
 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

TIK-Report
Nr. 149, August 2002

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Jan Mischke, Burkhard Stiller

Peer-to-peer Overlay Network Management
through AGILE: An Adaptive,
Group-of-Interest-based Lookup Engine

Jan Mischke, Burkhard Stiller:
Peer-to-peer Overlay Network Management Through AGILE: An Adaptive, Group-of-
Interest-based Lookup Engine
August 2002
Version 1
TIK-Report Nr. 149

Computer Engineering and Networks Laboratory,
Swiss Federal Institute of Technology (ETH) Zurich

Institut für Technische Informatik und Kommunikationsnetze,
Eidgenössische Technische Hochschule Zürich

Gloriastrasse 35, ETH-Zentrum, CH-8092 Zürich, Switzerland

- 1 -

Peer-to-peer Overlay Network Management through AGILE:
An Adaptive, Group-of-Interest-based Lookup Engine

Jan Mischke1 and Burkhard Stiller2,1

1 Computer Engineering and Networks Laboratory TIK, Swiss Federal Institute of Technology, ETH Zurich, Switzerland
2 Information Systems Laboratory IIS, University of Federal Armed Forces Munich, Germany

E-Mail: [mischke|stiller]@tik.ee.ethz.ch

Abstract

Peer-to-peer (P2P) systems enable the direct communica-
tion between peers, which offer or request for services,
resources, or content. While distributed peer-to-peer lookup
services define the most important function in P2P systems,
scalability and efficiency are key for those services. Cur-
rently, state of the art mechanisms actively create and man-
age a peer application layer overlay network to achieve this
goal. The proposed mechanism AGILE (Adaptive, Group-of-
Interest-based Lookup Engine) extends this management
approach, where the overlay network adapts such as to bring
requesting peers and desired lookup items close together,
reducing the number of hops and, thus, latency as well as
bandwidth requirements for a lookup. At the same time,
AGILE introduces mechanisms to build a fair system.

Keywords: Peer-to-peer (P2P) Lookup Services, Overlay
Network Management, Scalability

1 Introduction

Peer-to-peer (P2P) networking, the direct cooperation of
computing nodes at the edge of a network without a central
server, has recently gained much attention again. While the
Internet had originally been designed to the P2P paradigm,
with Usenet as the most prominent P2P application example,
the 90’s have been dominated by the client/server paradigm
and their applications.

By now, particularly the P2P file sharing services like Nap-
ster and Gnutella, but also numerous other P2P services, such
as Seti@Home or Groove, are proliferating more rapidly than
the fastest growing client/server services. The advantages of
those P2P approaches are obvious: P2P enables the exploita-
tion of idle resources at the edge of a network. This covers
also their minimized administration rather than costly central
server farms, and it can provide access to a vast content vari-
ety, supports user equality, and avoids censorship. However,
apart from issues in P2P like quality control, security, or the
lack of viable business models, the performance and scalabil-
ity of P2P systems are a major concern. This applies particu-
larly to the most distributed functionality in P2P systems: the
lookup of content items or services within the P2P network.

Peers in a P2P system communicate on a logical overlay
network among them. Some existing systems, e.g., Gnutella,
build this overlay network at random, while more sophisti-
cated approaches, like Tapestry, Pastry, or Chord, actively
manage the overlay network such as to ensure robustness and
alleviate lookup and request routing. The latter systems, how-
ever, pay little attention to the heterogeneity of peers with
respect to their interests and capabilities.

Concerning the internal structure of a peer-to-peer system,
it builds on existing network infrastructure. For example, in
the TCP/IP world, every node is connected to the global
Internet. Similarly, in mobile networks (such as GSM or
UMTS), it is possible to contact every mobile via the corre-
sponding network layer protocol stacks. In theory, it would be
possible to base a peer-to-peer platform entirely on the under-
lying network topology. Every network node would be
assumed to be a peer, routing would be performed according
to the standards of the network.

However, several reasons exist for choosing a better
approach and introducing a logical overlay network on top of
the underlying infrastructure. Firstly, almost all available net-
works build a strict hierarchy, contradicting the idea of peers
being all equal. Secondly, not all nodes in the Internet will
participate in a peer-to-peer network. Thus, it is straightfor-
ward to arrange a network consisting only of the participating
peers. Thirdly, routing mechanisms and paths from one par-
ticipating peer to another can be complex and are proprietary
to the network. Hence, an abstraction can not only help to
simplify the P2P network, but also alleviates the portability of
the platform to different networks or even enables interopera-
bility. Therefore, an overlay network is constructed through
the P2P platform/application layer routing or link information
on each peer. A peer node has a (directed) link to another
node, or, a neighbor, in the overlay network, if it knows the
corresponding network (or transport) layer address. This
knowledge is sufficient to establish a transparent end-to-end
connection. This link can be described by characteristics of
the end-to-end connection, such as bandwidth and latency.

The management of those P2P overlay networks remains
to be dealt with efficiently. In case of the most simple P2P
systems, like Gnutella, they do not actively construct and
manage their overlay topologies. Moreover, Gnutella peers
learn about other peers at random through ping requests and
pong responds while adding (or removing) links and nodes in
an uncontrolled way [6]. Unfortunately, the orderless struc-
ture requires a non-scalable flooding mechanism for lookup
and the lengths of paths and node degrees can become large.
It is more powerful to actively design an ordered topology
according to a set of requirements and apply a distributed
overlay management algorithm for the careful insertion and
removal of nodes and links.

Therefore, the proposed mechanism AGILE (Adaptive,
Group-of-Interest-based Lookup Engine) takes this approach.
It additionally adapts the network over time so that groups
can form according to common interests, improving the
lookup performance, while at the same time ensuring fair-
ness.

- 2 -

While this introduction demonstrated the importance of
P2P overlay network management and topology design, par-
ticularly for lookup services, the remainder of this paper is
organized as follows. Essential requirements for such a
topology are derived in Section 2, while Section 3 discusses
related work and identifies major gaps to those requirements.
Section 4 introduces and evaluates the proposed approach
AGILE. Finally, Section 5 summarizes the work, draws final
conclusions, and discusses future work perspectives.

