox. Founded
in 2010 it was a first stop for many early adopters. With the creation of other

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 313–326, 2014.
c© Springer International Publishing Switzerland 2014



314 C. Decker and R. Wattenhofer

exchanges its monopoly slowly faded, but in February 2014 it still accounted for
close to 70% of all bitcoins ever traded. In February 2014 MtGox had to file for
bankruptcy and suspend operations following the loss of over 500 million USD
worth of bitcoins owned by its customers.

As the principal cause for the loss, MtGox cited a problem in the Bitcoin pro-
tocol: transaction malleability. A user could request a withdrawal from MtGox to
a Bitcoin address. The exchange would then create a corresponding transaction
and publish it to the Bitcoin network. Due to the way MtGox tracked confirma-
tion of these transactions it could be tricked, exploiting transaction malleability,
into believing the transaction to have failed even though it was later confirmed
by the network. MtGox would then credit the amount back to the user’s account.
Effectively the user would have doubled the withdrawn bitcoins, once from the
withdrawal and once on its account on MtGox.

In this work we investigate two fundamental questions: Is transaction mal-
leability being exploited? And is the claim that it has been used to bring down
MtGox plausible?

2 Transaction Malleability

The Bitcoin network is a distributed network of computer nodes controlled by a
multitude of owners. They collectively implement a replicated ledger that tracks
the address balances of all users. Each user may create an arbitrary number of
addresses that can be used to send and receive bitcoins. An address is derived
from an ECDSA key pair that is later used to prove ownership of the bitcoins
associated with that address.

The only operation allowed to modify address balances are transactions. A
transaction is a signed data structure that on the one hand claims some bitcoins
associated with a sending address and on the other hand reassigns them to
receiving addresses. Transactions are identified by the SHA256 hash of their
serialized representation. A transaction consists of one or more inputs and an
ordered list of one or more outputs. An input is used to specify which bitcoins
will be transferred, while an output specifies the address that should be credited
with the bitcoins being transferred. Formally, an output is a tuple comprising the
value that is to be transferred and a claiming condition, expressed in a simple
scripting language. An input includes the hash of a previous transaction, an
index, and a claiming script. The hash and index form a reference that uniquely
identifies the output to be claimed and the claiming script proves that the user
creating the transaction is indeed the owner of the bitcoins being claimed.

2.1 Bitcoin Scripts

The scripting language is a, purposefully non-Turing complete, stack-based lan-
guage that uses single byte opcodes. The use of the scripting language to set up
both the claiming conditions and the claiming scripts allows the creation of com-
plex scenarios for the transfer of bitcoins. For example, it is possible to create



Bitcoin Transaction Malleability and MtGox 315

multi-signature addresses that require m-of-n signatures to spend the associated
bitcoins for arbitration purposes. However, the vast majority of transactions use
standard scripts that set up a claiming condition requiring the claiming script to
provide a public key matching the address and a valid signature of the current
transaction matching the public key. For this reason the standard claiming script
is generally referred to as scriptSig (a script encoding a signature), whereas the
standard claiming condition is referred to as scriptPubKey (a script requiring a
public key and a signature). Figure 1 shows the structure of the standard claim-
ing condition (scriptPubKey) as well as the standard claiming script (scriptSig).

Of particular interest in this work are the OP PUSHDATA operations which
specify a number of following bytes to be pushed as a string on the stack. De-
pending on the length of the string one of several possible flavors may be used.
The simplest is a single byte with value between 0x00 and 0x4b, also called
OP 0 which simply encodes the length of the string in itself. Additionally, three
other operations allow pushing data on the stack, namely OP PUSHDATA1,
OP PUSHDATA2 and OP PUSHDATA4, each followed by 1, 2 or 4 bytes, respec-
tively, encoding a little endian number of bytes to be read and pushed on the stack.

In order to verify the validity of a transaction t1 claiming an output of a
previous transaction t0 the scriptSig of t1 and the scriptPubKey specified in t0
are executed back to back, without clearing the stack in between. The scriptSig
of t1 pushes the signature and the public key on the stack. The scriptPub-
Key of t0 then duplicates the public key (OP DUP) and replaces the first copy
with its RIPEMD160 hash (OP HASH160), this 20 byte derivative of the pub-
lic key is also encoded in the address. The address from the scriptPubKey is
then pushed on the stack and the two top elements are then tested for equal-
ity (OP EQUALVERIFY). If the hash of the public key and the expected hash
match, the script continues, otherwise execution is aborted. Finally, the two el-
ements remaining on the stack, i.e., the signature and the public key, are used
to verify that the signature signs t1 (OP CHECKSIG).

