
HAM: Hardware Moved Molecules
Annual Report 1997

Martin Gerber 1, Thomas Gössi2

1Computer Engineering and Communication Networks Lab (TIK), gerber@tik.ee.ethz.ch
2Electronics Laboratory (IFE), goessi@ife.ee.ethz.ch

Swiss Federal Institute of Technology (ETH), Gloriastr. 35, CH-8092 Zürich

ABSTRACT

In this report the work of the first 18 months of the Polyproject “Parallel Computing in Quantum
and Classical Molecular Dynamical Simulation“ is summarized. The project is planned for a total dura-
tion of three years. Four labs of the ETH attend the project: IGC (Computational Chemistry Group,
head of the project), IFE (Electronics Lab), TIK (Computer Engineering and Networks Lab) and IWR
(Scientific Computing Lab). GROMOS (GROningen MOlecular Simulation package) is a computer
simulation tool which is distributed and supported in various versions by the Computational Chemistry
Group. The main goal of the project is to accelerate the simulation of molecules in liquids by a factor of
ten. To achieve the goal dedicated hardware must be developed to speed-up the Gromos software. The
main topics in this report are as follows: First we present profiling results of the Gromos program, per-
formed on different workstations and processors. Then we give an overview on existing hardware
accelerators. New modelling techniques for the molecular dynamics algorithm are presented as well as
models for different new parallel hardware solutions. With these models a design space exploration was
performed using techniques such as system synthesis using Evolutionary Algorithms.

Contents

HAM: Hardware Moved Molecules i TIK Report No. 38

Contents

1 Introduction... 1

2 Molecular Dynamics Simulation Methods ... 3
2.1 Survey .. 3
2.2 Model Systems and Interaction Potential .. 4

2.2.1 N-Body systems .. 4
2.2.2 The Potential Model .. 4
2.2.3 Pair Potentials.. 5

2.3 The Universal MD Algorithm.. 7

3 Gromos Analysis... 9
3.1 The Gromos Force Field.. 9
3.2 MD Algorithm in Gromos ... 10

3.2.1 Sequence Graphs and Data Flow Graphs .. 10
3.2.2 Searching Neighbours, long-range Interaction................................ 12
3.2.3 Nonbonded Interactions, Periodic Boundaries................................ 13

3.3 Gromos Benchmarks and Profiling.. 13
3.4 Gromos Functions Modelling.. 15

3.4.1 Solvent-solvent Non-bonded Interaction... 15
3.4.2 The Pair List Concept.. 17
3.4.3 Best Case Speed-up’s .. 18

3.5 Pairlist Algorithms... 18
3.5.1 Cell Index Method... 18
3.5.2 Grid Search Algorithms... 21

4 Dedicated Hardware Approaches.. 23
4.1 Overview on Existing Third-Party Solutions... 23

4.1.1 GRAPE.. 23
4.1.2 MD-GRAPE .. 24
4.1.3 GRAPE-4... 28
4.1.4 GROMACS.. 33
4.1.5 MD-Engine.. 35

4.2 New Proposals ... 39
4.2.1 Parallel Gromos MD Algorithm.. 39
4.2.2 Hardware Accelerator with General Purpose RISC Processors...... 40
4.2.3 Hardware with Sharc Signal Processor ... 41

4.3 Comparison.. 44
4.3.1 Existing Third-Party Solutions.. 44
4.3.2 New Proposals ... 44

5 Hardware Modelling ... 45
5.1 Communication Models for Host and Sharc ... 45
5.2 Performance Models for Host and Sharc... 45
5.3 Generally Applicable Multiprocessor Models... 45

5.3.1 General Calculation Problem .. 46

TIK Report No. 38 ii HAM: Hardware Moved Molecules

Contents

5.3.2 Bus Architecture ..47
5.3.3 2D-Net..48
5.3.4 Hyper Cube ..51
5.3.5 Recursive Structure ..53
5.3.6 Ring..55

5.4 Conclusion..56

6 Model Refinement..59
6.1 Distance Calculation with the Sharc DSP ..59

6.1.1 Method ...59
6.1.2 C-Program Optimization..60
6.1.3 Assembler Optimization ..62
6.1.4 Conclusions..63

6.2 Distance Calculation in Hardware using FPGA’s...65

7 Gromos MD-Algorithm Specification ...67
7.1 Specification in Mathematica ...67
7.2 High level Synthesis using GP ...68

7.2.1 Codesign...68
7.2.2 System Synthesis using Evolutionary Algorithms...........................69
7.2.3 Design Space Exploration..70

8 Conclusion and Further Work..72

Literature ...73

Introduction

HAM: Hardware Moved Molecules 1 TIK Report No. 38

1 Introduction

Since 1978 W. van Gunsteren has developed a set of programs for computer simulation of
biomolecular systems. This set is called GROMOS (GROningen MOlecular Simulation
package). New and improved simulation methodologies are continuously developed by his
research group, which are then implemented in Gromos. The Gromos software is currently
used by more than 400 academic and industrial research groups all over the world [23].

The simulation of a biomolecular system aims at the interaction between proteins and a sol-
vent, which is pure water in most cases. The molecular simulation can iteratively be calcu-
lated as follows: The distances between all atoms are calculated, then forces between
molecules, their energy and the overall pressure are calculated from the distances and at last
the new molecule-positions from the forces. These steps are repeated until the simulation
terminates.

The computation can be simplified by not having to calculate the forces between molecules,
whose distances exceed a certain value and therefore do not significantly interact. Thus Gro-
mos generates a so-called “pairlist“, where those molecules are entered which interact.
Given the fact, that positions only change little every iteration-step, the pairlist has only to
be updated every 5th to 10th iteration. With this, calculations can drastically be reduced.

For a biomolecular system simulation, the molecules can be separated into two groups: sol-
ute (protein) and solvent molecules. Basically every molecule of each group may interact
with any molecule of its own or of the another group. Therefore, three cases have to be dis-
tinguished: distance and force calculationsa) between solvent molecules,b) between solute
molecules andc) between solute-solvent molecules. Most of the systems consist of much
more solvent molecules than solute molecules. As shown by analysing some benchmark
programs, most of the calculation time is used for the solvent-solvent part, where about 100
millions floating-point operations per iteration step are required [16].

Due to the considerably large number of particles, molecular simulations need a lot of com-
puter performance. Thus Gromos has already been implemented on networks of Transputers
and parallel Supercomputers as MUSIC or ALPHA 7 [2]. But it turned out that this comput-
ers are too expensive and not the right choice for molecular dynamics simulation. In addi-
tion workstation clusters are not suitable to solve this problem since they lack the
communication bandwidth to timely exchange data between iterations. The best choice is a
coprocessor which is especially built to compute the Gromos algorithm and which can sim-
ply be linked up to commercial workstations. A projected speed-up of ten for Gromos can
be achieved with such a coprocessor compared to a single, state of the art workstation.

An interdisciplinary Polyproject was started in 1996, to develop an appropriate coprocessor
and embed it into the Gromos environment. The project is called “Parallel Computing in
quantum and classical molecular dynamical simulation“. Classical molecular dynamics
includes the solving of Newton’s classical equation of motion. In the quantum dynamics
simulation the Schrödinger equation is considered and Eigenvalues has to be determined.
The following labs participate the project:

• IGC (Computational Chemistry Group), responsible for algorithms and chemical mod-
els. This lab is the head of the project and provides the Gromos software in various ver-
sions for different platforms (including some parallel machines).

TIK Report No. 38 2 HAM: Hardware Moved Molecules

Introduction

• IWR (Scientific Computing), responsible for analysis and accelerating of algorithms
concerning the quantum part of the simulation. To solve the Schrödinger-equation, fast
parallel Eigenvalue solvers must be developed and implemented.

• TIK (Computer Engineering and Networks Lab), responsible for computer and software
engineering, state of the art system design, and design methodology.

• IFE (Electronics Lab), responsible for implementation of the hardware and general hard-
ware aspects.

The architecture of the coprocessor will consist of one or more DSP- or RISC-processors in
combination with FPGAs (Field Programmable Gate Array). FPGAs will be used for simple
calculations and the communication handling whereas the processors will be used to calcu-
late the more complicate algebraic expressions. Eventually an ASIC or an MCM must be
developed.

The responsibilities within the project led to a close co-operation of the labs TIK and IFE in
the initial phase of the project. Because of that, this report is a summary of the work of both
labs.

A general molecular dynamics introduction is presented in paragraph 2, including the basic
principles in computational physics and chemical models of interaction potentials. In
paragraph 3 the initial Gromos software has been analysed: The Gromos force field is
described as well as some benchmarks and profiling results. Models of the most time con-
suming functions of Gromos are developed for further use in the design space exploration
sections. Paragraph 4 gives an overview on existing hardware accelerators. New hardware
architectures and their models are presented in paragraph 5. In paragraph 6 the performance
of the Sharc DSP is measured with a typical molecular force calculation function. In addi-
tion, the distance calculation routine was implemented on a FPGA to test the complexity
and usability of the today’s most complex gate arrays for our application. Paragraph 7 sum-
marises how the specification of the MD algorithm was implemented in Mathematica and
describes a system synthesis technique using genetic algorithms to perform design space
exploration semiautomatically. Last, some conclusions and the further work is outlined in
paragraph 8.

Molecular Dynamics Simulation Methods: Survey

HAM: Hardware Moved Molecules 3 TIK Report No. 38

2 Molecular Dynamics Simulation Methods

2.1 Survey

Computer simulations are a common tool to investigate dynamic, thermal and thermody-
namic properties in molecular systems. Two major methods have been developed in the
recent years: The Monte Carlo method (MC), so called because of the role that random
numbers play in the method, and molecular dynamics (MD).

In an MC calculation a Markov chain of particle configurations representing the micro-state
of the observed system is constructed as follows: From a given initial state a transition to the
next state is performed by a randomly chosen particle is moved along an also randomly cho-
sen vector. On the basis of the total energy of the system the Metropolis algorithm is used to
decide whether the new state is added to the chain or the old state counts again. This
Markov chain converges to the thermodynamic equilibrium for some million states. Struc-
tural and thermodynamic properties of the investigated substance can easily be obtained. It
is also possible to simulate non-equilibrium processes, with a dynamic interpretation of the
random movement of the particles (random walk).

The Molecular Dynamics (MD) method is based on numerical integration of Newton’s
equation of motion. Each time step, the interaction forces between the involved particles in
a simulation box must be determined. After the integration step the velocities of the parti-
cles are known and the new positions can be calculated for the next step. The result is a spa-
tial trajectory for each particle. With this data and using statistical physics laws, all
interesting structural, thermal and thermodynamic properties can be evaluated. Typically, a
time step is two picoseconds and a run over about 100 steps is performed. For very compli-
cated systems with a lot of intra- and intermolecular interactions the simulation is very time
consuming.

The focus in this report is on MD Simulations with a lot of particles or atoms (20,000 and
more). Smaller systems are fast and easy to simulate with modern workstations with more
than 10 SPECfp95 Mflops peak performance, but large systems with 20,000 and more parti-
cles require a lot of time even on the today fastest workstations. Therefore the demand to
acceleration techniques (new algorithms, special purpose hardware) is big, as we will see in
the next sections.