2 Requirements of P2P Overlay Management

Based on the definition of the most important set of func-
tional and performance requirements of a P2P system, key
topological requirements for overlay networks and their
management are derived.

2.1 Functional and Performance Requirements

It is straightforward to require that a P2P system be scal-
able and make efficient use of system and peer resources,
namely memory, processing power, bandwidth, and
time/latency. With up to 96% of local peer node resources
being idle [2], bandwidth and user time, or latency in the
technical system, are most crucial and will be considered in
more detail in the next subsection. Furthermore, the system
should ensure a proper load balancing in that it be fair,
involving peers according to their use of the system and in
that it pay attention to the heterogeneous capabilities of
peers. Finally, a P2P systems has to be robust to frequent
node joins and leaves and link failures.

2.2 Topological Requirements

In general, network topologies can be characterized
through their degree of symmetry, the network diameter, the
bisection width, the average node degree, and the average
wire length [7]. The functional and performance require-
ments determine the desired target characteristics.

• Symmetry: Only symmetric topologies are appropriate
for true peer-to-peer systems as only in this case all peers
are equal from a topology point of view. Consider a non-
symmetric topology like the classic tree: It is obvious that
the root of the tree has a far more central role than all
leaves. At the same time, symmetry assists load balanc-
ing. While in non-symmetric networks hot spots with
high traffic load (the root in the tree) may exist, the load
will balance over available connections in a symmetric
network. Examples of symmetric topologies include
rings, buses, hypercubes, complete meshes, cube-con-
nected circles, or k-ary n-cubes.
While symmetry appears to be one of the most basic
requirements for a peer-to-peer topology, measurements
as stated in [5] prove a huge heterogeneity among peer
nodes in terms of their uptime, average session duration,
bottleneck bandwidth, latency, and the number of ser-
vices or files offered. Thus, it can make sense to explic-
itly design asymmetric overlay networks, where some
peers adopt a server-like role.

• Network Diameter (D): The diameter of a network is
defined by the number of hops required to connect from
one peer to the most remote peer. It strongly influences
latency and bandwidth (cf. below).

• Bisection Width (): The number of connections from
one part of the overlay network to the other part define its
bisection width. Assuming proper load balancing (which
can be ensured through symmetry, at least partly), the
maximum throughput of the network is proportional to
the bisection width (and the average bandwidth of a con-
nection). Even more importantly, there is a direct relation
between bisection width and fault tolerance: the bisection
width determines the number of links that have to break
before the system goes down or, at least, operates only as
two partial systems.

• Node Degree (d): The node degree is defined as the
number of links that each peer has to maintain. While a
node degree higher than one is desirable for improved
fault tolerance of the network from the perspective of a
single peer, the node degree can be a significant inhibitor
for scalability: The node degree determines the size of the
routing table on each peer with the according impact on
memory consumption and processing power.

• Wire Length (): The wire length is the average round
trip delay of a connection, contributing to the latency in
the system (cf. below). The wire length is closely related
to the issue of mapping an overlay network properly onto
a physical network: A low wire length in a peer-to-peer
overlay network can be achieved by choosing neighbors
that are also neighbors or at least physically and topolog-
ically close in the underlying network.

2.3 Latency and Bandwidth Requirements

Clearly, with respect to the overlay network management
for lookup services it is important to have a look in detail at
latency and bandwidth consumption for a lookup request in
order to assess the significance of these characteristics.

The latency L for a lookup request is defined as

,

where nh is the number of hops for a request and the pruning
factor fp denotes the average percentage of the maximum
number of hops that a request does not need to travel,
because it has been pruned off before. The pruning factor can
be calculated from the pruning probability at each hop pp,i
(i.e. the probability that the requested item is found at that
hop) through

.

The pruning probability pp,0 at node 0, the requesting

node, will usually be zero. Hence, three important factors
determine the latency time:

• The network diameter,

• The average round trip delay, and

• The pruning probability.

β

τ

L τ nh τ D 1 f– p()⋅ ⋅=⋅=

fp 1
1
D
----– 1 pp k,–() i k ε ℵ,;

k 0=

i 1–

∏
i 1=

D

∑=

- 3 -

It is possible to increase the pruning probability in a topol-
ogy by exploiting knowledge on the peers’ interests.

In addition, the total bandwidth B required for a lookup
request is

where BRP denotes the bandwidth or size of one request
package, nh (as above) the number of hops, d the node
degree, and εroute the routing efficiency. The routing
efficiency is defined to be 1 if only one node has to be
contacted at each hop and 0 if all nodes have to be contacted.
In that sense, Gnutella with its flooding approach has a
routing efficiency of 0, whereas consistent hashing
algorithms like Chord [1] have a routing efficiency of 1.

As for the latency, the network diameter and the pruning
probability influence the bandwidth requirements (and scal-
ability) in a major way. Furthermore, the routing efficiency
plays a significant role. It is obvious that the packet size
should be kept as small as possible. The equation also sug-
gests that the node degree be kept low. However, this applies
only if the routing efficiency is smaller than 1. A lower node
degree automatically entails a larger network diameter. Note
that a higher node degree also increases in principle the
bandwidth available as it augments the number of links from
or to a node, however, these links are only virtual links in the
overlay network that all have to be mapped onto one and the
same physical access line of a node.

3 Related Work

Tapestry [18], Pastry [4], Chord [1], and CAN [11] deter-
mine those systems most closely related to AGILE. Their
common theme is that they arrange lookup items or keys
(such as content files, services, or peer node addresses) and
peer nodes in the same identifier space. Subsequently, they
hand over the responsibility for holding a key with a certain
identifier to a peer with a numerically close identifier. This
enables them to simply route a lookup request message at
each node towards a neighboring node with a closer node ID,
achieving a routing efficiency of 1. All of these lookup ser-
vices propose hashing to map lookup item names and nodes
(IP addresses) onto the identifier space. Firstly, the hash
function is globally known, ensuring the same mapping for
each request for or insert of a key. Secondly, hashing results
with high probability in unique IDs. Thirdly, the pseudo-ran-
domness of the hash function uniformly distributes keys and
nodes in the identifier space.