Listing 1.1. scriptPubKey

OP DUP
OP HASH160
OP PUSHDATA∗
<pubKeyHash>
OP EQUALVERIFY
OP CHECKSIG

Listing 1.2. scriptSig

OP PUSHDATA∗
<s i g>
OP PUSHDATA∗
<pubKey>

Fig. 1. The standard claiming condition and claiming script as used by simple trans-
actions transferring bitcoins to an address backed by a single public key

Notice that, although the scriptSigs are attached to the inputs of the trans-
action, they are not yet known at the time the signature is created. In fact a
signature may not sign any data structure containing itself as this would cre-
ate a circular dependency. For this reason all the claiming scripts are set to a



316 C. Decker and R. Wattenhofer

script consisting only of a single OP 0 that pushes an empty string on the stack.
The user signing the transaction then iterates through the inputs, temporarily
replaces the scriptSig field with the corresponding scriptPubKey1 from the ref-
erenced output, and creates a signature for the resulting serialized transaction.
The signatures are then collected and inserted at their respective positions before
broadcasting the transaction to the network.

The fact that the integrity of the scriptSig cannot be verified by the sig-
nature is the source for transaction malleability: the claiming script may be
encoded in several different ways that do not directly invalidate the signature
itself. A simple example replaces the OP 0 that pushes the public key on the
stack with OP PUSHDATA2 followed by the original length. The claiming script
is changed from 0x48<sig>41<pubKey> to 0x4D4800<sig>4D4100<pubKey>.
The encoded signature is valid in both cases but the hash identifying the trans-
action is different.

Besides these changes in the way pushes are encoded, there are numerous
sources of malleability in the claiming script. A Bitcoin Improvement Proposal
(BIP) by Wuille [2] identifies the following possible ways to modify the signature
and therefore exploit malleability:

1. ECDSA signature malleability: signatures describe points on an elliptic
curve. Starting from a signature it is trivial to mathematically derive a sec-
ond set of parameters encoding the same point on the elliptic curve;

2. Non-DER encoded ECDSA signatures: the cryptographic library used by
the Bitcoin Core client, OpenSSL, accepts a multitude of formats besides
the standardized DER (Distinguished Encoding Rules) encoding;

3. Extra data pushes: a scriptPubKey may push additional data at the begin-
ning of the script. These are not consumed by the corresponding claiming
condition and are left on the stack after script termination;

4. The signature and public key may result from a more complex script that
does not directly push them on the stack, but calculates them on the fly, e.g.,
concatenating two halves of a public key that have been pushed individually;

5. Non-minimal encoding of push operations: as mentioned before there are
several options to specify identical pushes of data on the stack;

6. Zero-padded number pushes: excessive padding of strings that are interpreted
as numbers;

7. Data ignored by scripts: if data pushed on the stack is ignored by the script-
PubKey, e.g., if the scriptPubKey contains an OP DROP, the corresponding
push in the scriptSig is ignored;

8. Sighash flags can be used to ignore certain parts of a script when signing;

9. Any user with access to the private key may generate an arbitrary number
of valid signatures as the ECDSA signing process uses a random number
generator to create signatures;

1 The use of the scriptPubKey in the signed data as placeholder for the scriptSig is
likely to avoid collisions.



Bitcoin Transaction Malleability and MtGox 317

2.2 Malleability Attacks

One of the problems that Bitcoin sets out to solve is the problem of double
spending. If an output is claimed by two or more transactions, these transactions
are said to conflict, since only one of them may be valid. A double spending attack
is the intentional creation of two conflicting transactions that attempt to spend
the same funds in order to defraud a third party.

Research so far has concentrated on a classical version of the double spend-
ing attack. An attacker would create two transactions: (1) a transaction that
transfers some of its funds once to a vendor accepting bitcoins and (2) a trans-
action that transfers those same funds back to itself. The goal would then be
to convince the vendor that it received the funds, triggering a transfer of goods
or services from the vendor to the attacker, and ensuring that the transaction
returning the funds to the attacker is later confirmed. This would defraud the
vendor as the transfer to the vendor would not be confirmed, yet the attacker
received the goods or services.

