Anonymous Networks: Randomization = 2-Hop Coloring

Yuval Emek¹ Christoph Pfister² Jochen Seidel² Roger Wattenhofer²

¹Technion – Faculty of Industrial Engineering and Management – ie.technion.ac.il
²ETH Zurich – Distributed Computing Group – www.disco.ethz.ch
Anonymous Networks
Anonymous Networks
Maximal Independent Set
Coloring
Coloring \rightarrow Maximal Independent Set
Coloring \rightarrow Maximal Independent Set
Coloring \rightarrow Maximal Independent Set
Computability

Deterministic | Randomized | Impossible
Computability

D. Angluin.
Local and global properties in networks of processors (extended abstract).
STOC, 1980.
Computability

- Deterministic
- Randomized
- Impossible

- Maximal Independent Set
- Coloring
- Leader Election
Computability

Degree

Maximal Independent Set

Coloring

2-Hop Coloring

Leader Election

Deterministic

Randomized

Impossible
2-Hop Coloring?!
Theorem

Randomized Algorithm

Deterministic Algorithm

2-Hop Coloring

\[\text{Randomized Algorithm} + \text{Deterministic Algorithm} = \text{2-Hop Coloring} \]
1. Obtain Local View
Recipe

1. Obtain
 Local View

2. Canonical Representation
Recipe

1. Obtain

 Local View

2. Canonical Representation
Recipe

1. Obtain

 Local View

2. Canonical Representation
Recipe

1. Obtain Local View

2. Canonical Representation
Recipe

1. Obtain Local View

2. Canonical Representation
Recipe

1. Obtain Local View
2. Canonical Representation
Recipe

1. Obtain Local View

2. Canonical Representation

Recipe

1. Obtain Local View
2. Canonical Representation
Recipe

1. Obtain Local View

2. Canonical Representation

Recipe

1. Obtain Local View

2. Canonical Representation

Recipe

1. Obtain Local View

2. Canonical Representation

4. “Lift” Output
Obstacles

1. Obtain Local View

Universal covers of graphs: Isomorphism to depth $\infty - 1$ implies isomorphism to all depths.

Obstacles

1. Obtain Local View

Obstacles

1. Obtain Local View

N. Norris.
Universal covers of graphs: Isomorphism to depth $n - 1$ implies isomorphism to all depths.
Obstacles

1. Obtain Local View

2. Canonical Representation

\[n \text{ unknown!} \]

N. Norris.
Universal covers of graphs: Isomorphism to depth \(n - 1 \) implies isomorphism to all depths.
Obstacles

1. Obtain *Local View*
2. Canonical Representation

\(n \) unknown! keep guessing (converges)

Obstacles

1. Obtain *Local View*

2. Canonical Representation

\[n \text{ unknown!} \]

keep guessing (converges)

Obstacles

1. Obtain *Local View*
2. Canonical Representation

\[n \text{ unknown!} \]

keep guessing (converges)

Obstacles

1. Obtain *Local View*

2. Canonical Representation

\(n \) unknown!

keep guessing (converges)

Obstacles

2. Canonical Representation
 Guess

3. Simulate Randomized Algorithm

4. "Lift" Output
Obstacles

2. Canonical Representation

Guess

Educated

3. Simulate Randomized Algorithm

4. “Lift” Output

Li/f_t Output

Educated
Obstacles

2. Canonical Representation
 Guess

3. Simulate Randomized Algorithm

4. “Lift” Output
 Stick to previously used random bits

Educated
Theorem

Randomized Algorithm

Deterministic Algorithm

2-Hop Coloring
Computability

Degree

Maximal Independent Set

Coloring

2-Hop Coloring

Leader Election

Deterministic

Randomized

Impossible
Leader Election

"Promise" must be decidable with anonymous algorithm.
Leader Election

"Promise" must be decidable with anonymous algorithm
Leader Election

"Promise" must be decidable with anonymous algorithm.
Leader Election

"Promise" must be decidable with anonymous algorithm.
Leader Election

▶ “Promise” must be *decidable* with anonymous algorithm
Recipe

1. Obtain Local View
2. Canonical Representation
4. “Lift” Output

...
Summary

Randomized Algorithm = Deterministic Algorithm

Degree

Maximal Independent Set

Coloring

2-Hop Coloring

Leader Election

Deterministic

Randomized

Impossible