The main difference between these approaches is the
topology they build to arrange peers properly so that they can
route closer to the desired ID, while meeting major require-
ments to a good topology (cf. Section 2). Furthermore, they
apply different algorithms to constructing, maintaining, or
managing this topology.

• Tapestry: Tapestry builds a Plaxton mesh. IDs are repre-
sented as numbers with a sequence of digits to a base b.
At each hop, a request is routed toward a node, whose ID
matches the search key in one digit more than the previ-
ous node’s ID did, starting at the last digit (suffix-based

routing). The management of the overlay network
focuses on fault tolerance: soft stating, time-outs, and
republishing to ensure accuracy of the information, triple
redundancy and back-pointers in the routing tables, use
of several “root” servers, i.e. redundancy in the nodes
responsible for a key.

• Pastry: The basic concept and topology is the same as for
Tapestry, except that prefix-based routing instead of suf-
fix-based routing is applied.

• Chord: Chord arranges keys and nodes around an identi-
fier circle. The node with the largest number preceding
the search key is responsible for holding it. Nodes main-
tain overlay links to a couple of successors and fingers as
chords in the circle in exponentially increasing distances
from the respective node, enabling to halve the remaining
ID search space at each routing step. This becomes very
similar to Tapestry and Pastry when choosing a base of 2
in the latter ones.

• CAN: CAN is based on a d-dimensional Cartesian coordi-
nate space (or d-torus) separated into bins of varying size
to implement a distributed hash table. Other than Tapes-
try, Pastry, and Chord, the node degree is thus fixed.

HyperCuP [16], the lookup algorithm proposed for Edu-
tella [8], takes a different approach. Like in Gnutella, flood-
ing is used for the lookup. However, the overlay network is
actively managed as a hypercube with good symmetry, diam-
eter, and bisection width properties. It seems to be possible to
also use a hashing scheme to improve routing efficiency.
Furthermore, the approach proposes an ontology-based rout-
ing for the same reason.

Table 1 compares these systems according to their devel-
opers’ information (including AGILE) with respect to major
requirements from Section 2. For all systems denotes N the
number of nodes in the system, b and d are design parame-
ters.

All mechanisms except CAN achieve logarithmic scalabil-
ity with respect to the path length of a routing request or the
network diameter. Chord does not allow to trade off the node
degree for a lower number of hops by choosing a base higher
than 2. Particularly for PC nodes, a higher node degree can
easily be accommodated while allowing to reduce bandwidth
and latency. While the existing algorithms only have an sta-
tistically inherent pruning probability related to their base b,
they all achieve a routing efficiency of 1 - HyperCuP with its
flooding mechanism being the obvious exception. The node
degree scales logarithmically except for CAN, where it even
remains constant. However, this limits the flexibility when a
network grows. As to the wire length, Pastry, Tapestry, and
CAN introduce optimization schemes. The methods and sim-
ulations to obtain figures for the stretch (i.e. the relative
latency of overlay routing compared to IP routing) are too
different to base a good comparison on them. Several further
proposals have been made to address the issue of wire length
separately [19], [20], [13], [12], and [8]. The issue of fault
tolerance is particularly emphasized by Tapestry with
advanced redundancy and soft stating mechanisms. How-
ever, no results are available for its maintenance complexity,
i.e. the number of messages per node join or leave, which
scales logarithmically for all other systems but CAN. As all

B B= RP n⋅ h d d 1–() εroute⋅–()⋅
BRP d d 1–() εroute⋅–() D 1 f– p()⋅ ⋅=

- 4 -

algorithms build a probabilistic but fairly symmetric topol-
ogy; heterogeneity is only partly addressed by Tapestry
through the BROCADE extension [19], and by CAN through
load-dependent bin splitting.

Currently, HyperCuP seems inappropriate as long as
flooding is proposed as its lookup mechanism. Further exten-
sions might be interesting. While CAN’s flexibility is limited
due to the fixed dimensionality and consequently non-loga-
rithmic scalability in path length, the fixed base 2 limits
Chords flexibility. Pastry and Tapestry are very similar, how-
ever Pastry’s more lightweight algorithm is replaced by a
seemingly more fault tolerant one in Tapestry. Test results
would be needed for a proper comparison.

AGILE creates a topology where each node can be the root
of a tree. It exhibits similar network diameter and node
degree characteristics as Tapestry. It adopts the advantages of
Tapestry in terms of fault tolerance, wire length, and mainte-
nance of the overlay. However, AGILE considerably
improves the pruning probability by applying an adaptive
algorithm that brings requestors and requested keys stochas-
tically closer together. Furthermore, it introduces fairness
into the lookup mechanism by imposing the highest routing
burden on those peers making the most frequent requests.

4 AGILE - An Adaptive,
Group-of-Interest-based Lookup Engine

The AGILE algorithm proposed has been derived from
those requirements presented above and combines the advan-
tages of a scalable, hashing-based algorithm and topology
with the efficiency and fairness of an interest- and usage-
based group topology. The basic algorithm of the lookup
inseparably combines the overlay topology and the lookup
request routing.

For the subsequent discussions in this chapter, consider the
following scenario, where a peer node (the requestor) tries to
find a certain service or content in the P2P network. It has to
specify what it is looking for and the P2P system should
return the content or service or a link to the content or ser-
vice, e.g., the IP address of a peer where it can be found. The
desired and returned object is termed a lookup key (or short:
key) and the specified request a lookup identifier (ID). Peer
nodes in the network are characterized by their node ID, the

node holding the lookup key is called provider node. Routing
is the process of finding a path from the requestor to the pro-
vider node (which is usually unknown to the requestor) in a
distributed way by forwarding lookup requests from one peer
to another. The overlay network defines the structure on
which request routing can take place.

The discussion of AGILE is structured along the following
major questions:

• How to arrange search keys and peer nodes in the identi-
fier space (Section 4.1)?