A malleability attack, while a variant of the double spending attack, is different
from the above. The attacker no longer is the party issuing the transaction,
instead it is the receiving party. The attacker would cause the victim to create a
transaction that transfers some funds to an address controlled by the attacker.
The attacker then waits for the transaction to be broadcast in the network.
Once the attacker has received a copy of the transaction, the transaction is then
modified using one of the above ways to alter the signature without invalidating
it. The modification results in a different transaction identification hash. The
modified transaction is then also broadcast in the network. Either of the two
transactions may later be confirmed.

A malleability attack is said to be successful if the modified version of the
transaction is later confirmed. The mechanics of how transactions are confirmed
are complex and are out of scope for this work. For our purposes it suffices to
say that the probability of a malleability attack to be successful depends on the
distribution of nodes in the Bitcoin network first seeing either of the transactions
(cf. [3–5]). So far the attack has not caused any damage to the victim. To be
exploitable the victim also has to rely solely on the transaction identity hash to
track and verify its account balance. Should a malleability attack be successful
the victim will only see that the transaction it issued has not been confirmed,
crediting the amount to the attacker or attempting to send another transaction
at a later time. The attacker would have effectively doubled the bitcoins the
victim sent it.

It is worth noting that the reference client (Bitcoin Core) is not suscepti-
ble to this attack as it tracks the unspent transaction output set by applying
all confirmed transactions to it, rather than inferring only from transactions it
issued.



318 C. Decker and R. Wattenhofer

3 MtGox Incident Timeline

In this section we briefly describe the timeline of the incident that eventually
led to the filing for bankruptcy of MtGox. The timeline is reconstructed from a
series of press release by MtGox as well as the official filings and legal documents
following the closure.

Following several months of problems with Bitcoin withdrawals from users,
MtGox announced [6] on February 7 that it would suspend bitcoin withdrawals
altogether. The main problem with withdrawals was that the associated Bitcoin
transactions would not be confirmed. After this press release it was still possible
to trade bitcoins on MtGox, but it was not possible to withdraw any bitcoins
from the exchange. Specifically [6] does not mention transaction malleability.

In order to trade on MtGox, users had transferred bitcoins and US dollars
to accounts owned by MtGox. Each user would have a virtual account that is
credited with the transferred amounts at MtGox. The withdrawal stop therefore
denied users access to their own bitcoins. While fiat currency was still with-
drawable, such a withdrawal involved a long process that would sometimes fail
altogether.

The first press release was followed by a second press release [7] on February
10, 2014. This press release claims that the problem for the non-confirming
withdrawal transactions has been identified and names transaction malleability
as the sole cause:

“Addressing Transaction Malleability: MtGox has detected unusual ac-
tivity on its Bitcoin wallets and performed investigations during the past
weeks. This confirmed the presence of transactions which need to be ex-
amined more closely.
Non-technical Explanation: A bug in the bitcoin software makes it possi-
ble for someone to use the Bitcoin network to alter transaction details to
make it seem like a sending of bitcoins to a bitcoin wallet did not occur
when in fact it did occur. Since the transaction appears as if it has not
proceeded correctly, the bitcoins may be resent. MtGox is working with
the Bitcoin core development team and others to mitigate this issue.”

Allegedly a user of MtGox would request a withdrawal and listen for the
resulting transaction. The transaction would then be intercepted and replaced
by a modified version that would then race with the original transaction to be
confirmed. Should the original transaction be confirmed, the user would receive
its balance only once, but not lose any bitcoins by doing so. Should the modified
transaction be confirmed, then the user would receive the bitcoins twice: once
via the modified withdrawal transaction and a second time when MtGox realized
that the original withdrawal transaction would not confirm and credit the users
account. Implicitly in this press release MtGox admits to using a custom client
that tracks transaction validity only via its hash, hence being vulnerable to the
transaction malleability attack.

Two more press releases followed on February 17 and February 20, both claim-
ing that the withdrawals would resume shortly and that a solution had been



Bitcoin Transaction Malleability and MtGox 319

found that would eliminate the vulnerability to malleability attacks. On Febru-
ary 23 the website of MtGox returned only a blank page, without any further
explanation, resulting in a trading halt and the complete disappearance of Mt-
Gox. Finally on February 28 MtGox announced during a press conference that
it would be filing for bankruptcy in Japan and in the USA [8, 9].

