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Abstract

Language-image pretraining creates a joint representation space between the two
modalities where images and texts with similar semantic information lay close
to each other. Language-image models are often trained from scratch without
taking advantage of unimodal pretrained models. By aligning the representation
spaces of two modality-specific encoders, our model achieves 74.7% accuracy
on the ImagenNet1K validation set, at two orders of magnitude lower training
cost. In this work, we highlight the importance of unfreezing the CLS tokens of
uni-modal transformer encoders to create a joint embedding space. Freezing the
image and text CLS tokens reduces the mean accuracy from 37.5% to 19.4% on
the 38 evaluation benchmarks.

1 Introduction

In early 2022, newly emerging language-image models like DALL-E (and later Stable Diffusion,
Midjourney, etc.) sent shock-waves through the machine learning community. Training large
multimodal models from scratch is computationally expensive, and beyond the capabilities of many
small organizations. Instead, what about combining already pretrained unimodal models? This may
reduce the computational cost significantly, and open up multimodal models to organizations with
limited resources. Model fine-tuning can strike a balance between adapting a model to the given task,
while not forgetting the initial representations.

A joint multimodal representation space needs to satisfy two properties. 1) Samples with similar
semantic information need to be closer to each other than samples with dissimilar semantic infor-
mation. 2) The representation spaces of the two modalities need to align. Encoders trained on their
respective data modality have learned a representation space that satisfies the first property. Freezing
some components of the unimodal encoders helps to keep representations that satisfy property 1. At
the same time, unfreezing (fine-tuning) parts of the model helps to learn representations that satisfy
property 2. Which parts of the model to freeze/unfreeze plays an important role in the model aligning
vs. not-forgetting balance.

In this work, we adapt the Contrastive Language-Image Pretraining (CLIP) [1] framework. Instead
of training models from scratch, we align the representation spaces of unimodal encoders. Zhai et
al. [2] investigate multimodal representation alignment while freezing the pretrained text or image
encoder. We explore freezing/unfreezing components of the transformer encoders, to improve the
zero-shot performance at a reduced training cost. The main contributions of this paper are:

1. We demonstrate that by aligning unimodal pre-trained model representations, on a small
scale, comparable results can be achieved at a fraction of the computation and data cost.
By taking advantage of unimodal encoders, our model achieves 74.7% ImageNet1k [3]
accuracy, which is on par with models of comparable size, with ∼99% reduced training cost.
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2. We show the importance of unfreezing the patch/token embeddings while aligning the
transformer encoder representation space. Surprisingly, fine-tuning the image and text CLS
tokens is crucial to aligning language-image representation spaces. By freezing just the
two CLS tokens, mean accuracy drops from 37.5% to 19.4% on 38 image classification and
image-text retrieval benchmarks [4].

2 Related work

Radford et al. [1] introduce a contrastive learning framework that establishes a unified embedding
space for textual and image data. This approach maximizes the similarity for web-scraped image-text
pairs and minimizes it for unrelated pairs. The utilization of this extensive and diverse dataset enables
these models to understand a wide range of concepts and relationships across modalities. Leveraging
the power of their joint embedding space, language-image models are achieving exceptional results
in a wide range of tasks, including zero-shot image classification and image-text retrieval [1; 5; 2;
6; 7; 8; 9; 10], but also semantic image generation [11; 12; 13; 14], showcasing their capacity for
multimodal understanding.

Most relevant to our work are papers demonstrating that fine-tuning pretrained representation models
can both speed up training and improve performance. Sun et al. [8] align an EVA [15] vision
transformer with a CLIP [1] and OpenCLIP [7] text encoder to achieve state-of-the-art results with
reduced training costs. To mitigate over-fitting while aligning image and text encoders Zhai et al. [2]
freeze the image encoder, and only fine-tune the text encoder. Their findings reveal that using a frozen
pretrained vision encoder not only speeds up training time but also increases model performance,
even for training runs with 20 billion seen samples. In contrast to Zhai et al. [2], we focus on the
importance of fine-tuning the input embedding representations, with a special focus on the transformer
CLS tokens.