• How should the overlay network look like to meet topo-
logical requirements and how are lookup requests routed
on the overlay (Section 4.2)?

• How are lookup items and nodes inserted into the net-
work or removed (Section 4.3)?

• How does the adaptive group management work and
ensure load balancing, fairness, and heterogeneity (Sec-
tion 4.4)?

• How does AGILE compare to its requirements and with
related algorithms (Section 4.5)?

4.1 ID Space and Arrangement of Nodes and Keys

A proper assignment of IDs to nodes and keys can be
derived from the routing efficiency requirement. In order to
avoid any kind of flooding and achieve a routing efficiency
of 1, the P2P system is required to have global knowledge on
the translation of search request or lookup key into lookup
ID and on the association of the lookup ID with the provider
ID. The use of hash functions, e.g., based on SHA-1 [5] or
MD-5 [14], to translate the search request, e.g., the file name,
into the lookup ID solves the first problem. The second prob-
lem is solved by arranging peer nodes in the same identifier
space as the lookup IDs, e.g., by applying the same hash
function to nodes’ IP addresses. The node with an ID numer-
ically closest to the lookup ID will be the provider peer.

Figure 1 illustrates the identifier space in AGILE with peer
nodes and lookup keys arranged in the same space. Note that
due to the pseudo-randomness of the hash function distances
of peers and the number of keys associated to a provider can
vary. Stochastically, however, their distribution will be uni-
form. Figure 1 also introduces a hierarchy of types and
genres in the identifier space. This hierarchy is derived from
the requirement to achieve a good pruning factor. Assuming
that request routing takes place along the identifier space
(which, even though not linearly, is the case for AGILE, cf.

Table 1: Comparison of Lookup Mechanisms

Characteristic Tapestry Pastry Chord CAN HyperCuP AGILE
Network diameter O(logbN) O(logbN) ~log2N O(dN1/d) O(logbN) ~logbN

Pruning probability ~1/b ~1/b ~1/b=1/2 n/a n/a ~1/b+~37%**

Routing efficiency 1 1 1 1 0 1

Node degree ~b*logbN ~(b-1)logbN ~log2N d O(logbN) ~(b-1)logbN

Wire length/stretch (~2-4) (~1.3-1.4) n/a (~2-3) n/a (~2-4*)

Fault tolerance ++ + + + 0 ++*

Maintenance complexity n/a 3b*logbN O(log2N) O(N1/d) O(logbN) n/a*

Fairness - - - - - ++

Heterogeneity | symmetry 0 | symm. symmetric symmetric 0 | symm. symmetric 0 | symm.

* Tapestry mechanism adopted
** For large b, otherwise 37%/(1-1/b); for assumptions, cf. Section 4.5
++: Requirement met to a very high degree; 0: medium; --: low

- 5 -

Section 4.2), a good pruning factor requires that providers
(or lookup keys, respectively) and potential requestors be
located close to each other. AGILE achieves this through a
clustering of keys and nodes into Groups of Interest (GoIs).

For a detailed illustration, assume a segmentation of
lookup keys (content or services) as described by the follow-
ing meta-information:

• Type, e.g., music files, news information, or storage ser-
vices.

• Genre, e.g., rock, pop, classic, or house.

• Name, e.g., RollingStones_Satisfaction or Beethoven_9.

RDF and XML [10] provide the appropriate functionality
to improve this description and segmentation, however, this
description task is not the focus of this work. Note, however,
that peer nodes have to be arranged in the same segmenta-
tion:

• Type

• Genre

• Name, or, for nodes, IP address

The type and genre of a peer refer to its pre-eminent inter-
ests (its GoI). Section 4.4 below discusses how to determine
the GoI of a peer and how to handle multiple interests. Hash-
ing is then applied to each of the hierarchy levels. The
lookup ID becomes TypeID.GenreID.NameID while the
node ID will be TypeID.GenreID.AddressID.

A total identifier space of 128 bit will be sufficient for
most P2P systems. A distribution of bits to type, genre, and
name/address, respectively, depends on the expected number
of different types, different genres within a type and
names/addresses within a type and genre. It is assumed that
32 bit each for type and genre and 64 bit for name/address
will meet most demands.

4.2 Overlay Network Structure and
Request Routing

Within the identifier space defined above, lookup requests
have to be routed towards a node with the corresponding ID.
It would be possible to route a request directly from one node
to an adjacent one in the ID space in the direction of the
lookup ID, who forwards it to its neighbor and so on until it
finally reaches the provider. As this is highly inefficient and

not scalable nor robust, an overlay network of virtual links
needs to be constructed according to the requirements in Sec-
tion 2.2, enabling every peer to route a request to any other
peer in the identifier space with as few hops as possible.

A tree topology yields a good trade-off between node
degree and network diameter. The tree is an efficient struc-
ture for searching or lookup, and both the node degree as
well as the diameter scale logarithmically (cf. [7] as well as
Section 4.5). For symmetry reasons and also to increase the
bisection width of the graph, however, the simple tree struc-
ture needs to be extended: every peer has to be allowed to
become the root of the tree or be on any other level, rather
than maintaining links only to one level in the tree hierar-

chy1.
Figure 2 shows an AGILE overlay lookup tree. The

lookup key segmentation defines the high-level tree hierar-
chy. As a root node, each peer maintains links to peers from
all different types. Within its own type, each peer maintains
links to peers from all different genres. Within its own type
and genre, each peer maintains links to all peers. This
enables an efficient hierarchical lookup request routing from
the more generic type to the more specific genre and, eventu-
ally, name.

As the number of nodes in a genre or type can potentially
become very large, a subordinate hierarchy is introduced to
reduce the node degree, with a maximum of b nodes on each
tree level. It is straightforward to associate b with the base of
a numerical representation of the node or lookup ID. The
position of a node (or key) in the tree is then determined by
the succession of digits of its ID.