4 Measurements

Due to the nature of double spending attacks, they may only be detected while
participating in the network. As soon as one of the two conflicting transactions is
considered to be confirmed the nodes will drop all other conflicting transactions,
losing all information about the double spending attack. Malleability attacks
being a subset of double spending attacks suffer from the same limitation.

We created specialized nodes that would trace and dump all transactions and
blocks from the Bitcoin network. These include all double spending attacks that
have been forwarded to any of the peers our nodes connected to. Our collection
of transactions started in January 2013. As such we are unable to reproduce
any attacks before January 2013. The following observations therefore do not
consider attacks that may have happened before our collection started.

Our nodes were instructed to keep connection pools of 1,000 connections open
to peers in the Bitcoin network. On average we connected to 992 peers, which
at the time of writing is approximately 20% of the reachable nodes. Accord-
ing to Bamert et al. [3] the probability of detecting a double spending attack
quickly converges to 1 as the number of sampled peers increases. We therefore
feel justified in assuming that the transactions collected during the measure-
ments faithfully reflect the double spending attacks in the network during the
same period.

4.1 Global Analysis

Given the set of all transactions, the first task is to extract all potential double
spend attacks. In general double spending attacks can be identified by associ-
ating a transaction with each output that it claims. Should there be more than
one transaction associated with the same output the transactions conflict. The
malleability attack being a specialized case of the double spend attack could also
be identified by this generic procedure, however we opted for a simpler process.
Removing the signature script from a transaction results in the signed part of
the transaction, forcing all malleability attacks to produce the same unique key.
The unique key is then used to group transactions together into conflict sets.

During the measurement period a total of 35,202 conflict sets were identified,
each evidence of a malleability attack. Out of these conflict sets 29,139 contained
a transaction that would later be confirmed by a block. The remaining 6,063
transactions were either invalid because they claimed non-existing outputs, had
incorrect signatures, or they were part of a further double spending.

The conflict set value is defined as the number of bitcoins transferred by
any one transaction in the conflict set. The outputs of the transactions in a



320 C. Decker and R. Wattenhofer

conflict set are identical, since any change to them would require a new signature.
In particular the value of outputs may not be changed. Each transaction in a
conflict set therefore transfers an identical amount of bitcoins. Summing the
value of all conflict sets results in a total of 302,700 bitcoins that were involved
in malleability attacks.

As mentioned in Section 2.1, there are a multitude of ways to use the malleabil-
ity in the signature encoding to mount a malleability attack. The most prominent
type of modification was replacing the single byte OP 0 with OP PUSHDATA2
which then encodes the length of the data to push on the stack with 2 bytes.
The resulting signature script would be 4 bytes longer, because two strings are
usually pushed on the stack, but would still encode the same DER encoded sig-
nature and the same public key, hence still be valid. A total of 28,595 out of the
29,139 confirmed attacks had this type of modifications. For the remaining 544
conflict sets we were unable to identify the original transactions. All transactions
in these conflict sets had genuine signatures with the correct opcodes and did
not encode the same signature. We therefore believe these transactions to be
the result of users signing raw transactions multiple times, e.g., for development
purposes.

In order for a malleability attack to be exploitable two conditions have to
be fulfilled: (a) the modified transaction has to be later confirmed and (b) the
system issuing the transaction must rely solely on the transaction’s original hash
to track its confirmation. The first condition can be easily reconstructed from
the network trace and the Bitcoin blockchain since only one of the transactions
will be included in the blockchain. The second condition is not detectable in
our traces since it depends on the implementation of the issuing system. In
particular, it is not possible to determine whether two payments with the same
value to the same address were intended as two separate payments or whether
an automated system issued the second one believing the first to be invalid.

We call a malleability attack successful if it resulted in the modified trans-
action to be later confirmed in a block, i.e., when condition (a) holds. From
the data derived from the attack classification we can measure the rate of suc-
cessful malleability attacks. Out of the 28,595 malleability attacks that used an
OP PUSHDATA2 instead of the default OP 0 only 5,670 were successful, i.e.,
19.46% of modified transactions were later confirmed. Considering the value in
malleable transactions the success rate is comparable with 21.36%. This reduces
the total profit of the successful attacks from 302,700 to 64,564. The strong
bias towards the original transaction is explained by the fact that the proba-
bility of being confirmed depends on the distribution of the transaction in the
network [3]. During a malleability attack the attacker listens for an incoming
transaction that match its address, modifies it and redistributes it. In the mean-
time however the original transaction has been further forwarded in the network
and the modified transaction is not forwarded by nodes seeing the original trans-
action. The attacker must connect to a large sample of nodes in the network for
two reasons: (a) intercept the original transaction as soon as possible and (b)



Bitcoin Transaction Malleability and MtGox 321

Fig. 2. Malleability attacks during period 1, before the press release blaming transac-
tion malleability as the sole cause of losses

compensate the head start that the original transaction has compared to the
modified transaction.