As mentioned before, we have to solve the equations of motion. To get the velocities, we
integrate the forces of each particle. With the width of one timestep the new positions are
updated. The art of a good molecular dynamics simulation run is the right choice of a force
field: the totality of all interactions and the numerical models. The integration itself con-
sumes relatively small time in the overall simulation as we will see in the profiling section.
So, the integration algorithm can be chosen very accurate without losing performance. To
get an overview over the huge amount of different techniques we give a short introduction to
the physico-chemical basics of atomic interaction and the corresponding numerical algo-
rithm proposals in the literature.

TIK Report No. 38 4 HAM: Hardware Moved Molecules

Molecular Dynamics Simulation Methods: Model Systems and Interaction Potential

2.2 Model Systems and Interaction Potential

2.2.1 N-Body systems

We assume an atomic system with N particles, where it does not matter if the N particles
belongs to M molecules or not. The notation of the sums in eqn (2.1) indicates a summation
over all distinct pairs i and j without counting any pair twice. The same care must be taken
for triplets etc. The potential energy V may be divided into terms depending on the coordi-
nates of the involved particles, pairs, triplets, etc.:

(2.1)

The first term v1 in eqn (2.1) represent the external field of the system. The other terms rep-
resent the particle interactions. It is obvious that for one particle all other particles deliver a
more or less important portion of the interaction potential. In practice all terms in the order
higher than three can be neglected, but the three body potential unfortunately is not.

The basic equation of motion for quantum mechanics is the time dependent Schrödinger
equation. In classical simulations, the Hamiltonian H of the Schrödinger equation has the
form

, (2.2)

where the first term is the kinetic energy term depending on the momenta and mass. The
second term is the potential energy or interaction function describing the interaction energy
in terms of particle coordinates and force field parameters. The force fi on particle i due to a
particular interaction term is given by the relation

(2.3)

The MD trajectories depend on the forces on the atoms, not on the energies. In the next par-
agraphs, we describe the forces and algorithms to calculate trajectories in more detail.

2.2.2 The Potential Model

The potential in eqn (2.3) is composed of nonbonded interactions (van der Waals and elec-
trostatic interaction) and interactions between covalently bonded atoms (van der Waals Dis-
persion, Coulomb force). In a general approach, we model the potential as follows:

(2.4)

The total potential in a molecular system Vtot is composed of bond-stretching, bond-angle,
torsion-angle, nonbonded and hydrogen bonds sub-potentials. One of the main tasks in a
Molecular Dynamics simulation is the determination of specific models for these potentials.

V v1 r i() v2 r i r j,() v3 r i r j r k) …+, ,(
k j i> >
∑

j i>
∑

i
∑+

j i>
∑

i
∑+

i
∑=

H p r m s, , ,() K p m,() V r s,()+
1
2
--- mivi

2⋅
i 1=

N

∑ V r s,()+= =

f i r i∂
∂ V r 1 r 2 … r N, , ,()–=

V
tot

V
bond

V
angle

V
tors

V
nonb

V
H

+ + + +=

Molecular Dynamics Simulation Methods: Model Systems and Interaction Potential

HAM: Hardware Moved Molecules 5 TIK Report No. 38

2.2.3 Pair Potentials

At the simplest level, the interaction occurs between pairs of atoms and is responsible for
providing the two principal features of an interatomic (or intermolecular) force: The first is
a repulsive part for small distances or the resistance to compression due to the nonbonded
overlap between the electron clouds, the second is the attractive part due to the binding of
the atoms (van der Waals dispersion). Additional Coulomb terms appear for charged spe-
cies.

Molecules are represented by atoms with orientation-dependent forces, or as structures con-
taining several interaction sites. If the molecules are rigid, flexible, or somewhat between,
and if there are internal degrees of freedom, there will be internal forces leading to the sepa-
rated potential proposed in eqn (2.4). Staying at the simple level with only nonbonded inter-
actions without covalent bonds, a model for the pair potential and for the non-additive three
body potential is required.

One of the best known pair potentials was initially proposed for liquid argon and was
derived by considering a huge quantity of experimental data. At liquid densities, where the
three body potential is significant, also a lot of estimates has been made of the leading three-
body contribution. These experiments show that about 10 per cent of the energy may be
from the non-additive potential terms, e.g. the terms of the order three and higher. Because
the calculation of sums over triplets of particles is very expensive in the sense of computa-
tional cost, they are only rarely included in computer simulations. Fortunately the model of
the pairwise potential can be modified to partially include the many-body effects by defin-
ing a new “effective“ pair potential:

(2.5)

Almost all pair potentials in computer simulation are regarded as effective pair potentials so
it is convenient to write only V(rij). The most widely used approximation to the effective
pair potential is the Lennard Jones (LJ) potential. Assuming an atom pair i and j the LJ-
potential energy is as in eqn (2.6), depending only on the magnitude of the pair separation
rij .

(2.6)

If the parameters are chosen appropriately, eqn (2.6) provides a reasonable description of
the properties (e.g. argon or other one-atomic liquids). Assuming only two atoms, the
approximation is wrong, of course, because the many-body correction is included in the
parameters.

The solid line in fig. 2.1 shows the pair potential for a liquid atom pair (experimental, meas-
ured data), the dashed line illustrates the corresponding 12-6 LJ approximation for systems
with lots of atoms and therefore including many-body interactions.

Sometimes even simpler pair potentials are used to perform very fast simulation runs, e.g.
hard-sphere potentials and square-well potentials.

V v1 r i() v2
eff

rij()
j i>
∑

i
∑+

i
∑≈

V
LJ

rij() 4ε σ
rij

 12 σ
rij

 6
–=

TIK Report No. 38 6 HAM: Hardware Moved Molecules

Molecular Dynamics Simulation Methods: Model Systems and Interaction Potential

Fig 2.1 Liquid argon pair potential

For ions it is necessary to add the Coulomb charge-charge interaction eqn (2.7) to the pair
potential.

(2.7)

For ionic systems, induction interactions are important: the charge induces a dipole on
neighbour ions. This term is not pairwise additive and hence it is necessary to introduce
more correction terms.

The potentials for covalently bond forces depend on the model of the molecule: Which
bonds have which degrees of freedom, where are fixed bond lengths etc. Generally a special
model for each molecule is needed. A good computer simulation program supports all
known intramolecular interaction models. The choice of an adequate model may depend on
several parameters: The temperature, the involved atoms, hydrogen bonds, constraints, etc.
Refer to [18], [26] for more details.

A lot of research has already been done in finding fast (parallelizable) algorithms for these
models. Because most of the computation time of MD simulation with liquids is spent to
calculate the nonbonded forces, the acceleration potential for a whole run is small even if
the bonded forces computation gets significantly faster. We must speed up the calculation of
the nonbonded forces. We now discuss the general MD algorithm, and, in the next para-
graph, the Gromos specific force field which slightly varies from the model described
above.

V
qq

rij()
qiqj

4πε0rij
-----------------=

Molecular Dynamics Simulation Methods: The Universal MD Algorithm

HAM: Hardware Moved Molecules 7 TIK Report No. 38

2.3 The Universal MD Algorithm

The Verlet algorithm is perhaps the most widely used method of integrating the equations of
motion. The overall scheme is illustrated in fig. 2.2. The method is based on the positions
and acceleration of the particles of the current time step and the positions of the last step.

Fig 2.2 Universal MD algorithm

The equation for advancing the positions reads as follows:

(2.8)

Note that the velocities do not appear in this equation. They have been eliminated by adding
the Taylor expansions of and :

(2.9)

(2.10)

The velocities are not needed to compute the trajectories, but are useful to calculate the
kinetic energy. To get the velocities, simply subtract eqn (2.10) from eqn (2.9).

There are several other algorithms to calculate the trajectories, the most often used are the
velocity-version of the Verlet algorithm, the Beeman algorithm and Gear’s algorithm, all of
them well documented in the literature. A popular integration method is the leap frog algo-
rithm [18], [19], [20].

Initial coordinates and
velocities

Calculate new
coordinates and

velocities

Calculate forces

Evaluation

Last step?

End

no

yes

r t δt+() 2 r t()⋅ r t δt–()– δt2a t()+=

r t δt+() r t δt–()

r t δt+() r t() δtv t() 1
2
---δt2a t() …+ + +=

r t δt–() r t() δtv t()–
1
2
---δt2a t() …–+=

TIK Report No. 38 8 HAM: Hardware Moved Molecules

Molecular Dynamics Simulation Methods: The Universal MD Algorithm

Gromos Analysis: The Gromos Force Field

HAM: Hardware Moved Molecules 9 TIK Report No. 38

3 Gromos Analysis

3.1 The Gromos Force Field

The Gromos force field is defined as

(3.1)

(3.2)

following the potential described in eqn (2.4) and eqn (2.5). Within the Gromos package, it
is also possible to define special non-physical interactions for atomic positions restraining,
distance restraining and more. For further details refer to [23], here we mention only the
standard physical forces which separates into bonded and nonbonded forces. We give a
short description of the partial forces for covalently bonded atoms, for formulas refer to [23]
or the literature ([18], [19], [20], [26]).

bond: covalent bond-stretching interaction. This force generally has to be evaluated
for all covalent bonds in the molecular system.

angle: covalent bond-angle bending interaction. This force generally has to be evalu-
ated for all covalent bond angles in the molecular system.

har: harmonic dihedral-angle bending interactions can be used to keep groups of
atoms in a special spatial arrangement. For example a planar atomic ring config-
uration can be suppressed to deviate from the plane.

trig: trigonometric dihedral-angle torsion interaction. See [18], [23].

nonb: nonbonded (van der Waals and electrostatic) interaction

(3.3)

The sum in eqn (3.3) is over all distinct nonbonded pairs ij. The force on one atom pair i,j
due to eqn (3.3) is

(3.4)

with

(3.5)

Compared with the proposed force field in paragraph 2.2 the Gromos force field does not
contain a special term for hydrogen bonds. Instead, the van der Waals repulsion will be
increased for hydrogen bonds.

V
phys

V
bon r s,() V

nonb r s,()+=

V
bon r s,() V

bond r s,() V
angle r s,() V

har r s,() V
trig r s,()+ + +=

V
nonb C12 i j,()

rij()6
-------------------- C6 i j,()–

1
rij()6

------------⋅
qiqj

4πε0ε1
----------------- 1

rij

Crf rij()2

2 Rrf()3
--------------------–

2 Crf–

2Rrf
----------------–⋅+

 ∑=

f i

2C12 i j,()
rij()6

------------------------ C6 i j,()–
6r ij

rij()8
------------⋅

qiqj

4πε0ε1

r ij

rij()3

Crf r ij

Rrf()3
---------------+⋅+=

f i f j–=

TIK Report No. 38 10 HAM: Hardware Moved Molecules

Gromos Analysis: MD Algorithm in Gromos

3.2 MD Algorithm in Gromos

The integration of the equation of motion is done with the leapfrog algorithm. Generally, a
simulation may include several options like weak temperature coupling, a pressure bath in a
box, periodic boundary conditions, distance and other constraints, virial calculation and
more. The output files, actually the trajectories for positions, velocity and energies etc., are
also user specified and may be but must not be written.