In Section 4, we compare our results against prior works. Pham et al. [5] increase the batch size and
training schedule of the CLIP [1] model. As contrastive training relies on the negative samples in the
batch, CLIP-style models can benefit from a larger batch size [1; 5; 7]. Cherti et al. [7] release an
open-source state-of-the-art language-image model with training code, trained on the LAION5B [16]
dataset. To remove the dependence on batch size, Zhai et al. [9] introduce a pairwise sigmoid loss for
contrastive language-image pretraining. Randomly dropping some of the transformer input tokens
acts as regularization and also increases training speed [10]. Yu et al. [6] combine the contrastive
loss with a multimodal autoregressive captioner loss to learn the joint image-text representations.
Moreover, Schuhmann et al. [16] released LAION5B, the first large-scale open-source web-scraped
image-text dataset. Models trained on less but higher quality data can outperform models that were
trained on noisy data [4]. The DataComp [4] challenge focuses on filtering strategies to create a
high-quality image-text dataset.

3 Experiments

For all experiments we use a subset of the CommonCrawl [17] image-text pair dataset, we filter the
medium version of the DataComp [4] dataset by their Image-based ∩ CLIP score (L/14 30%) filtering
strategy. The dataset contains 13 million image text pairs. For evaluation, we use the ImageNet1K
[3] accuracy and the mean of 38 image classification and retrieval tasks from the DataComp [4]
challenge.

The models are trained with a batch size of 4096 until 12.8 million training samples are seen, which
is slightly less than the dataset size. We optimize the symmetric cross-entropy loss [1] between the
CLS token of the vision transformer output and the projected CLS token of the text transformer. For
a fair comparison, all models use a similar number of parameters in both the vision and language
transformers. The vision encoders use the Vit-B/16 architecture, which is a 12-layer transformer,
with an input image size of 224, divided up into 16×16 patches. All text embedders use a 12-layer
transformer encoder. To speed up training, all models were trained with bfloat16 mixed precision.
We adopt the hyperparameters from the small scale DataComp [4] challenge for the remaining model
settings.

2



4 Results

Reduced computational cost

Aligning unimodal representation spaces, rather than starting from scratch reduces the computational
cost. This reduction in computational requirements enables researchers, especially those with limited
access to computing resources to investigate contrastive language-image pretraining. Notably, this
method achieves an approximately 99% reduction in training costs while delivering performance on
par with the best performing (EVA-02-CLIP [8]) similarly-sized model, as evidenced by the results
in Table 1.

seen
ImageNet

# seen
samples model # parameters dataset size

ImageNet
acc (%)image text

✗ 52,000M BASIC-M [5] 168M 184M 6,600M 81.5
✗ 40,000M BASIC-S [5] 25M 108M 6,600M 71.9
✗ 34,000M OpenCLIP [7] 86M 63M 2,000M 70.2
? 13,000M CLIP [1] 86M 63M 400M 68.3
? 13,000M FLIP [10] 86M 53M 400M 68.0
? 8,000M EVA-02-CLIP [8] 86M 63M 2,400M 74.7

✓ 18,000M LiT [2] 86M 110M 4,000M 73.9
✓ 9,000M SigLIP [9] 86M 63M 4,000M 73.4
✓ 128M ours 86M 110M 13M 74.7
✓ 13M ours 86M 110M 13M 68.3

Table 1: Comparison to previous methods on the ImageNet1K validation set. The number of
seen samples is a reasonable measure of computational cost, for models with a similar number of
parameters. Our model achieves comparable performance to state-of-the-art models with two orders
of magnitude less computational resources and two orders of magnitude smaller datasets. LiT [2],
SigLIP [9] and our model fine-tunes vision transformers which were pretrained on the ImageNet
training set, and the CLIP [1], FLIP [10] and EVA-02-CLIP [8] image-text training dataset might
contain some samples from the evaluation dataset.