Figure 1: The AGILE Identifier Space

A B C

Peer node

Lookup key

Type A Type B

Genre A Genre B Genre C

...
...Identifier

Space
A B C

Peer node

Lookup key

Type A Type B

Genre A Genre B Genre C

...
...Identifier

Space

1. The topology finally being created is to some degree similar to a b-ary n-
cube, i.e. a cube with n dimensions and b nodes in each dimension (see
also Figure 4), where n is equal to the number of levels in the tree. In con-
trast to the b-ary n-cube, however, the b nodes in a dimension are fully
connected. Furthermore, the cube is sparsely populated, many positions
will be vacant as not all IDs will be assigned to nodes. Finally, in a b-ary
n-cube, each two neighbors share all dimensions but one, whereas in
AGILE, only the dimensions up to the one currently relevant for routing
are common, the remaining ones are random. This is equivalent to having
inclined links into the next dimension (rather than orthogonal ones).

This inclination has no effect on the routing performance compared to a b-
ary n-cube topology as all relevant dimensions are kept correct. Bisection
width will neither be affected as neighbors are chosen uniformly random
through the use of hash functions.

- 6 -

The resulting overlay network graph1 is defined through
the virtual links on each peer, i.e. the routing tables. Figure 3
illustrates a peer node routing table for a base b=16. The first
row corresponds to the node being the root in a lookup tree.
It has each one entry for peers with a different first digit in
their ID. The second row holds entries for a lookup tree
where the peer node is on the second level pointing to peers
with identical first but different second digits. In general, the
i-th row in the table points to peer nodes who have (i-1) dig-
its in common with the peer in consideration and span the
entire value space (b values) for the i-th digit, if all such
nodes exist in the system.

Once the overlay topology is created, it is important to
define how lookup requests can be routed from the requestor
to the provider. This becomes very straightforward and effi-
cient in the AGILE structure. Figure 4 illustrates the
approach. At each hop, the routing peer forwards the request
to a peer such as to match one more digit of the node ID,
starting at the first digit. To simplify the illustration, Figure 4
only represents the first three digits.

For example, consider a peer requesting a key with an
example ID 12345678.12345678.1234567890ABCDEF. The
requesting peer looks into the first row of its routing table for

a peer with “1” as a first digit and sends the request. The con-
tacted peer looks into the second row of its routing table and
forwards the request to a peer with “2” in the second digit,
while the routing entries in the second row automatically
ensure that the first digit of all entries is “1”. The process
continues until the type ID is matched or the search is
stopped. The same mechanism runs for the genre ID. Finally,
for the name ID, the process stops, when it reaches a peer
with an empty corresponding row in the routing table. This
peer holds the key, if it exists, or returns an error message. It
is obvious that a requestor directly starts with the search for
the name ID, if it itself belongs to the corresponding GoI.
Similarly, a request may progress several digits at a time if
the lookup ID matches more than one further digit with the
processing peer.

Figure 5 shows the pseudo code for AGILE’s routing. The
processing starts by checking whether the lookup key is
already on the node and can be sent to the requestor. If not,
type, genre, and name are matched one after another just as
described above. If a better match for the lookup ID is avail-
able in the routing table, the request is forwarded to that peer,
including a pointer to the row currently being processed.
Otherwise an error message is returned to the requestor.

4.3 Insertion and Removal of Keys and Nodes

In order for the mechanisms described in the previous
paragraph to work, it is necessary to first insert keys into the
system and onto the node with the numerically closest ID.
Furthermore, the topology (i.e. the routing tables) have to be
maintained as peers join and leave the network.

The insertion of keys into the system works exactly recip-
rocal to the lookup of a key. The peer node wishing to offer
new content or services initiates an insert request with the
according lookup ID. The request is routed just in the same
way as a lookup request until it reaches the designated pro-
vider peer node which stores the key. For the removal of a
key, the peer that stops to offer certain content or services
sends a removal request with the according lookup ID into
the network. The provider peer deletes the key.

The insertion of nodes into the system also works along
the routing path. The new node contacts any known node. A
node insert request is routed according to the usual routing
procedure with the joining node’s ID as lookup ID. At each

Figure 2: An AGILE Overlay Lookup Tree

3 b-11 ...Type Level 1

Requestor/Root

2

3 b-11 ...2Type Level 2

3 b-11 ...2

j

...

Type Level n

3 b-11 ...2 Genre Level 1

3 b-11 ...2

j

...

Genre Level n

3 b-11 ...2 Name Level 1

...

... Name Level n

Figure 3: Illustrative AGILE Routing Table

0 1 2 3 4 5 6 7 8 9 A B C D E F
Type Digit 0 x x x x x x x x x x x x x x x
Type Digit 1 x x x x x x x x x
Type Digit 2 x x x
Type Digit 3
Type Digit 4
Type Digit 5
Type Digit 6
Type Digit 7
Genre Digit 0 x x x x x x x x x x x x x x x
Genre Digit 1 x x x x x x x x x
Genre Digit 2 x x x x x
Genre Digit 3
Genre Digit 4
Genre Digit 5
Genre Digit 6
Genre Digit 7
Name Digit 0 x x x x x x x x x x x x x x x
Name Digit 1 x x x x x x x x x x
Name Digit 2 x x x x
Name Digit 3 x x x x x
Name Digit 4
Name Digit 5
Name Digit 6
Name Digit 7
Name Digit 8
Name Digit 9
Name Digit 10
Name Digit 11
Name Digit 12
Name Digit 13
Name Digit 14
Name Digit 15

Group of Interest of node
Node Address ID

x Non-empty entry in the routing table

Figure 4: Illustration of Topology and Routing in AGILE

D1

D2

D3

Peer C (1 2 1) – first two dimensions correct

Peer B (1 0 3)
– first dimension correct

Target (1 2 3)

Peer A (0 1 1)

D1

D2

D3

Peer C (1 2 1) – first two dimensions correct

Peer B (1 0 3)
– first dimension correct

Target (1 2 3)

Peer A (0 1 1)

- 7 -

hop in the path, the existing node learns about the new node.
The joining node, in turn, can copy a row (row i at the i-th
hop) from the forwarding node’s routing table to initialize its
own routing table. The insertion of nodes becomes more
intricate once one wants to optimize wire length and achieve
proximity in the underlying network for all or most nodes in
the routing table. It is proposed to adopt the Tapestry [18]
and Brocade [19] mechanisms including the algorithms for
node removal, redundancy creation and fault management
and the replication strategy.