There are some well-known models to describe this kind of algorithm, e.g. flowcharts
describing sequence or control flow. Other models like data flow graph may not represent
any control flow. Heterogeneous models like control/data flow graph or structure charts are
weak coupled data flow and control flow graphs or are unsuited for a distributed target
implementation. What we need is a specification model supporting several control struc-
tures like data dependent branches and loops and the possibility to specify data dependen-
cies and parallelism within one single graph.

3.2.1 Sequence Graphs and Data Flow Graphs

We tried to model the MD algorithm with a pure data flow graph. This can easily be done
but is not very flexible for functions which need not being evaluated each time step or to
parallelize functions generically. Since the algorithm in principle is data flow and control
flow driven, which means how the simulation proceeds is dependent on the availability of
data structures like coordinates after the integration step but also on the choice of the
options described above, the desired graph is a dynamic data flow graph. For this reason we
developed a new formalism deduced from standard data flow models ([17], [27]).

Fig 3.1 Special nodes in the HaMM data flow

Our graphical representation of the control/dataflow graph (CDFG) uses rectangles for input
or output nodes (io node), circles for activity nodes, and open-ended rectangles for data
store nodes. Data flow is represented by arcs, labelled with the associated data. Theparallel
branch has a data distribution functionality: One input edge and as many as you like output
edges are allowed for this node. The input data is routed selectively to the target nodes and
all target nodes are triggered to execute in parallel (if possible). Theconditional branch
activity requires a conditional expression associated to each of the output edges in addition
to the data. The condition is true for exactly one subsequent node which is triggered to exe-
cute with the respective input data subset. Data distribution is performed in the same way as
for the parallel branch, one input edge and many output edges are allowed. Ahierarchical
node may have several inputs and outputs and is just a graphic element to improve the over-
all view. Theor collector accepts many inputs and has one output: If new and valid data is

conditional branch

hierarchical node

or collector

?

parallel branch

>1

&
and collector

file input, output

Gromos Analysis: MD Algorithm in Gromos

HAM: Hardware Moved Molecules 11 TIK Report No. 38

present on at least one input, the output and the next node is triggered with the data derived
from this first valid input. Care must be taken to keep the data dependencies compatible.
Theand collector also accepts many inputs and has one output, but all inputs must be valid
to trigger the next activity. The output data is the combination of all inputs and the input
data must be distinct. Afile is a data sink and can have many inputs, anio node can produce
and consume data, also many edges are possible. All nodes described above may not have
any functional implementation. Theinput/output node is the only one where arrows in both
directions are possible. In addition to these special control nodes of course there are data
processing nodes with an algorithmic functional implementation.

As an example, we describe parts of the Gromos MD algorithm with this rules. In a first step
we described the main MD simulation loop of the Gromos simulation package with this
method. In fig. 3.2 the top of the hierarchy for an MD run is shown, on the left the call of the
main MD loop for each time step and the files to be read and written, on the right the forces
calculation and integration procedure with optional virial calculation.

Fig 3.2 Gromos MD algorithm

The next steps include the refinement of the structure. Fig. 3.3 shows the loop over atoms to
calculate nonbonded interactions in C programming language and in a CDFG representa-
tion without the data on the edges. Expressions for the conditional branch are written in
italic, the statements for the activity nodes are given directly or as a procedure or function
name. Note that the diagrams in fig. 3.3 and fig. 3.2 are heavily simplified.

Now we have a powerful formal method to describe the MD algorithm in a flexible but effi-
cient and simple way. The sequential program structure can be represented in a way allow-
ing parallel and/or sequential implementation. The further work included the refinement of
the functions: In the original Gromos version the nonbonded forces calculation is one func-
tion consuming 50 per cent or more of the overall simulation time. For this reason it is nec-
essary to split the nonbonded forces calculation routine into subfunctions according to
fig. 3.4 and to state a generic parallel model for at least the solvent-solvent part of the non-
bonded interaction with the new specification method. For this task it may be useful to
introduce new activities to describe algorithmic parallelism.

The major benefit is a formal representation of the algorithm which is easy to change: Intro-
ducing new functions in the graph without modifying or knowing anything about the source
code is possible.

init local variables
setup calculations
pressure, temperature coupling
calc. total mass, initial shake, ...
various files open for read/write

step < nstep

Calculate
averages

RUNMD
MD Sim.:

IUTRJX
IUTRJV
IUTRJE
IUTRJG
IFNCFG

Main MD
Loop

?

else

SETPRT(LDOPER)
SHIAG
PRPVIR

Force

Main MD
Loop:

?

calc. virial

virial

else

MDleap

calc.
averages

step=0

step++

TIK Report No. 38 12 HAM: Hardware Moved Molecules

Gromos Analysis: MD Algorithm in Gromos

Fig 3.3 Nonbonded forces calculation

3.2.2 Searching Neighbours, long-range Interaction

The nonbonded interaction between atoms decrease with the distance between them and
generally in MD simulations only interactions between atoms with a distance lower than a
certain cutoff distance are taken into account. Unfortunately the coulombic interaction is a
so called long-range interaction due to the 1/r distance dependence, and a typical cutoff dis-
tance like 2.0nm - 3.0nm is required for adequate accuracy. Because the number of neigh-
bours for nonbonded interactions grows with the third power of the cutoff radius, the
computation time for a 3nm cutoff is not acceptable for efficient simulation. To overcome
this problem of long-range forces lattice methods like the Ewald sum or reaction field meth-
ods can be applied. In the reaction field method the field consists of two parts: A short-range
contribution from neighbouring molecules within a cutoff sphere and a long-range part from
molecules outside the cutoff sphere which is considered to form a dielectric continuum.
Together with the charge groups concept, the cutoff radius of the short-range part decrease
from 3nm to about 1nm - 1.5nm. Within a charge group, the sum of partial charges of the
atoms adds up to exactly zero. Therefore the electrostatic interaction between two such
groups is of dipolar character and decreases with the third power of the distance. This leads
to some restrictions: Charge groups may not be split over simulation box boundaries and the
interaction is calculated either for all atoms of a charge group to all atoms of a neighbouring
charge group or for none.

Other approaches to handle long-range forces are the already mentioned Ewald sum ([18]
and [20]), the P3M method (particle-particle, particle-mesh) [19], Multipole expansion
schemes due to Ladd (1977/78) ([19], [18]) or the Greengard-Rokhlin algorithm. In the P3M
method the short-range part of the potential is handled normally, the long-range part is cal-
culated using a particle mesh technique (e.g. solving the Poisson’s equation using FFT).

In Gromos, a solvent molecule is always one charge group, the solute molecules are com-
posed of many charge groups. The simplest way to find the neighbouring charge groups of a
primary charge group is to scan over all possible pairs in the system. If the system contains
N charge groups the number of pairs to consider is . Constructing the pair list in this
way requires a lot of the overall simulation time, although the pairlist must not be con-
structed every time step. The update interval to calculate the pairlist is user-specified and
usually lies between three and five. In the present implementation, two cutoff spheres are

distance calc.

ni<nragt nnj=1
ni=ni+1

?

else

else
nnj<nnmij

else

ii=1
nnj=nnj+1

ii<nram

else

jj=1
ii=ii+1

interaction
calculation

virial

traco

virial

transform
coord.

ni=nragp+1

?

?

?

?

?

jj<nram

else

else

for (ni=nragp+1;ni<nragt;ni++){
for (nnj=1;nnj<nnmij;nnj++){
 for (ii=1;ii<nram;ii++){
 for (jj=1;jj<nram;jj++){
 calculate distance;
 calculate interaction;
 if (virial)calculate virial;
 if (traco)transform coord;
 }
 }
}
}

1 2⁄ N2⋅

Gromos Analysis: Gromos Benchmarks and Profiling

HAM: Hardware Moved Molecules 13 TIK Report No. 38

available where the smaller is used to build the pairlist. For the particles between the two
spheres the interaction is calculated during the pairlist construction and is kept constant
until the next pairlist build. This special interaction is called long-range or twin-range inter-
action.

To keep the distortion small at cutoff sphere boundaries or rather to treat the long-range
part, a Poisson-Boltzmann reaction field force correction is applied.

3.2.3 Nonbonded Interactions, Periodic Boundaries

The nonbonded forces calculation distinguishes due to the different interaction potentials
into solute-solute, solute-solvent and solvent-solvent interactions. The partitioning into
these parts depends on the solvent atoms to solute atoms ratio, see fig. 3.4.

Fig 3.4 Nonbonded forces decomposition

To reduce computation time for proteins in liquids the number of solvent atoms can be
reduced using periodic boundary conditions, also, surface effects can be avoided using this
technique. With periodicity, the rectangular box is replicated throughout space to form an
infinite lattice. If a molecule moves in the original box, its periodic image moves exactly in
the same way in the neighbouring boxes. If a molecule leaves the central box, one of its
images will enter through the opposite face. In Gromos package, a set of different central
box geometries can be periodically repeated: rectangular, truncated octahedron (a octahe-
dron fitted in a rectangle) and monoclinic (rectangular box with oblique angles) boxes.

3.3 Gromos Benchmarks and Profiling

As a benchmark we have chosen a system similar to the main problem we want to address:
A solute, typically a protein, surrounded by solvent in periodic boundary conditions.

with water, octah. with water, rect. without water, octah.

Number of solute
atoms

3,078 3,078 3,078

Number of solvent
atoms

16,281 32,883 0

Total number of atoms 19,359 35,961 3,078

number of solute
charge groups

1,285 1,285 1,285

Number of solvent
charge groups

5,427 10,961 0

Total number of charge
groups

6,712 12,246 1,285

Table 3.1 Benchmark systems

solute-
solute

solute-solvent

solvent-solvent

solute-solvent

solvent-
solventsolute-

solute

TIK Report No. 38 14 HAM: Hardware Moved Molecules

Gromos Analysis: Gromos Benchmarks and Profiling

We present the results for octahedron and rectangular boundary conditions with water and
the solute without water. The system sizes are given in table 3.1, where the protein involved
is Thrombin. For all measurements 100 steps are simulated. If nothing else is specified, the
machine for all simulations in this paper is a 170MHz Sun Ultra 1 Creator workstation with
64MB RAM running under solaris 2.5.1.

The first example is a simulation with water in a truncated octahedron. Every 5 time steps
the pairlist was updated with a 1.4nm cutoff without long-range interaction. The output for a
typical run generated with gprof is summarized in table 3.2.