So far we assumed that the conflict sets were a direct result of a targeted
attack by an attacker against a service. There are however other causes for this
kind of conflict that should not go unmentioned. An automated system may
inadvertently create, sign a transaction and broadcast a transaction multiple
times. Due to a random parameter in the signing process the system would
produce a different signature each time, causing the conflict that we detected.
This appears to be the case with transactions having conflict set cardinality
larger than 2, that would often not be confirmed.

4.2 The MtGox Incident

Returning to the specific case of the MtGox incident of February 2014, that
eventually lead to the closure and the bankruptcy filing later that same month.
In the press release of February 10, the transaction malleability bug was explicitly
named as the root cause of the loss. The loss is later detailed as amounting to
over 850,000 bitcoins, of which 750,000 bitcoins were customer owned bitcoins
that were managed by MtGox. At the time of the first press release bitcoins were
trading at 827 US Dollars per bitcoin,2 resulting in a total value of lost bitcoins
of 620 million US Dollars.

Assuming malleability attacks have indeed been used to defraud MtGox, then
we should be able to verify the claim by finding the transactions used for the
attack in our dataset. The above mentioned total amount of 302,700 bitcoins
involved in malleability attacks already disproves the existence of such a large
scale attack. However, it could well be that malleability attacks contributed
considerably in the declared losses.

Reconstructing the timeline of the attacks from the announcements made by
MtGox we identify 3 time periods:

2 Exchange rate taken as the open value on MtGox of February 7, 2014.



322 C. Decker and R. Wattenhofer

– Period 1 (January 2013 — February 7, 2014): over a year of measurements
until the closure of withdrawals from MtGox;

– Period 2 (February 8 — February 9, 2014): withdrawals are stopped but no
details about the attack known to the public;

– Period 3 (February 10 — February 28): time following the press release
blaming transaction malleability as the root cause of the missing bitcoins
until MtGox filed for bankruptcy.

Malleability attacks in period 2 and 3 could not contribute to the losses de-
clared by MtGox since they happened after withdrawals have been stopped.
Figure 2 visualizes both the number of bitcoins involved in malleability attacks
as well as the number of attacks during period 1. During this period a total of
421 conflict sets were identified for a total value of 1,811.58 bitcoins involved
in these attacks. In combination with the above mentioned success rate of mal-
leability attacks we conclude that overall malleability attacks did not have any
substantial influence in the loss of bitcoins incurred by MtGox.

Fig. 3. Cumulative graph of the number and value of malleability attacks during the
time of the press releases

During period 2, we gathered 1,062 conflict sets, totalling 5,470 bitcoins. A
noticeable increase of attacks at 17:00 UTC on February 9, from 0.15 attacks
per hour to 132 attacks per hour. While we do not have any information about
the time the second press release has been published, the measured increase in
attacks at 17:00 UTC and the date on the press release, hints at a time between
0:00 and 2:00 JST. The sudden increase suggests that immediately following the
press release other attackers started imitating the attack, attempting to exploit
the same weakness that had allegedly been used against MtGox.

After the second press release, in period 3, there is a sudden spike in activity.
Between February 10 and 11 we identified 25,752 individual attacks totalling
286,076 bitcoins, two orders of magnitude larger than all attacks from period 1
combined. A second, smaller, wave of attacks starts after February 15, with a



Bitcoin Transaction Malleability and MtGox 323

total of 9,193 bitcoins. The attacks have since calmed, returning to levels compa-
rable to those observed in period 1, before the press releases. Figure 3 summarizes
the situation plotting the cumulative value and number of malleability attacks
in February 2014, i.e., from the end of period 1 to period 3.

The strong correlation between the press releases and the ensuing attacks
attempting to exploit the same weakness is a strong indicator that the attacks
were indeed triggered by the press releases.