4.4 Group Management and Adaptiveness

Groups of Interest (GoI) have been introduced to achieve a
good pruning probability or ”tunneling”, since the first hops
are avoided through GoIs (cf. Section 4.1). The goal of adap-
tive GoI management is to establish a process for peers join-
ing and leaving GoIs such as to improve pruning or tunneling
while keeping the overhead for group management itself rea-
sonable.

A peer first joins a GoI by explicitly choosing categories
of interest during the installation phase. Afterwards, requests
for content will automatically make it join the requested GoI.

That means, a peer can join more than one GoI. For each
GoI, it carries a different node ID, derived from its GoI and
IP address as discussed before. When joining a GoI and cre-
ating a new node ID, the peer effectively creates a new vir-
tual node. It has to maintain a complete routing table for the

virtual node that corresponds to its ID. The insertion takes
place just as for a real node.

Two mechanisms help keep the overhead incurred by
introducing virtual nodes and catering for more than one ID
on a single node minimal: thresholding and time filtering.
Thresholding means that a node only joins a new GoI, if the
number of requests to that GoI exceeds a certain value. Time
filtering means that the accounting of requests towards the
threshold will be attenuated over time. Effectively, a node
will leave a GoI, if it no longer makes requests to that group
over a period of time - the corresponding virtual node is
removed.

Through the introduction of GoIs, their automated update,
and the consequent introduction of virtual nodes, AGILE
makes the lookup topology adaptive: Nodes eventually move
toward the content they like and request.

The pseudo-randomness of the hash function in AGILE
ensures load balancing, as nodes as well as content items are
spread uniformly over the key space with respect to their
type, genre, and name. However, GoIs in AGILE allow hot
spots in the key space to form. If many nodes share a popular
common interest, the key space will become far more popu-
lated in the respective type/genre area than in the areas corre-
sponding to less popular interests. This, however, is a natural
process. As the Groups of Interest of these nodes coincide
with their requests, the degree of node agglomeration is pro-
portional to the degree of request agglomeration. Proper load
balancing in the system is ensured.

Some nodes, however, do have to carry a significantly
higher routing load than others. Those that have joined sev-
eral GoIs. This meets the system’s fairness requirement.
Peers requesting many content items from many GoIs and,
thus, consuming many network resources also have an
increased routing burden themselves. Peers making very
infrequent requests to GoIs are not affected as the time filter-
ing and thresholding makes them eventually leave the GoI in
concern, releasing the additional routing burden.

Peers with frequent requests to the same GoI also carry a
higher routing load in AGILE. New virtual nodes within the
same GoI are automatically created when the number of
requests per time interval exceeds a certain threshold.

Figure 6 shows the pseudo-code for the GoI management
in AGILE. Upon each lookup request, 4 options are possible:
either (a) nothing happens to the GoI management or the
number of requests to that GoI is high enough to, (b) join the
GoI, (c) create a virtual node if already a member, or (d) the
drop-out of an old request entry makes the node leave that
GoI.

4.5 Evaluation

A detailed evaluation of the node degree and the average
number of hops for a lookup request is undertaken at this
stage to assess the impact of adaptive, group-of-interest-
based overlay management on performance.

For the node degree, the routing table is considered. The
routing table is densely populated in the first rows for type,
genre, and name/node ID, depending on the number of
nodes. As GoIs are spread uniformly across type ID and
genre ID, respectively, it is unlikely that one GoI will have

Figure 5: Pseudo-code for AGILE Routing

// lID: ID of lookup item
// node: Currently processing node
// ForwardMsgTo(node, position) forwards the routing
request to specified node and hands over the current posi-
tion, i.e. row, being processed in the routing table

if key element KeysOnNode
SendKeyTo(Requestor)

else{ // Forwarding necessary

if not lID.type == node.type { // Type
while node[i] == lID[i]

i++;
if RoutingTable[i,lID[i]]

ForwardMsgTo(RoutingTable[i,lID[i]], i)
else
SendErrMsgTo(Requestor, “NoSuchType”);

}

else{ // Genre
if not lID.genre == node.genre {

while node[i] == lID[i]
i++;

if RoutingTable[i,lID[i]]
ForwardMsgTo(RoutingTable[i,lID[i]], i)
else
SendErrMsgTo(Requestor, “NoSuchGenre”);

}

else{ // Name
while node[i] == lID[i]

i++;
if RoutingTable[i,lID[i]]
ForwardMsgTo(RoutingTable[i,lID[i]], i)
else { // determine closest successor

min = node[i];
for j=0 To b-1
if RoutingTable[i,j]

if |j-lID[i]| < |min-key[i]|
min = j;

if not min==node[i]
ForwardMsgTo(RoutingTable[i,min], i)

else
SendErrMsgTo(Requestor, “NoSuchKey”);

}}

- 8 -

many identical digits with another GoI - the table becomes
very sparse in the bottom rows. The same holds true for the
name ID. More precisely, the probability that entry j in row i
of the type, genre, or name area is populated is,

,
where Nt,g,n denotes the number of different types, the
number of different genres within a type, or the number of
nodes within a GoI, respectively. Note that the counting of
rows starts from 0 for each of the areas type, genre, and
name. This yields for the total population of the table, the
node degree d:

where nv is the number of virtual nodes and Rt,g,n is the
number of rows for type ID, genre ID, and name ID,
respectively. The node degree is plotted in Figure 7 for a base
b=16, Rt=Rg=8, Rn=16, nv=0. Two curves show the node
degree for 50, and 5 different types and different genres
within a type, respectively. Except for very low number of

nodes, both curves lie well below the logarithmic curve
 as well as below the reference curve without

grouping (Rt=Rg=0, Rn=32), which can be regarded as an
approximation for algorithms without grouping like Tapestry
and Pastry.