Subroutinenbnone calculates the pairlist without long-range interaction,nonbml calculates
the nonbonded forces, theshake routine handles constraints,leap is the integration step and
times is an extra timing routine introduced to test the gprof results and allowing measuring
times within a subroutine. The times derived from this function are listed in table 3.3.

granularity: each sample hit covers 2 byte(s) for 0.00% of 2096.96
seconds
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 83.0 1739.92 1739.92 100 17399.18 17399.18 nonbml_ (24)
 15.5 2065.24 325.32 20 16266.07 16266.07 nbnone_ (31)
 0.9 2084.55 19.31 204 94.66 94.66 shake_ (17)
 0.1 2087.06 2.51 100 25.10 25.10 mdleap_ (23)
 0.1 2088.98 1.92 400 4.80 4.80 dihang_ (16)
 0.1 2090.52 1.54 200 7.70 7.70 angle_ (18)
 0.0 2093.25 0.38 100 3.80 3.80 shiag_ (25)
 0.0 2093.62 0.37 12 30.83 30.83 cenmas_ (35)
 0.0 2094.90 0.21 207600 0.00 0.00 chpstr_ (2)
 0.0 2095.24 0.15 38718 0.00 0.00 chpnre_ (7)
 0.0 2095.77 0.12 100 1.20 1.20 force_ (22)
 0.0 2095.87 0.10 1242 0.08 0.08 _times (502)
 0.0 2096.13 0.07 57283 0.00 0.00 gimme_ (5)
 0.0 2096.24 0.05 165200 0.00 0.00 getdmp_ (3)
 0.0 2096.29 0.05 77828 0.00 0.00 chpint_ (4)
 0.0 2096.33 0.04 12393 0.00 0.00 chkmty_ (9)
 0.0 2096.37 0.04 20 2.00 2.00 nbpml_ (32)
 0.0 2096.41 0.04 2 20.00 20.00 getarr_ (57)
 0.0 2096.45 0.04 1 40.00 40.00 gtcoor_ (101)
 0.0 2096.49 0.04 1 40.00 40.00 runmd_ (133)
 0.0 2096.59 0.03 44874 0.00 0.00 lismty_ (6)
 0.0 2096.68 0.03 20 1.50 1.50 clcgeo_ (30)

Table 3.2 A typical gprof output. Pairlist every 5 steps, cutoff 1.4nm, octahedron boundaries

water, octah. water, rect. no water

Main MD loop 213,038 369,326 18,336

force 210,787 361,821 18,027

Integration (leap) 2,175 4,107 303

nbnone (Pairlist) 32,544 88,165 669

nonbonded (all) 177,745 273,122 16,895

nonb. solute-solute, solute-solvent 51,645 45,700 16,892

nonb. solvent-solvent 126,094 227,419 0

Table 3.3 Timing measurement with C routine times (values in 1/100 sec.)

Gromos Analysis: Gromos Functions Modelling

HAM: Hardware Moved Molecules 15 TIK Report No. 38

It is obvious that most of the simulation time is spent in constructing the pairlist and calcu-
lating nonbonded interactions. Except forshake, all other tasks do not really matter. The
functiontimes allows us to set and stop timers from anywhere in the application. The
numerical values in the left column of table 3.3 may be compared with those in table 3.2.
The results for the other benchmarks are also listed in table 3.3, with the same pairlist
update intervals and cutoff.

3.4 Gromos Functions Modelling

The number of floating point operations and the number of fixed point operations in
dependence on the problem parameters will be a good unit of measurement of function
complexity. Of course only subroutines with lots of floating point operations can be mod-
elled in this way. Fortunately the pairlist construction and nonbonded forces calculation use
practically nothing else as floating point operations in the inner loops. With the number of
operations, the calculation time and the performance specifications of the workstation
(benchmark, Mflops, Mops) a unit of measurement is available to scale the computation
time in dependence of the host performance and the simulation problem complexity. Other
important function parameters are the amount of input and output data, separated into static
and dynamic data.

3.4.1 Solvent-solvent Non-bonded Interaction

In table 3.4 the number of floating point operations are shown for one atom-atom interaction
of the solvent-solvent part of the nonbonded forces calculation. It is assumed that periodic
boundary conditions are always applied, for systems without periodic boundaries the first
column of table 3.4 may be taken, with P1 equals zero.

a. Subroutine TRACO, coordinate transformation

Op.

locto = false
ldotra = false
ldovir = false

locto = true
ldotra = false
ldovir = false

locto = false
ldotra = true
ldovir = false

locto = true
ldotra = false
ldovir = true

locto = false
ldotra = true
ldovir = true

+, - 4*ndim

+1(4D)

+1*(ndim*P1)

+14

4*ndim

+1(4D)

+1*(ndim*P1)

+5*(ndim*P2)

+17

4*ndim

+1(4D)

+1*(ndim*P1)

+11

4*ndim

+1(4D)

+1*(ndim*P1)

+5*(ndim*P2)

+26

4*ndim

+1(4D)

+1*(ndim*P1)

+25

* 2*ndim

+1(4D)

+15

2*ndim

+1(4D)

+2*(ndim*P2)

+15

2*ndim

+1(4D)

+19

2*ndim

+1(4D)

+2*(ndim*P2)

+21

2*ndim

+1(4D)

+25

/ 1 1 1 + 2a 1 1 + 2a

1 1 1 1 1

sin 0 0 1a 0 1a

cos 0 0 1a 0 1a

Table 3.4 Atom-atom interaction: FP Operations per time step

TIK Report No. 38 16 HAM: Hardware Moved Molecules

Gromos Analysis: Gromos Functions Modelling

With

ndim the number of dimensions to calculate in (three or four),

4D equals zero for three dimensional simulations, equals one for four dimensional
simulation,

P1 the probability for periodic boundary correction: One out of three coordinates is
not in the periodic box (rectangular and octahedron), therefore a correction is
necessary,

P2 which is like P1, but additional for octahedron box,

locto which is true if periodicity is applied with a truncated octahedron (beta=90)
box,

ldotra indicating a monoclinic box (beta not 90) if it is true, and

ldovir enabling the virial calculation if it is true.

The number of floating point operations for one time step reads as

, (3.6)

with

OPS1 the number of operations in one time step (solvent-solvent interaction only),

OPS1aa the number of operations for one atom-atom interaction (distance and interac-
tion), derived from table 3.4,

CGsolv the total number of solvent charge groups (molecules),

NRAM the number of atoms per solvent molecule, and

NPC the average number of (solvent) neighbours per solvent charge group.

The most insecure parameter is NPC. There is only one possibility to get an exact value for
NPC for a given cutoff: Run a simulation and calculate the average. It would be easy to give
a formula for the average number of pairlist entries in function of the cutoff radius, but it is
not possible to predict the number of pairlist entries for the solvent-solvent part, because of
the density fluctuations in the solvent near the protein. The next paragraph concern the input
and output data of the solvent-solvent interaction function.

Dynamic data is defined as data that change at least once in a simulation run or rather within
the main MD loop. By contrast a dynamic data element must not change every time step,
but has an additional parameter specifying how often the value is updated per occurrence.
The pairlist for example is calculated every three time steps, so the overall data transfer rate
for this function is reduced by this factor.

The main data transfer for solvent-solvent force function is composed of the input coordi-
nates of the particles, the respective pair list if there is a new one, and the partial forces on
the atoms as output. Other parameters like the length of the simulation box does not matter.
In the following, we give a parametrised approximation for the dynamic data amount to be
transferred each time step if there is one force processor in the system. In paragraph 7.1 we
give a generic model for many processors.

(3.7)

OPS1 OPS1aa CGsolv NRAM2 NPC⋅ ⋅ ⋅=

Msolvsolv ndim 2 nattot⋅ nrp–()⋅ CGsolv NPC+ +=

Gromos Analysis: Gromos Functions Modelling

HAM: Hardware Moved Molecules 17 TIK Report No. 38

Relevant are the array of the input coordinates XCOORD[ndim (nattot-nrp)] of the solvent,
the force array F[ndim nattot], the pairlist pointer list INB[CGsolv] and the pairlist
JNB[NPC] itself. Many other dynamic input and output parameters and data do not matter
for systems with more than several hundred solvent atoms. The parameters in eqn (3.7) are:

nattot, the total number of atoms,

nrp, the number of atoms per solute molecule. Within this report we always consider
the same example with one solute molecule.

We assume that integer and floating point numbers are one word (4 Bytes). So M is in unit
words.

3.4.2 The Pair List Concept

The pairlist construction can be separated into two tasks: The calculation of the centres of
the charge groups and the calculation of the pairlist itself. In table 3.5, first column, the
floating point operations for the calculation of the centres are outlined. Note that for the sol-
vent molecules the first atom is assumed to be the heaviest and therefore approximating the
centre. This leads to the situation that in this routine also a lot of copy operations and fixed
point operations occur, but the number of floating point operations is still dominant.

The actual Gromos software is delivered with a slow pairlist algorithm, because all possible
pairs are scanned. Therefore, the distance calculation is executed exactly

(3.8)

times. Except for the distance calculation, there are no other floating point operations in the
pairlist subroutine. In addition to the ordinary pairlist construction the user may specify a
twin-range. If this is the case, the interaction related to the twin range is evaluated during
the pairlist construction. In our benchmark we do not include twin-range, as well it is better
to simulate with a larger cutoff than with a twin-range. The number of floating point opera-
tions for distance calculation for different periodic boundary conditions are summarised in
table 3.5.

ncag number of charge groups in a solute molecule

npm total number of solute molecules

n see eqn (3.8).

P1, P2 see table 3.4

Op. Geom. centre rectangular octahedron monoclinic

+/- n[2*ndim

+1*(ndim*P1)]

n[5*ndim

+1*(ndim*P1)

+1*((ndim+1)*P2)]

n[3*ndim

+1*(ndim*P1)]

/ 0 0 0

* 0 n[ndim] n[ndim

+1*P2)]

n[ndim + 2]

= ? n[ndim] n[ndim+1] n[ndim]

Table 3.5 Number of operations to calculate the geom. centre and to construct the pairlist

n NRAGT NRAGT 1+()⋅
2

--=

NRP
NCAG
----------------- 1–

 NDIM NCAG NPM⋅ ⋅ ⋅

NDIM NCAG NPM⋅ ⋅

TIK Report No. 38 18 HAM: Hardware Moved Molecules

Gromos Analysis: Pairlist Algorithms

The dynamic data for the pairlist construction are all coordinates as input, as output the pair-
list pointer list and the pairlist itself. Thus the formula for the memory requirement reads as

. (3.9)

3.4.3 Best Case Speed-up’s

With the results of the profiling section we can calculate the best-case speed-up in depend-
ence on the function mapping. Functions to be calculated on a coprocessor have zero execu-
tion time, we neglect the communication and additional program overhead. For various
simulation runs with different parameter sets (pairlist update rate, cutoff radius), we found
the following results (table 3.6), where the first column means that only the solvent-solvent
part of the nonbonded forces calculation is mapped on the coprocessor. If the pairlist con-
struction is also performed on dedicated hardware, we have the results in the middle col-
umn. If the host is relieved of all nonbonded forces and the pairlist calculation we have the
maximum speed-up rates in the third column.

The number in the left-most column indicates the pairlist update rates (five or ten), the cut-
off radius (unit nm, without twin-range), and the type of periodic boundary conditions
(octahedron or rectangular), refer to table 3.1 for the system sizes. The benchmark without
water is not part of this table because this kind of simulation is fast enough and would not
be significantly accelerated with dedicated hardware.