Input embedding fine-tuning

To align the unimodal pre-trained representations it is beneficial to freeze some parts of the model
and fine-tune the rest. We experiment with freezing and unfreezing the patch embeddings/token
embeddings and the transformer blocks. The vision and language CLS tokens are frozen/unfrozen
together with the patch embeddings and the token embeddings, if not specified otherwise. For a
vision model V and text model T, we note if the patch/token embeddings are frozen/unfrozen in
the lower index and if the transformer blocks are frozen/unfrozen in the upper index. From the 16
possible combinations, freezing the vision encoder transformer blocks, while unfreezing the vision
patch embeddings and the whole text encoder (Vf

uTu
u) has the best performance. In Table 2 we ablate

the freezing/unfreezing of the input embeddings and the transformer blocks, by changing one at a
time compared to the best setting Vf

uTu
u.

image pretrain text pretrain Vf
uTu

u Vf
fTu

u Vf
uTu

f Vu
uTu

u Vf
uTf

u
Supr. INet 21, 1k [18] BERT [19] 43.0±.2 39.4±.2 21.5±.1 39.6±.1 36.7±.0
Supr. INet 21, 1k [18] mBERT [19] 42.7±.6 39.3±.2 17.3±.1 40.2±.4 37.2±.4
Supr. INet 21, 1k [18] RoBERTa [20] 41.2±.5 37.9±.1 23.9±.3 38.4±.4 31.5±.1
Supr. INet 21, 1k [18] T5 [21] 35.7±.4 32.2±.5 20.0±.2 34.9±.3 20.3±.0
Supr. INet 21k [18] BERT [19] 41.5±.9 34.5±.5 20.6±.1 40.2±.4 34.4±.1
DINO INet 1k [22] BERT [19] 37.2±.1 37.3±.2 18.2±.2 36.4±.3 31.0±.2

Table 2: Mean accuracy on the 38 benchmark tasks over different unimodal representation space
alignments. Each setting was run with 3 seeds, mean and standard deviation are reported.
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In the case of all text encoders, the most significant decline in performance is observed when freezing
the text tokenizer (Vf

uTu
f ). Intriguingly, this decline cannot be attributed solely to the number of

parameters within the text tokenizer. For all encoders, the tokenizer has fewer parameters than the
transformer, see Table 3. The joint representation space between text and images requires information
that is not present in the tokenizer embeddings pretrained on the unimodal pretext tasks. Fine-tuning
the input embeddings allows the model to re-learn the required information.

model # of params. tokenizer # of tokens tokenizer # of params.

BERT [19] 110M WordPiece [23] 30k 23M
mBERT [19] 110M WordPiece [23] 110k 84M
RoBERTa [20] 125M BPE [24] 50k 38M
T5 [21] 220M SentencePiece [25] 32k 24M

Table 3: All text encoder transformers have more parameters than their tokenizer, but freezing the
text encoder transformer blocks leads to a smaller performance drop than freezing the tokenizer.

In both the vision and language transformers the information is aggregated via the CLS token. We are
comparing the effect of unfreezing just the CLS token embeddings against unfreezing both the CLS
token and patch/token embeddings. For all experiments, the Imagenet 1K vision transformer [18]
and BERT text encoder [19] are aligned, and evaluated on the 38 dataset benchmark [4]. Starting
from the optimal configuration (Vf

uTu
u), freezing the image patch embeddings and the non-CLS token

text embeddings, the performance experiences a decline from 43.0% to 37.5%. When also freezing
the image and text CLS embeddings performance drops further from 37.5% to 19.4%. Fine-tuning
of the CLS token embeddings is needed, as freezing just 2 × 768 parameters the model’s accuracy
experiences a drop to roughly half of its original performance.

Aligning unimodal representations might converge faster but to a lower plateau. In Figure 4, it can
be observed that accuracy improvement starts to slow down after just a few million seen samples.
Zhai et al. [2] results reveal that freezing the vision encoder while unfreezing the text encoder (in our
paper, we call this Vf

fTu
u) performs better than unfreezing everything (in our notation Vu

uTu
u), even

for longer training runs. The finding that unfreezing everything results in worse performance than
freezing some parts of the model suggests that the unimodal encoders have learned representations
that are challenging, or even impossible to learn solely through the contrastive training objective.
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Figure 4: ImageNet1k (left) and 38 tasks (right) average accuracy over the number of samples seen.
Each scenario is run with 5 seeds, line thickness is 2 standard deviations.

5 Conclusion

Determining which part of the pretrained models should be frozen and which parts should be
unfrozen for fine-tuning is a nontrivial decision. For multimodal alignment of unimodal image and
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text transformers, fine-tuning the CLS tokens is crucial. Compared to unfreezing everything, by
freezing the vision transformer, unfreezing the CLS tokens, patch embedder, and the whole text
model, performance on downstream evaluation tasks can be increased at a much lower training cost.
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