The average number of hops for a lookup request nh can
be approximated as follows:

where nh,t, nh,g, nh,n are the number of hops needed to match
the type, genre, and name of the lookup key, respectively, if
the lookup key exists, but does not fall within the requestor’s
group of interest. pGoI,t and pGoI,t,g denote the probabilities
that the lookup refers to the requestor’s group of interest type
or genre, respectively. psuccess,t and psuccess,t,g define the
probabilities that the request is successful with respect to the
type and genre.

The additional hop is an approximation for the hops that
occur, when the next digit cannot be matched, but when nev-
ertheless closer nodes are available in the routing table. As
type, genre, and address IDs are uniformly distributed, it is
unlikely that more than one such hop occurs.

Based on the likelihood that a node exists among all peers
in the system that shares i digits with the lookup ID,

, it is:

where is defined to be zero. As some of the hops
from one row to the next one happen on one and the same
node and do not represent actual hops on the overlay
network, the tunneling factor TFi is introduced. It represents

Figure 6: Pseudo-code for AGILE GoI Management

Function GoI_Update (LookupRequest) { // Called at each
 // request

Account RequestGoI, Time of request;
TF = TimeFilter(RequestGoI);
if not RequestGoI element CurrentGoIs

// Examine if GoI join
if TF >= JoinThreshold Join(GoI);

if RequestGoI element CurrentGoIs
// Examine if new virtual node

if (TF mod #CurrentVirtualNodes(GoI)) >
JoinThreshold JoinVirtual(GoI);

if (#entries > MAX_Entries) or // Examine GoI leave
(age(OldestRequest) > Max_Age) {

Remove(OldestRequest);
TF = TimeFilter(OldestRequestGoI);
if TF < LeaveThreshold Leave(GoI);

}
}

Function TimeFilter(RequestGoI) {
Array FilterCoeffs; // The filter coefficients, with

// lower weights for older entries
Return Convolution(FilterCoeffs,

AccountEntriesMatchingGoI);
}

Function Join(GoI) {
NodeID = GoIType.GoIGenre.IPAddress; //each hashed
Send(InsertNodeRequest, NodeID);
SetupRoutingTable(NodeID);

}

Function JoinVirtual(GoI) {
NodeID = GoIType.GoIGenre.(IPAddress + #CurrentVirtu-

alNodes(GoI) + 1); //each hashed
#CurrentVirtualNodes(GoI)++;
Send(InsertNodeRequest, NodeID);
SetupRoutingTable(NodeID);

}

Function Leave(GoI) {
CurrentVirtualNodes(GoI)--;
Send(RemoveNodeInform, NodeID);
DeleteRoutingTable(NodeID);

}

pi j, 1= 1 b i––()Nt g n, , 1––

d 1 nv+() dt dg dn+ +()

dt g n, ,

;⋅

b 1–() 1 1 b i––()Nt g n, , 1––[]
i 1=

Rt g n, ,

∑

=

=

b 1–() Nblog

10
0

10
2

10
4

10
6

10
8

0

20

40

60

80

100

120

N

A
ve

ra
ge

 N
od

e
D

eg
re

e

Nt,g = 50
Nt,g = 5
Reference: no groups
(b-1)*Log

b
(N)

Figure 7: Node Degree

nh 1 pGoI t,–()n
h t,

psuccess t, 1 pGoI t g, ,–()nh g,
psuccess t g, , n⋅

h n,
psuccess t g, , 1⋅

+

+

+

=

pexist i, 1 1 b i––()Nt g n, ,–=

nh t g n, , , i pexist i, pexist i 1+,–()TFi

i 1=

Rt g n, ,

∑=

pexist R 1+,

- 9 -

the ratio of hops on the overlay network to advances in
routing table rows up to row i and can be derived to be

The additional pruning factor achieved through the intro-
duction of GoIs becomes

The average number of hops is plotted in Figure 8 for
b=16, Rt=Rg=8, Rn=16 as for the node degree. As before, for
comparison, logbN and a reference curve without grouping

(Rt=Rg=0, Rn=32), which should show similar results as
algorithms like Tapestry or Pastry are also shown. Two
curves for 50 and 5 different types and different genres
within a type, respectively, show the expected number of
hops, when there is no pruning due to a node requesting a
lookup key within its own GoI or due to quick abortion of the
lookup when the type or genre is not available (psuc-

cess=100%, pGoI=0%). For a reasonably large number of

nodes, both curves are close to logbN and exhibit a slight
gain compared to the reference case. The last curve repre-
sents the average number of hops for 50 different types and
genres within a type when there is pruning; the scenario
assumes pGoI,t=70%, pGoI,t,g=30%, psuccess,t=95%, and psuc-

cess,t,g=85%. In this case, the pruning factor becomes 37%
compared to the reference case when there are 1 million
nodes in the network.

In addition to the performance gains discussed above,
AGILE’s overlay management leads to good system fairness:
The routing load imposed on a peer is made directly depen-
dent on its resource usage in terms of lookup requests.

5 Summary, Conclusions, and Future Work

AGILE is a new lookup and routing algorithm with good
performance characteristics. Lookup keys and nodes are

arranged in the same ID space which is segmented according
to content meta information and Groups of Interest (GoI),
bringing requestors and providers close together. To meet
topological requirements, AGILE creates and manages an
overlay with some similarity to a b-ary n-cube, where each
node can be the root of a tree. Subsequently, lookup or insert
request routing comes down to a simple distributed tree
search. AGILE adopts the advanced node insertion and
removal schemes from Tapestry. GoI management based on
requests made warrants proper fairness and load balancing
characteristics and allows for the heterogeneity of peers.

As to the overlay network requirements of reasonable
node degree and low diameter, they have directly been built
into the topology design and show the desired logarithmic
scalability. A good level of symmetry and a routing effi-
ciency of 1 is ensured. Wire length and robustness character-
istics are identical to Tapestry as the corresponding Tapestry
algorithms should be adopted. The introduction of adaptive
GoI management supports fairness and an additional pruning
probability as high as 37% based on the assumptions in Sec-
tion 4.5, while maintaining proper load balancing.