3.5 Pairlist Algorithms

We implemented the classical Verlet linked list algorithm with a few changes to speed-up
the pairlist calculation.

3.5.1 Cell Index Method

Under the Verlet algorithm an integration scheme as stated from Verlet is understood, the
direct integration of Newton’s second law of motion. Verlet was also the first who proposed
the use of a pairlist. Verlet proposed a cutoff radius for the interaction and a small skin
around the cutoff sphere to automatically update the pairlist if necessary. A brute force
approach was used to calculate the pairlist by scanning all pairs. 1975 Quentrec and Brot
proposed the cell index method where the simulation box is divided into a regular lattice of

run solv-solv s-s, pairlist nonb, pairlist

5/1.4, thr2rect 2,6 6,8 45

5/0.8, thr2rect 1,4 9,1 18

10/1.4, thr2rect 3,4 6,5 41

10/0.8, thr2rect 1,7 6,5 13

5/1.4, thr2octa 2,4 3,9 72

5/0.8, thr2octa 1,5 6,3 23

10/1.4, thr2octa 2,8 3,6 70

10/0.8, thr2octa 1,8 4,5 18

Table 3.6 Max. speed-ups for thr2 with water, rectangular and octahedron boundaries

Mpairlist ndim nattot⋅ CGsolv NPC+ +=

Gromos Analysis: Pairlist Algorithms

HAM: Hardware Moved Molecules 19 TIK Report No. 38

cubic or rectangular cells with a side length of at least the cutoff radius. The cell structure
may be built up using the linked list method, first proposed by Knuth 1973.

Since then big efforts were made to find more effi-
cient algorithms for parallel computers or vector
machines [10][11][13][14], in the field of sequen-
tial algorithms the progress was not overwhelm-
ing.

We decided to implement at least the combination
of the cell index method and the linked list as
stated from Hockney and Eastwood 1981
(fig. 3.5) [19]. Actually our final implementation
has some modifications to improve performance
for homogenous particle systems (liquids). In paragraph 3.5.2 we introduce another often
used approach in sequential pairlist calculations, the grid cell method.

The Algorithm

First, we divide the box into cells such that the sides of the cells is greater than the cutoff
radius. When calculating the pairlist, not all neighbours must be checked but only these in
neighbouring cells. Then all particles are spatially sorted into their appropriate cell. Two
arrays are created during the sorting process: Thehead array has one element for each cell
containing the identification number of that particle (charge group). This number is used to
access the second element of this cell in thechain array, which contains the number of the
next charge group and so on. A “-1“ (minus one) indicates that there are no more elements
in this cell.

Fig 3.6 Pairlist numbering scheme

The sequential numbering of the charge groups (identification number) and the numbering
of the cells as in fig. 3.6 are conventions and may not be altered

Because of eqn (3.5) not all neighbour boxes must be searched but only these indicated in
fig. 3.6. Note how periodic boundaries are handled (neighbours for cell 11). After the sort
into cells we need an algorithm to find the neighbouring cells for a given primary cell. This
task is easy and fast for our cell numbering scheme.

1 2 3

4 5 6 7

8 9 10 11

0

box[x]

b
o
x
[
y
]

0 1

1

2
79

10

3

0 1 2 3 4 6 75 8 9 10index

chain

head

4

0

5

6

8

4

3 6

-1 9 7 -1 8 100 5 1 2

>
c
u
t
-
o
f
f

Fig 3.5 Linked list

1 2 3

4 5 6 7

8 9 10 11

0

y z

x

boxnum = (y*nbx+x)+z*nbx*nby
2 3 0

18 19 16

22 18 20

21 15 12

plane z=0

plane z=1

11 8

9 10 11

13 14 15

17 18 19

21 2223

plane z=0

plane z=1

6 7

TIK Report No. 38 20 HAM: Hardware Moved Molecules

Gromos Analysis: Pairlist Algorithms

For large cutoff spheres the number of cells decrease, and
most of the investigated pairs do not fulfil the cutoff crite-
ria. This leads to bad acceleration rate for large cutoffs
compared with the brute force approach. To increase the
efficiency of the algorithm under this circumstances we
further divide the cells into sub-cells, called parts (fig. 3.7).
As a consequence, the number of superfluous distance cal-
culations is minimized. With other words, NC (see next
paragraph) is kept small for large cutoffs. The algorithm to
get the neighbour cells is similar.

Implementation and results

We implemented the described algorithms in C and tested them in the Gromos environment
with the water benchmark under rectangular boundaries. For a cutoff of 1.4nm there are 100
cells (the box length is approximately 7nm, leading to 4x5x5 cells). With the number of
charge groups per cell NC and the total number of charge groups N, the maximum speed-up
is

. (3.10)

Fig. 3.8 shows the measured speed-up related to the brute force algorithm without parts.
The discrepancy between the maximum possible speed-up and the measurement can be
explained with program and memory allocation overhead. In addition, we did not made
every effort for a highly efficient implementation.

Fig 3.8 Speed-up with new pairlist algorithm

The implementation with parts allows the user to specify the part-factor, the number of parts
per cutoff, as an integer. If the specified number is too big, e.g. a lot of empty cells occur,
the algorithm automatically decrements the part-factor such that the number of cells is lim-
ited to the number of charge groups in the system. With this modification we achieve addi-
tional 20% for large cutoff (1.4nm in fig. 3.8), for small cutoffs no gain was determined.

Fig 3.7 Parts

cutoff

Parts

Amax
N

27 NC⋅
------------------=

number of
cells

Speedup

10

20

250 500 750

0.81.4 1.0 cutoff

measured

max:
13.5*N*Nc

Gromos Analysis: Pairlist Algorithms

HAM: Hardware Moved Molecules 21 TIK Report No. 38

3.5.2 Grid Search Algorithms

Similar to the extended linked list method only pairs with a cutoff smaller than a certain
radius are stuck into the pairlist. A much finer grid is used to divide the simulation space
into cells so that at most one particle is assigned to a cell. The cutoff sphere for a primary
cell is approximated much better and the number of unsuccessful distance checks is mini-
mized. The disadvantage are the many empty cells because the grid granularity is deter-
mined through the minimal distance of the particles which usually is much smaller than the
average, even for liquids. That’s why the grid is chosen coarser causing multiple occupan-
cies. The surplus particles are assigned to the next empty neighbour cell. With this tech-
nique, the number of distance checks is kept to a minimum. Periodic boundary conditions
are handled as usual, the simulation box is repeated at the edges. The algorithm sequence
can be outlined as follows:

The first step is the sorting of particles into cells and the reassignment for double occupan-
cies. For a given primary cell containing a particle the neighbour cells are determined. For
that, a similar method as for the parts scheme may be used (numbering scheme), a second
possibility is the use of eqn (3.11).

(3.11)

Considering a pair of cells with the distance (dx,dy,dz). If the lattice constants are ax,ay,az,
the minimal distance between two particles located inside these boxes is . To get the
neighbours of a particle in a primary cell, all neighbouring cells inside the cutoff rectangle
around the primary cell are checked for . If the check is true, the distance
between the corresponding particles must be calculated to determine if the particular neigh-
bour goes into the pairlist or not.

The remaining tasks do not vary from the pairlist construction mentioned above. An imple-
mentation example and performance data can be obtained in [11]. We did not implement
this algorithm, because the gain to the parts algorithm is quite small for big cutoffs, and the
implementation effort would be rather high. For smaller cutoffs all pairlist algorithms
except the brute force approach are enough efficient. For more information about pairlist
algorithms refer to: [10], a comparison of different algorithms); [11], a description of a grid
search algorithm); [21] and [22].

rmin
d0

ax max dx 1– 0,()⋅()2 ay max dy 1– 0,()⋅()2 az max dz 1– 0,()⋅()2+ +=

rmin
d0

rmin
d0

rcut off–<

TIK Report No. 38 22 HAM: Hardware Moved Molecules

Gromos Analysis: Pairlist Algorithms

Dedicated Hardware Approaches: Overview on Existing Third-Party Solutions

HAM: Hardware Moved Molecules 23 TIK Report No. 38

4 Dedicated Hardware Approaches

4.1 Overview on Existing Third-Party Solutions

Four hardware solutions for the molecular dynamics problem were recently developed:
MD-GRAPE, GRAPE-4, Gromacs and MD-Engine. They are described in more detail in
the following sections. Other older hardware projects are not described in this report for
information obout these projects refer to [1] and [3].

4.1.1 GRAPE

GRAPE was developed by the Department of Earth Science and Astronomy together with
the Department of Information Science and Graphics of the College of Arts and Sciences at
the University of Tokyo (refer to [4], [5], [6] and [8]).

GRAPE (for GRavity PipE) is a coprocessor attached to a general purpose computer and is
specialized to calculate the interactions between particles of a N-body system. GRAPE has
pipelines specialized for force calculations, which is the most expensive part of a N-body
gravity simulation. All other computations, such as time integration of orbits etc. are per-
formed on the host computer to which GRAPE is connected. In the simplest case, the host
computer sends positions and masses of all particles to GRAPE. Then GRAPE calculates
the forces between particles and sends them back to the host computer (Fig. 4.1).

Fig 4.1 Basic structure of the GRAPE system

N-body simulations are usually performed with periodic boundary conditions to express
global homogeneity without margin conditions. The most widely used algorithm for the
force calculation under periodic boundary condition is the particle-mesh (PM) method,
which cannot be accelerated on GRAPE. Thus, for GRAPE, a simulation method has been
developed which requires the calculation of particle-particle (PP) forces.

However the PP force is not a pure 1/r2 force. Therefore there are two ways to implement
the PP force calculation on GRAPE. One is to mimic the PP force by a linear combination
of 1/r2 forces based on several approximations, which results in rather large loss of accuracy
and performance. A better solution is to change the hardware such that it can handle force
laws other than 1/r2. With this, GRAPE-2A has been developed out, but the peak perform-
ance is rather low (180 Mflops) since GRAPE-2A is made of commercial floating point
chips [5]. To improve the system, MD-GRAPE was developed, which is discussed in the
next section.

An additional version of MD-GRAPE has been built later by the same departments at the
University of Tokyo and is called GRAPE-4. This architecture is discussed in
paragraph 4.1.3.

Force etc.

Position etc.Host
GRAPE

Computer

TIK Report No. 38 24 HAM: Hardware Moved Molecules

Dedicated Hardware Approaches: Overview on Existing Third-Party Solutions

4.1.2 MD-GRAPE

Overall Hardware Architecture

The MD-GRAPE system consists four MD chips, a particle index unit, a memory unit and
an interface unit and is assembled on a single board (Fig 4.2).

Fig 4.2 Hardware architecture of the MD-GRAPE system

Algorithms

Three methods are used to calculate the gravitational force under the periodic boundary
condition on MD-GRAPE.

The O(N2) direct summation algorithm with free boundary conditions is the simplest force
calculation with free boundary conditions. Positions of particles are sent to MD-GRAPE,
which calculates the forces in force mode. The forces are sent back to the host, which calcu-
lates the new positions and sends them to MD-GRAPE again and so on. In this calculation
position vectorsri are distributed to MD chips whereasrj are sent to all chips.