Assuming MtGox had disabled withdrawals like they stated in the first press
release, these attacks can not have been aimed at MtGox. The attacks therefore
where either attempts to investigate transaction malleability or they were aimed
at other businesses attempting to imitate the purveyed attack for personal gain.
The sheer amount of bitcoins involved in malleability attacks would suggest that
the latter motive was prevalent.

It remains questionable whether other services have been informed by MtGox
in time to brace for the sudden increase in malleability attacks. Should this
not be the case then the press release may have harmed other businesses by
triggering imitators to attack them.

4.3 Beyond Our Data

In the previous subsections we presented an analysis of malleability attacks based
on data we collected for over a year preceding the bankruptcy filing by MtGox.
We have limited the analysis to the timespan we have first-hand data, starting
January 2013. Clearly attacks may have happened even before our measurements
started. However, in our opinion, it is unlikely that transaction malleability was
exploited on a large scale before our measurements, and not during our measure-
ments. After all, why would an attacker, having found such a lucrative attack
before 2013, suddenly stop exploiting it? It seems more likely that an attacker
would use this risk-free and successful attack more often and with larger amounts
of bitcoins!

While it is not possible to detect all malleability attacks without participating
in the network at the time they occur, we can estimate the number of attacks
preceding our measurements, just by reading the blockchain. By far the most
common modification during our measurements was the use of non-minimal push
opcodes, over 98% out of all attacks use this modification. Successful attacks,
i.e., those that were eventually confirmed, can be found by searching for this
modification in the set of all confirmed transactions. Given the success rate and
the number of successful attacks we can extrapolate the number of attacks that
were attempted before our measurements began.

By inspecting all confirmed transactions for signature scripts that do not use
minimal push opcodes we found a total of 48 transactions, involving a total
of 33.92 bitcoins, before our measurements started, i.e., in the period 2009 –
2012. Assuming that the success rate of 21.34% did not change significantly, we
can extrapolate a total of less than 160 bitcoins involved in a few hundreds of
attempted malleability attacks preceding our measurements. This is equivalent
to less than 10% of the attacks identified during our measurements.



324 C. Decker and R. Wattenhofer

Besides the temporal restriction of our study, we also restricted ourselves
to one specific attack, made possible by transaction malleability. Malleability
attacks as defined in Section 2.2 require that both the original and the modified
transaction are broadcast in the Bitcoin network. This reflects the description
of the attack in the MtGox press release of February 10, 2014 [7].

In addition to broadcasting the transactions in the network, MtGox also pub-
lished withdrawal transactions on their website. This may have resulted in a
different attack, only partially covered by this work. MtGox sometimes created
invalid transactions with non-canonical signatures which would not be forwarded
by newer Bitcoin clients. An attacker could retrieve the invalid transactions, cor-
rect the signatures and release the corrected transactions into the network.

We were able to collect these invalid transactions until October 2013, but
not after that. The collected invalid transactions were considered when creating
the conflict sets and figures in the analysis. It is however possible that some
transactions did not even reach the Bitcoin network, and that some different
type of attack might have played a role in MtGox’ loss. We would like to stress
that this paper does focus on malleability attacks only, as defined by MtGox and
in this paper. Other types of attacks are outside the scope of this paper.

Finally, it is worth noting that the attacks described in this work could have
been countered by adhering to basic best practices. Failed transactions should
not be automatically retried, since a failure to confirm is indicative of other
errors, as would have been the case with non-canonical signatures or malleability
attacks. Should automatic retrial be desired, then the transaction issuer must
ensure that the same inputs are reused. By doing so the issuer ensures that the
funds are transferred at most once, even if an attacker may arbitrarily delay the
transaction or exploit transaction malleability to render the original transaction
unrecognizable.

5 Related Work

Transaction malleability has been known about since at least 2010, when it was
first documented. It has however received very little attention so far as it was
categorized as a low priority issue.

Andrychowicz et al. [10, 11] mention transaction malleability as a potential
problem in contracts and two party computations based on Bitcoin transactions.
These schemes can be used for example to implement a fair coin toss [12], auc-
tions or decentralized voting. Their method to eliminate transaction malleabil-
ity in their protocols resembles our construction of conflict sets, i.e., eliminating
malleable parts of the transaction in the hash calculation. However, they limit
their observations to advanced schemes for encoding contracts and two party
computations.