AGILE tackles important scalability and performance con-
cerns about the overlay network management for the proba-
bly most distributed peer-to-peer functionality, lookup and
routing. It has specifically been developed to allow efficient
lookup of content or arbitrary services in the context of the
MMAPPS “Market Management of Peer-to-Peer Services”
architecture [8]. It can as well be applied to all other peer-to-
peer applications requiring such lookup services, as diverse
as file sharing, distributed search and indexing, and, with
some adaptions, distributed storage or file systems and dis-
tributed computing.

Future work will tackle two issues. Firstly, the proposed
and theoretically evaluated algorithm will be implemented,
tested, and optimized. Secondly, AGILE currently requires
the searching peer to exactly know the type, genre, and name
of a content item or service. In future versions of the algo-
rithm it will be investigated on how to allow searches with
regular search expressions and enable the system to return
lookup keys based on a best-match search rather than an
exact lookup. In a simplistic approach, searches for all keys
within a GoI and for names across all GoIs will be allowed.
Subsequently, a globally known semantic closeness opera-
tion will be needed to replace the hashing scheme, combined
with proper load balancing, as the pseudo-random uniform
load distribution due to hashing will be lost.

Acknowledgements
This work has been performed partially in the framework of the EU IST

project MMAPPS “Market Management of Peer-to-Peer Services” (IST-
2001-34201), where the ETH Zürich has been funded by the Swiss
Bundesministerium für Bildung und Wissenschaft BBW, Bern under Grant
No. 00.0275. Special thanks go to Jan Gerke and David Hausheer for joint
discussions of the overall MMAPPS P2P architecture. Additionally, the
authors like to acknowledge discussions with all of their project partners.

References
[1] H. Balakrishnan, M. Kaashoek, D. Karger, R. Morris, I. Stoica:

Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications; ACM SIGCOMM, San Diego, August 27-31,
2001.

TFi
b i–

i
------- i

k
 k b 1–()k 1 b 1––()=

k 1=

i

∑=

fp GoI, 1
nh

nh t, nh g, nh n, 1+ + +
--–=

10
0

10
2

10
4

10
6

10
8

0

1

2

3

4

5

6

7

N

A
ve

ra
ge

 N
um

be
r

of
 O

ve
rla

y
H

op
s

Log
b
 (N)

Reference: no groups

N
t
=N

g
=5, no pruning

N
t
=N

g
=50, no pruning

N
t
=N

g
=5, success and GoI pruning

Figure 8: Number of Hops

- 10 -

[2] E.A. Brewer: Lessons from Giant-Scale Services; IEEE Inter-
net Computing Vol.5 Nr. 4, July/August 2001, pp. 46-55.

[3] M. Castro, P. Druschel, Y. C. Hu and A. Rowstron: Exploiting
network proximity in peer-to-peer overlay networks; Interna-
tional Workshop on Future Directions in Distributed Comput-
ing (FuDiCo), Bertinoro, Italy, June 2002.

[4] Druschel, Rowstron: Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems;
IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), Heidelberg, Germany, 2001, pp. 329-
350.

[5] FIPS 180-1, Secure Hash Standard; U.S. Department of Com-
merce/NIST, National Technical Information Service, Spring-
field, VA, April 1995.

[6] The Gnutella Protocol Specification v0.4;
http://www.clip2.com/GnutellaProtocol04.pdf in May 2002.

[7] K. Hwang: Advanced Computer Architecture; McGraw-Hill
Series in Computer Science,1993, p.77.

[8] MMAPPS, Annex 1 - Description of Work; Information Societ-
ies Technology (IST) Program, EU Fifth Framework Project,
Project Number: IST-2001-34201, 2002.

[9] W. Nejdl: Semantic Web and Peer-to-Peer Technologies for
Distributed Learning Repositories; Live Web Broadcast, June
17, 2002.

[10] A. Oram (edt.): Peer-To-Peer: Harnessing the Power of Dis-
ruptive Technologies; O'Reilly&Associates, Sebastopol, 2001.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker: A
Scalable Content-Addressable Network; ACM SIGCOMM
'01, San Diego, 2001.

[12] S. Ratnasamy, M. Handley, R. Karp, S. Shenker: Topologi-
cally-Aware Overlay Construction and Server Selection; 21st
Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM), New York, June 2002

[13] S. Rhea, J. Kubiatowicz: Probabilistic Location and Routing;
21st Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), New York, June
2002.

[14] R. Rivest: The MD-5 Message Digest Algorithm; RFC 1321,
1992, http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1321.html
in August 2002.

[15] S. Saroiu, P. Gummadi, S. Gribble: A Measurement Study of
Peer-to-peer File Sharing Systems; Technical Report # UW-
CSE-01-06-02, Department of Computer Science & Engineer-
ing, University of Washington, Seattle, 2002.

[16] M. Schlosser, M. Sintek, S. Decker, W. Nejdl: HyperCuP -
Hypercubes, Ontologies and Efficient Search on P2P Net-
works; International Workshop on Agents and Peer-to-Peer
Computing (AP2PC), Bologna, Italy, July 2002.

[17] K. Sripanidkulchai, B. Maggs, H. Zhang: Enabling Efficient
Content Location and Retrieval in Peer-to-Peer Systems by
Exploiting Locality in Interests; ACM SIGCOMM, Computer
Communication Review Vol.30 Nr. 1, January 2002, p. 80.

[18] B. Zhao, J. Kubiatowicz, A. Joseph: Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing; Techni-
cal Report UCB/CSD-01-1141, Computer Science Division,
U.C. Berkeley, April 2001.

[19] B. Zhao, Y. Duan, L. Huang, A. Joseph, J. Kubiatowicz: Bro-
cade: Landmark Routing on Overlay Networks; First Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS),
Cambridge, MA, March 2002.

[20] B. Zhao, A. Joseph, J. Kubiatowicz: Locality Aware Mecha-
nisms for Large-scale Networks; International Workshop on
Future Directions in Distributed Computing (FuDiCo), Berti-
noro, Italy, June 2002.