The next two methods divide the force into real space (short-range part) and wavenumber
space (long-range part). Whereas the short-range part is calculated directly, the long-range
part is calculated with help of the Fourier transform.

The particle-particle/particle-mesh (P3M) method is a refinement of the PM method. It uti-
lizes the fast Fourier transform (FFT) for calculating the long-range part. In the P3M
method, MD-GRAPE calculates the PP force, while PM force is calculated on host compu-
ter. In order to use FFT, the P3M method assigns masses to mesh points. Therefore, the
forces calculated by the P3M method include errors due to the mesh assignment. The posi-
tions are updated on the host computer by this method.

MD chip 1

MD chip 2

MD chip 3

MD chip 4

Memory

Unit

Particle

Index

Unit

index x,a,b

Interface

Unit

F etc.

jstart etc. X etc.

Host

Workstation

VME bus
MD-GRAPE board

Dedicated Hardware Approaches: Overview on Existing Third-Party Solutions

HAM: Hardware Moved Molecules 25 TIK Report No. 38

The Ewald method calculates the gravitational force under the periodic boundary condition
with high accuracy and was developed to obtain the Madelung constant of an ionic crystal.
In contrast to the P3M method the discrete Fourier transform (DFT) is used to calculate the
long-range part. So the correct force under the periodic boundary is obtained. Both forces,
the one of the real space and the one of the wavenumber space can be calculated by MD-
GRAPE, whereas the cell-index method is used for real space forces and DFT/IDFT is used
for wavenumber space forces.

An arbitrary central force is calculated with the following equations:

(4.1)

(4.2)

whereε is a softening parameter,aj andbj are coefficients, andg(ζ) expresses an arbitrary
function. Indexi is used for the particle at which the force is calculated and indexj for par-
ticles which exert the forces on particlei.

The potential is given by:

(4.3)

In DFT/IDFT mode, the sum is calculated by:

(4.4)

Detailed Hardware Architecture

Each MD chip integrates a GRAPE-2A pipeline. This “virtual multiple pipeline” architec-
ture reduces the bandwidth necessary for the data transfer during force calculation. This
hardware pipelines act as if multiple virtual pipelines were operating at a slower speed. One
hardware pipeline has six “virtual” pipelines and calculates forces on six particlesfi ,..., fi+5

simultaneously. Therefore the partial forcesfij are evaluated in the following order:

(4.5)

One interaction is evaluated in each clock cycle. The MD chip calculates the forces on six
different positions of the system using the same position vectorrj and coefficient vectorsaj

andbj but a differentri. Therefore one position vector and two coefficients are supplied to
the MD chip during six clock cycles (Fig. 4.3).

f i f ij
j

N

∑ ajg bjrs
2()rij

j

N

∑= =

rs
2

rij
2 ε2

+=

f i f ij
j

N

∑ ajg bj rs
2()

j

N

∑= =

f i f ij
j

N

∑ ajg ki r j•()
j

N

∑= =

f 11 f 21 f 31 f 41 f 51 f 61, , , , ,f 12 f 22 f 32 f 42 f 52 f 62, , , , ,

TIK Report No. 38 26 HAM: Hardware Moved Molecules

Dedicated Hardware Approaches: Overview on Existing Third-Party Solutions

Fig 4.3 Block diagram of the MD chip

The MD chip can be used in three modes: in force mode, in potential mode and in DFT/
IDFT mode. In force mode eqn (4.1) and eqn (4.2) are directly calculated by the MD-chip.
In potential mode eqn (4.3) is calculated and in DFT/IDFT mode eqn (4.4) is calculated
directly.

The coordinatesx, y, z, of the position vectorsri andrj are given through ther-port and coef-
ficientsaj andbj are given through thec-port of the chip. At the beginning of a sum calcula-

tion the position vector and the constantk in DFT/IDFT mode of particlei are given through
the ports. During calculating position vector and coefficients of particlesj are given through
the ports.

The MD chip has eight multipliers, nine adders and one function evaluator. The function
evaluator contains the arbitrary function g(ζ). Positions are expressed in 40 bit fixed point
format. The internal calculations are performed in 32 bit floating-point format, and the accu-
mulation of the force is done in 80 bit fixed-point format. The function evaluator is a look-
up table (LUT) with 1024 values.

The particle index unit supplies particle indices to the memory unit. It is optimized for cell-
index (paragraph 3.5.1) mode, which is used to calculate the short-range force.

The simulation cube is divided into M3 cells, where M is the number of cells along one
dimension. M is given by the largest integer less or equal to L/rcut, where rcut is the cutoff
length of the force and L is the length of the periodic boundary box. In order to calculate the
forces between particles in a cell, only contributions from particles of the 27 neighbouring
cells (including the cell in question) have to be calculated. Therefore the computation cost is
reduced by a factor of M3/27 (Fig. 4.4).

k r

∑

∑

∑

Delay

Delay

Delay

Function
Evaluator

r2

yi[1..6]

zi[1..6]

xi[1..6]

c

r

k
.

Dedicated Hardware Approaches: Overview on Existing Third-Party Solutions

HAM: Hardware Moved Molecules 27 TIK Report No. 38

Fig 4.4 Structure of the particle index unit

The particle index unit contains two counters: a cell counter, which is a 14 bit counter and a
particle counter, which is a 17 bit counter. The particles in a cell are stored in consecutive
locations in the memory unit. The cell index memory, which is a 1 Mbit (16K x 32bit)
SRAM module, supplies addresses and number of particles per cell, with which a cell inter-
acts. Initially, cell numberi is 0 andj is set tostart[i] , which points to the start address of
the present cell. Then the data of the memory unit on whichj points are sent to the MD
chips andj is incremented. This steps are repeated untilj reaches the address
start[i]+number_of_particle[i]. At this pointi is incremented by one andj is set tostart[i] ,
which points to the first address of the next cell. This procedure is repeated untili reaches
the maximal number of cells. In this way correct coordinates of particles are automatically
sent to MD chips.

The memory unit supplies the data of positionsrj and coefficientsaj andbj to the MD chip
according to the particle indices supplied by the particle index unit. The datarj, aj andbj are
shared by all the MD chips. The memory unit is composed of nine 1 Mbit (128K x 8)
SRAMs. Five are for the position vectors and four are for the coefficients. It can hold up
43,690 particles in three dimensions.

The interface unit is a VME-bus ‘slave’ interface, which transmits and receives data accord-
ing to the request of the host computer. The interface interacts with the host by handshake,
writes the received data, such asrj, to the location specified by the address and supplies
data, as the calculated force, with a read cycle.

The MD-GRAPE has a neighbour list unit. The MD chip outputs the “neighbour flag’ if the
distance between particlesrij, is less than the neighbour radiushi, which is stored in a regis-
ter on the MD chip. This flag is used to construct the neighbour list, respectively the pairlist
of particlei.

Performance

On the MD-GRAPE board a N-body simulation with the Ewald method takes 600(N/106)3/2

seconds per step; the P3M method takes 240(N/106) seconds per step.

Each MD chip calculates 3.5 x 107 interactions at a clock frequency of 35 MHz. If we count
the square root and division operations as 13 floating-point operations, the calculation of

Particle

Counter

Cell

Counter

Cell

Index

Memory

start[i]i

number_of_
particle[i]

Cell 0

Cell 1

Cell 2

Cell Nc

.....

Particle Index Unit Memory Unit

increment

j

TIK Report No. 38 28 HAM: Hardware Moved Molecules

Dedicated Hardware Approaches: Overview on Existing Third-Party Solutions

one gravitational force corresponds to 30 floating-point operations. An MD-GRAPE board
has a peak performance of 4.2 Gflops.

Further details of MD-GRAPE can be found in [7].

4.1.3 GRAPE-4

Overall Hardware Architecture

An additional version of MD-GRAPE has been built by the same departments at the Univer-
sity of Tokyo and is called GRAPE-4.

GRAPE-4 is a massively parallel computer which consists of 1672 processor chips. Each
processor chip integrates about 15 floating point arithmetic units and one function evaluator.

The basic structure of GRAPE-4 is the same as of MD-GRAPE (Fig. 4.1) and is used as a
backend processor, to calculate the forces. The rest of the computation, such as the actual
orbit integration is done on the host computer. In the simplest case, the host computer sends
positions and masses of all particles to GRAPE, GRAPE calculates the forces between par-
ticles and sends them back to the host computer.

The GRAPE-4 system consists of a host computer and four GRAPE clusters. One cluster
consists of a host-interface board and nine processor boards, thus the total number of proc-
essor boards is 36 (Fig. 4.5).

Fig 4.5 Structure of the GRAPE-4 system

Algorithms

The Aarseth scheme has been widely used in the community of Astrophysics. It is a linear-
multistep scheme, in which the change in the position and velocity is calculated from the
acceleration calculated at several previous timesteps. The implementation of the Aarseth
scheme is rather complicated, because it is a linear multistep scheme. When the time inte-

Processor Board

Processor Board

Processor Board

Processor Board

Processor Board

Processor Board

Processor Board

Processor Board

Processor Board

Control
Board

Control
Board

Control
Board

Control
Board

Host

Computer

Host Interface

Host Interface

Host Interface

Host Interface

Dedicated Hardware Approaches: Overview on Existing Third-Party Solutions

HAM: Hardware Moved Molecules 29 TIK Report No. 38

gration is started, the accelerations at previous timesteps are not available. Therefore a spe-
cial procedure to start up the integration is required.

The Hermite scheme is much simpler than the Aarseth scheme and yet offers a similar accu-
racy for the same calculation cost. It uses the Hermite interpolation formula to construct the
predictor and the corrector. The predictor uses the position, velocity, acceleration and its
derivative at timet. The acceleration and its time derivative are calculated from the position
and velocity. The corrector requires information of the present and old timesteps only.
Therefore no information concerning the previous timesteps is necessary. The Hermite
scheme is a one-step, self starting scheme. It uses only the first time derivative of the accel-
eration explicitly calculated in order to construct the predictor and the corrector.

The predictor is expressed as:

(4.6)

(4.7)

wherexp andvp are the predicted positions and velocity,x0, v0, a0 and are the position,
velocity, acceleration and its time derivative at timet0, and∆t is the timestep.

The accelerationa and its time derivative are calculated as:

(4.8)

(4.9)

where

(4.10)

(4.11)

The corrector is given by the following formulas:

(4.12)

(4.13)

xp
t
3∆

6
------- t

2∆
2

------- t∆ v0 x0+ + +=

vp
t
2∆

2
-------ȧ0 t∆ a0 v0+ +=

a0
.

a
.

ai Gmj

rij

rij
2 ε2

+()
3 2⁄-----------------------------

j
∑=

ai Gmj

vij

rij
2 ε2

+()
3 2⁄-----------------------------

3 vij rij⋅()rij

rij
2 ε2

+()
5 2⁄-----------------------------–

j
∑=

rij x j xi–=

vij v j vi–=

xC x0
t∆

2
----- vC v0+() t∆ 2

2
------- a1 a0–()–+=

vC v0
t∆

2
----- a1 a0+() t∆ 2

2
------- a1 a0–()–+=

. .