A related class of doublespending attacks, which we shall refer to as clas-
sical doublespending, has received far more attention. In this class of attacks
the transaction issuer creates two transactions to defraud the receiving party.
Karame et al. [5] first studied the problem of arising from fast transactions,



Bitcoin Transaction Malleability and MtGox 325

i.e., accepting non-confirmed transactions. Rosenfeld [13] showed that the suc-
cess probability of a doublespending attack can be further increased if coupled
with computational resources. Bamert et al. [3] later improved the security of
accepting fast payments by observing how transactions are propagated in the
network.

To the best of our knowledge this paper is the first publication describing
transaction malleability and the resulting malleability attack in detail.

6 Conclusion

The transaction malleability problem is real and should be considered when im-
plementing Bitcoin clients. However, while MtGox claimed to have lost 850,000
bitcoins due to malleability attacks, we merely observed a total of 302,000 bit-
coins ever being involved in malleability attacks. Of these, only 1,811 bitcoins
were in attacks before MtGox stopped users from withdrawing bitcoins. Even
more, 78.64% of these attacks were ineffective. As such, barely 386 bitcoins could
have been stolen using malleability attacks from MtGox or from other businesses.
Even if all of these attacks were targeted against MtGox, MtGox needs to explain
the whereabouts of 849,600 bitcoins.

References

1. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system,
https://bitcoin.org/bitcoin.pdf (Online; accessed March 26, 2014)

2. Wuille, P.: BIP 0062: Dealing with Malleability (2014),
https://github.com/bitcoin/bips (Online; accessed March 10, 2014)

3. Bamert, T., Decker, C., Elsen, L., Welten, S., Wattenhofer, R.: Have a snack, pay
with bitcoin. In: IEEE Internation Conference on Peer-to-Peer Computing (P2P),
Trento, Italy (2013)

4. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In:
IEEE International Conference on Peer-to-Peer Computing (P2P), Trento, Italy
(September 2013)

5. Karame, G., Androulaki, E., Capkun, S.: Two Bitcoins at the Price of One? Double-
Spending Attacks on Fast Payments in Bitcoin. In: Proc. of Conference on Com-
puter and Communication Security (2012)

6. MtGox: Mtgox press release announcing the stop of withdrawals (2014),
https://www.mtgox.com/press_release_20140210.html

(Online; accessed February 10, 2014)

7. MtGox: Mtgox press release about transaction malleability (2014), https://www.
mtgox.com/press release 20140210.html (Online; accessed February 10, 2014)

8. MtGox: Announcement regarding an application for commencement of a prodedure
of civil rehabilitation, https://www.mtgox.com/img/pdf/20140228-
announcement eng.pdf (Online; accessed March 19)

9. MtGox: Announcement regarding the applicability of us bankruptcy code chapter
15, https://www.mtgox.com/img/pdf/20140314-announcement_chapter15.pdf

(Online; accessed March 19)

https://bitcoin.org/bitcoin.pdf
https://github.com/bitcoin/bips
https://www.mtgox.com/press_release_20140210.html
https://www.mtgox.com/press_release_20140210.html
https://www.mtgox.com/press_release_20140210.html
https://www.mtgox.com/img/pdf/20140228-announcement_eng.pdf
https://www.mtgox.com/img/pdf/20140228-announcement_eng.pdf
https://www.mtgox.com/img/pdf/20140314-announcement_chapter15.pdf


326 C. Decker and R. Wattenhofer

10. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Fair two-party
computations via the bitcoin deposits. Technical report, Cryptology ePrint Archive
(2013)

11. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: How to deal
with malleability of bitcoin transactions. arXiv preprint arXiv:1312.3230 (2013)

12. Back, A., Bentov, I.: Note on fair coin toss via bitcoin. arXiv preprint
arXiv:1402.3698 (2014)

13. Rosenfeld, M.: Analysis of hashrate-based double spending (2012),
https://bitcoil.co.il/Doublespend.pdf (Online; accessed February 17, 2014)

https://bitcoil.co.il/Doublespend.pdf

	Bitcoin Transaction Malleability and MtGox
	1 Introduction
	2 Transaction Malleability
	2.1 Bitcoin Scripts
	2.2 Malleability Attacks

	3 MtGox Incident Timeline
	4 Measurements
	4.1 Global Analysis
	4.2 The MtGox Incident
	4.3 Beyond Our Data

	5 Related Work
	6 Conclusion
	References