TIK Report No. 38 30 HAM: Hardware Moved Molecules

Dedicated Hardware Approaches: Overview on Existing Third-Party Solutions

Detailed Hardware Architecture

The host interface board extends the I/O bus of the host. It converts the data transfer proto-
col of the host I/O bus to the protocol used on the links between the host interface boards
and the control boards. The protocol on the link is designed such that it is independent on
the protocol of the host I/O bus. In this way, GRAPE-4 can connected to different host com-
puters (Fig. 4.6).

Fig 4.6 Structure of the host interface

The data transceivers (trcv) exchange data with the host, the control board, the FIFO, which
is 2048 x 32-bit words (8 Kbytes), and the control logic. The data transfer rate between the
host interface an the control board is slower than that between host and host interfaces.
Using the FIFO buffer, the host can send data at peak transfer speed. At the other side, the
FIFO buffer allows the control board to transfer data without checking the status of the host
bus. Therefore it works independent of the host bus.

There are two different ways to use multiple GRAPE-4 boards. One is to let all chips calcu-
late the force on different particles from the same set of particles. In this case, the content of
the memory of all processor boards would be identical. The other way is to let each proces-
sor board to calculate the force on the same set of particles, but from different set of parti-
cles. In this case, each processor board calculates the partial forces which need to be added
together with results obtained from other boards.

The first approach is not practical in the case of GRAPE-4 with more than 1000 pipelines,
so the latter approach was implemented. Here the problem is that the amount of communi-
cation is proportional to the number of processor boards, if the single results are sent back to
host, which adds them together. To solve this problem the control board was designed,
which can add results calculated on processor boards to reduce bandwidth of communica-
tion with host computer.

The control board has two main functions. The first is to distribute the data received from
the host computer to the processor boards. The second is to sum up the forces and potentials
calculated on processor boards and then to transfer them to the host computer (Fig. 4.7).

The internal structure of the cluster is not visible to the application program. To the host
computer, a cluster looks like a board with a single memory unit and multiple pipeline
chips. In order to distribute the calculation over different clusters, the same is used as differ-
ent processor boards in one cluster would be used. If we have 4 clusters, the host sends N/4
particles to each cluster, where N is the total number of particles. In this case each processor
board takes care of the contributions from N/36 particles. The control boards adds the par-

Control Logic

bidirectional

FIFO
trcv trcv DATA[31:0]AD[31:0]

Control
Signals

Control
Signals

To CBTo Host

Dedicated Hardware Approaches: Overview on Existing Third-Party Solutions

HAM: Hardware Moved Molecules 31 TIK Report No. 38

tial forces calculated on processor boards and the host computer adds finally the partial
forces calculated on clusters. The control boards consists of the control logic unit, three
accumulator/buffer units and several transceivers and buffers.

Fig 4.7 Structure of the control board

Control boards and processor boards are connected with a 96-bit data width backplane bus,
which is called the HARP-bus. A synchronous, pipelined protocol with fixed latency is used
on this bus. All necessary signals to control the HARP-bus are generated by the control
logic unit. The 96-bit data bus is divided into three 32-bit subbuses, each of them is con-
nected to an accumulator/buffer unit. The accumulator/buffer unit contains a 64-bit floating-
point ALU, which accumulates the result calculated on processor boards.

Each processor board (fig. 4.9) of GRAPE-4 consists of 48 HARP chips. A block diagram
of a HARP chip is shown in fig. 4.8. All 48 chips form multiple pipelines which share one
particle memory unit. These pipelines calculate the forces between different particles from
the same set of particles.

Fig 4.8 Structure of the HARP chip

Control
Logic

Accumulator /

Buffer

buf
buf

trcv

Accumulator /

Buffer

Accumulator /

Buffer

Data 31-0

Data 63-32

Data 95-64

Control, Address

Data

Control

To
PBs

To
HIB

r j

mj

υj

υi

r i

r2

2

r.υ

Function
Evaluator

r

υ +

mr-1

mr-3

3mr-5(r υ).

v

a

a
.

TIK Report No. 38 32 HAM: Hardware Moved Molecules

Dedicated Hardware Approaches: Overview on Existing Third-Party Solutions

The particle data memory stores the data of the particles which exert the force (Fig. 4.9).16
HARP chips share the same data bus such that three 32 Bit data busses are connected with
the control board. The HARP chips are custom LSI chips which calculate the gravitational
force and its first time derivatives for particles. This fully-pipelined hardware implementa-
tion of eqn (4.8) and eqn (4.9) is shown in fig. 4.8. Thex , y andz components of all vector
quantities are processed sequential in order to reduce the gate count.

Subtraction of the position vectors and accumulation of the calculated accelerations are per-
formed in 64-bit floating-point format. Other calculations to obtain the acceleration is per-
formed in 32-bit format. Subtraction of the velocity vectors and accumulation of the time
derivatives are performed in 38-bit format. Other calculations to obtain time derivative are
done in 29-bit format, where the length of the mantissa is 20 bits.

Fig 4.9 Structure of the processor board

The hardware is fully pipelined and therefore it takes three clock periods to calculate one
interaction. Again each chip calculates the forces between two particles, using the “virtual
multiple pipeline”. The clock period of the pipeline is two times that of the system clock
and calculates the forces between two different particles at alternate clock cycles. The chip
has two separate set of registers and the two virtual pipelines operate independently. From
the outside, one force calculation chip looks as if it has two pipelines. The advantage of this
architecture is that we can increase the performance of the pipeline chip without increasing
the system clock cycle.

The PROMETHEUS chip (fig. 4.10) is another custom LSI-circuit and is used to predict the
position and velocity of particles at a specified time. The PROMETHEUS chip handles x, y
and z components sequential in the same way as the HARP chip does. The predicted posi-

HARP LSI #0

HARP LSI #15

....

HARP LSI #16

HARP LSI #31

....

HARP LSI #32

HARP LSI #47

....

PROMETHEUS

LSI

Particle

Data Memory

Control
Logic

To
CB

Dedicated Hardware Approaches: Overview on Existing Third-Party Solutions

HAM: Hardware Moved Molecules 33 TIK Report No. 38

tion and velocity are calculated based on eqn (4.6) and eqn (4.7). The calculation of∆t and
the addition ofxj and the higher order term are performed in 64-bit format. All other calcu-
lations are performed in 32-bit format. The clock of this chip is the same as the system clock
of the processor board.

Fig 4.10 Structure of the PROMETHEUS chip

The communication between the host interface board and the host computer relies on DMA
transfers. An interface library for UNIX has been developed, to allow the application to
invoke DMA transfer to/from its memory space directly.

Performance

GRAPE-4 integrates about 35,000 floating-point arithmetic units. The peak performance of
a chip is 640 Mflops and that of the total machine is 1.08 Tflops for the total cost of less than
2 million dollars.

For the next generation of GRAPE-4, a machine with about 200 Tflops is planned, which
consists of 1,400 chips at a running clock frequency of 150 MHz. The number of transistors
per chip will be 50 times larger than that of the HARP chip. Refer to [6] for more informa-
tion about GRAPE-4.

4.1.4 GROMACS

The GROMACS hardware and system software [9] was designed at the University of Gron-
ingen by the MD Group, in a joint project with Chess Engineering in Harlem, Netherlands.

Overall Hardware Architecture

The architecture consists of a ring of 32 processor nodes. Each processor node consists of a
40 MHz Intel i860 processor, 8 Mbyte RAM, two 8 bit wide parallel ports to connect one
node to the ring, four transputer links and an 8 bit PC-bus connector.

Ring communication with a bandwidth of 3 Mbytes/sec is used for the actual simulation.
The PC-bus is used to load programs and initial data and to store results, the transputer links
are not used (Fig. 4.11).

2

Ti , Tj

v xaa
.

x1.5 x2

6

vp

xp

TIK Report No. 38 34 HAM: Hardware Moved Molecules

Dedicated Hardware Approaches: Overview on Existing Third-Party Solutions

Fig 4.11 GROMACS system

Algorithm

GROMACS uses a grid search algorithm for generating the pairlist. Before the neighbour
list is generated, a grid is constructed in the box. For every grid cell it is determined, which
particles it contains. Neighbours of a particle are then searched by inspecting neighbouring
boxes. Experience shows that a grid size L=1/2Rcutoff results in optimal neighbour search. A
finer grid gives a higher in range ratio but more visits to empty grid cells, leading to a lower
neighbour searching speed.

Because the set of nonbonded forces changes every few time steps, the position of every
particle has to be distributed over half of the ring. It is impossible to allocate particles to
processors in such a way that communication remains minimal.

Distribution of particles over half of the ring is insufficient for three and four particle
bonded force calculations because in this way not every position triple or quadruple is
present on at least one processor. During a simulation the set of bonded force calculations
does not change and the communication characteristics remain the same for a given alloca-
tion. So an allocation generated during a preprocessing phase remains valid during the
whole simulation. It is such that particles in triplet and quadruple interaction get close num-
bers, so will be allocated on close processors.

Software

The GROMACS software consists of preprocessing software, which runs on the host and
MD simulation software, which runs on the ring. The functionality includes Lennard-Jones,
Coulomb and harmonic potentials, many types of bond-angle and dihedral interactions, dif-
ferent types of neighbour searching, notions like charge groups, exclusions, position and
distance restraints, coupling to temperature and pressure baths and free energy calculation.
During the actual simulation process an MD simulation can be monitored, interrupted, mod-
ified, resumed and stopped.

i860

8MB
+

Dual-Port

RAM

1K x 8
Memory

8 MB

i860

PC Bus

Host

Computer

PC Bus

Dedicated Hardware Approaches: Overview on Existing Third-Party Solutions

HAM: Hardware Moved Molecules 35 TIK Report No. 38

The software is designed to work on a ring of any size, even on a single i860 board. Scaling
from 1 to 8 processors (tested on 2000 water molecules) gives negligible scaling overhead,
scaling from 8 to 32 processors yields only an efficiency of 75%. Communication overhead
is in the region of 10 to 15% for a ring of 32 processors. Based on these numbers one may
expect 20 to 30% overhead for 64 processors and 40 to 60% for a ring of 128 processors.

Performance

GROMACS does (3.5 to 7) x 106 nonbonded force calculations per second on a typical
problem including overhead of neighbour searching and bonded force calculations. It is 5-6
times faster than a CRAY and 3-4 times faster then the NEC SX-3 vector supercomputer.
For more information refer to [9].

4.1.5 MD-Engine

Introduction

MD-Engine is a special purpose parallel machine for molecular dynamic calculations made
by Fuji Xerox. In order to simplify the hardware, it was developed to calculate only non-
bonded forces.

Overall Hardware Architecture

An MD-Engine system consists of a host computer and up to 4 MD-Engine system boxes.
The host computer sends coordinates of particles or reciprocal lattice vectors to the MD
Engine, then the MD-Engine calculates and sends back forces, the virial or a coefficient of
reciprocal lattice vector (Fig. 4.12).

An MD-Engine system chassis may house up to 20 MD-Engine cards. On each card there
are 4 special purpose processors called MODEL-chip (MOlecular Dynamics Processing
ELement). The MODEL chip is responsible for all the required arithmetic operations to cal-
culate the nonbonded forces.

Fig 4.12 MD-Engine system and cards

Algorithm

To calculate the nonbonded forces the Van der Waals force and the Coulomb force are
needed. The Van der Waals force is calculated by:

Host

Computer
MD-Engine

System

MD-Engine

System

Cards

MODEL
Chip

x, y, z

Fx, Fy, Fz
Vx, Vy, Vz

nx/Lx, ny/Ly, nz/Lz

MD-Engine

TIK Report No. 38 36 HAM: Hardware Moved Molecules

Dedicated Hardware Approaches: Overview on Existing Third-Party Solutions

(4.14)

whererij(t) is a relative position vector between thei-th particle and thej-th particle,rij(t) is
the absolute value ofrij(t), Eij is a parameter of energy andr0ij is a scaling factor of distance.

The Coulombic interaction is written as:

(4.15)

whereqi andqj are the electric charges for each particle. When calculating Coulomb forces
in free space, three virial elements are summed up to Coulombic potential.

The Ewald method is a way to calculate Coulomb force precisely, when electrically charged
particles exist periodically. A rectangular box is modelled on the computer. The side lengths
of this box are defined asLx, Ly, Lz.

In eqn (4.16), eqn (4.18) and eqn (4.18) thex element of Coulomb force exerted on thei-th
particle are expressed:

(4.16)

(4.17)

(4.18)

An integer vectorn is defined asn=(nx, ny, nz), wherenx, ny, nz are integer numbers. The
position vector of thei-th particle’s image can be written asri,n=(nxLx+xi, nyLy+yi, nzLz+zi).
A reciprocal lattice vectorh is defined ash=(nx/Lx, ny/Ly, nz/Lz). α is an arbitrary positive
number and erfc(x) is the complement error function defined as:

(4.19)

Detailed Hardware Architecture

MD-Engine is a single-bus multi-port local memory multiprocessor system. The SBus and
VME bus interface card translates an SBus access request to a VME bus access request. All
MODEL chips are connected to the VME bus in parallel (Fig. 4.13).

f Lij t() Eij 2
r0ij

rij t()

 14 r0ij

rij t()

 8
–

rij t()=

f Cij t() qi

qj

rij t()3

rij t()=

f ix1 qi qj
2a

π
------- ari j n',()2

–()exp erfc arij n',()+

 xij n',

r
ij n'3,

n'
∑

j
∑=

f ix2

2qi

Lx
2

π2

n a
2

Lx
2⁄–

 exp

n
2

---nx qj 2πhrjcos
j

∑

2πhrj qj 2πhrjsin
j

∑

2πhrjcos–sin

⋅
n
∑=

f ix f ix1 f ix2+=

erfc x() 1
2

π
------- t

2
–()exp td

0

x

∫–=

Dedicated Hardware Approaches: Overview on Existing Third-Party Solutions

HAM: Hardware Moved Molecules 37 TIK Report No. 38

Fig 4.13 MD-Engine multiprocessor system

Three types of local memories are connected to the individual memory ports of the MODEL
chips. The coordinate memory stores coordinates, electrical charges and index numbers of
species of particles. The function memory stores the 4 sets of three coefficients for quadratic
interpolation. The parameter memory stores 2 or 8 sets of force field parameters. These
local memories are mapped to the internal register addresses of the MODEL chip.

The host computer can simply access internal registers of the MODEL chip and the local
memories as SBus memory mapped devices. While executing an MD simulation, often the
same data are written to the registers of the MODEL chips. The host computer can write the
MODEL chip registers at once using a global chip address. Before starting force calcula-
tion, the host computer broadcasts coordinates of all the particles, force field parameters and
coefficients of interpolation to the appropriate local memories of the MODEL chips. Only
the coordinate memories have to be updated at each time step. The MODEL chip carries out
all particlesj to obtain the force acting on thei-th particles. The force calculations of thei
particles are equally distributed on all MODEL chips. The coordinate memories of every
MODEL chip contains the coordinates of all particles. VME bus is not used during the force
calculation. Furthermore, a MODEL chip is able to access its three local memories simulta-
neously, which allows for parallel operations.

The goal of the MODEL chip was not only to calculate the values with enough accuracy, it
should also compute very fast, in addition minimal hardware design and costs was desira-
ble.

With the MODEL chip Van der Waals and Coulomb forces (eqn (4.15) and eqn (4.14)) can
be calculated directly. The Coulomb force can also be calculated with the Ewald method
(eqn (4.16), eqn (4.18), eqn (4.18) and eqn (4.19)). In addition the potential energy of the
system can be evaluated to ensure that the simulation is running correctly (Fig. 4.14).

The format of the position vector is defined as 40-bit floating-point format with 31 bits man-
tissa. 64-bit double floating point format with 52 bits wide mantissa is used to accumulate
pairwise forces and the virial. There are four 40-bit floating-point adders, three 40-bit float-
ing-point multipliers and two 64-bit floating-point adders in a MODEL chip.

Coordinate
Memory

Function
Memory

Parameter
Memory

Model
Chip 1

Coordinate
Memory

Function
Memory

Parameter
Memory

Model
Chip 2

Coordinate
Memory

Function
Memory

Parameter
Memory

Model
Chip N

SBus - VME bus
Interface

SBus VME bus

TIK Report No. 38 38 HAM: Hardware Moved Molecules

Dedicated Hardware Approaches: Overview on Existing Third-Party Solutions

Fig 4.14 Functional block diagram of MODEL chip

When calculating Coulombic force all position vectors and electrical charges are fetched
from the coordinate memory. Coulombic force and virial are calculated simultaneously. The
reciprocal lattice vector and parameter memory are not used. When calculating Van der
Waals force, a neighbour list scheme can be used, which may be generated by the MODEL
itself while calculating Coulombic force or by the host computer. The reciprocal lattice vec-
tor is not used in this mode. In order to calculate the Ewald sum, the MODEL chip is used in
five steps and the parameter memory and neighbour list are not used.

There are three library classes delivered with the MD-Engine. The low level and interface
libraries and the application program. The functions in the low level library control the
hardware of the MD-Engine. SBus devices are mapped into user virtual addresses. The
function supports broadcasting data to all MODEL chips or only to one. Functions in the
low level library are called from functions in the interface library, which are called itself
from the application program and hide the system architecture from the application pro-
grammer.

Performance

A MODEL chip calculates one pairwise force within 400ns. If only a few MODEL chips
are used the calculation time is proportional to O(N2). If there is a large number of MODEL
chips in the system the calculation time of the nonbonded forces is shorter than the calcula-
tion time of the tasks running on the host. Then the simulation time is proportional to O(N),
because it is limited by the computation time of the host computer and the communication
time between the host computer and the MODEL chips.

An experiment with N=11,940 and 24 MODEL chips takes 3.6 seconds to advance one time
step. With this the MD-Engine accelerates an MD calculation by a factor of 98 compared to
a SPARCstation 10. The experiment shows that with a 6-card MD-Engine system, the accel-
erator is more or less optimized for a simulation systems with ~12,000 particles.

force

virial

Σ

Σ

function

parameters

distance2

delay

neighbour list

position
vector

relative
position vector

coordinate
memory

parameter
memory

function
memory

reciprocal
lattice vector

VME bus

Dedicated Hardware Approaches: New Proposals

HAM: Hardware Moved Molecules 39 TIK Report No. 38

4.2 New Proposals

4.2.1 Parallel Gromos MD Algorithm

To reach the desired speed-up it is indispensable to calculate the solvent-solvent non bonded
forces and the pairlist on the coprocessor. To maintain the full range of possible hardware
architectures we need parallel models of these functions. The simulation space may be
divided spatially into slices to distribute the force calculation on several processors. The
number of slices equals the number of force processors. Two slices are not distinct because
they overlap due to the cutoff radius. This distribution has the effect that the input data, the
coordinates and the pairlist, must not be copied to all processors but are distributed accord-
ing the spatial division. On the other hand, the bigger the cutoff radius gets compared with
the slice width, the more data must be copied to the neighbouring force processor.

Fig. 4.15 shows a parallel version of the Gromos MD algorithm. The CDFG diagram in the
figure is simplified to improve readability. We developed a generic model for the force cal-
culation such that the number of force nodes is a parameter for other functions. We intro-
duced new special functions likefork andjoin. These functions distribute and gather data,
where the number ofdis nodes is an input parameter for thefork function and the number of
sum nodes an input parameter for thejoin node, respectively.

Fig 4.15 Simplified CDFG

The parallelisation of the pairlist function is more difficult, but with the division intoParts,
solvPair andsoluPair, in combination with a new efficient algorithm, an adequate approach

soluPair
Parts

Integration, shake

solvPair

fork

dis1 dis2

solvForce1 2 3 4 5 6 7 8 9 10

join

End (Shake/Int)

soluForce

sum1 sum2

BondedForces, etc.

TIK Report No. 38 40 HAM: Hardware Moved Molecules

Dedicated Hardware Approaches: New Proposals

is guaranteed. The partial pairlistsolvPair contains only solvent pairs where thesoluPair
list contains solute pairs and solute-solvent pairs.

The non bonded forces are split-up into one ore more solvent-solvent force calculation func-
tionssolvForce and one solute interaction functionsoluForce. The nodesfork anddis have
no functional implementation, they distribute the data to thesolvForce nodes. The nodes
sum andjoin gather the results and calculate the partial intermediate sums of the forces of
the charge groups located in the appropriate cutoff overlap zone.

4.2.2 Hardware Accelerator with General Purpose RISC Processors

How can this algorithm be mapped on a general parallel coprocessor with general purpose
(RISC) micro processors? Let’s take the benchmark with water and octahedron boundaries
(table 3.3). If we want to accelerate the simulation time by a factor of ten on a today’s work-
station, we have 2.13 seconds per iteration to do all “outsourced“ calculations and commu-
nications with the host, for a well balanced system. Thus, if the host computer performance
doubles within the next 1.5 years the remaining time is about half a second, assumed our
hardware is ready for delivery in two or three years. The problem is that the improvement in
communication systems (bandwidth) is slower. What we try is to find an architecture fulfill-
ing the computational requirements with the fastest available components (ASIC’s, MCM,
RISC processors) with an already today established communication system (e.g. PCI) for a
host machine available in 3 years.

Fig 4.16 Coprocessor with general purpose RISC processors

Fig. 4.16 shows a possible architecture. With the models presented in paragraph 3.4, the
profiling results, a speed-up of ten, the expected bandwidth needed between host and copro-
cessor lies around 10 Mbyte/s. A PCI bus allowing block transfers with a device driver sup-
porting asynchronous DMA transfers on both sides provides enough bandwidth. On the
coprocessor side, we are free to design very fast data connections (64 bit bus, high speed
serial links) and intelligent data distribution and collector processors (ASIC’s). Calculation
is done with the newest and fastest RISC processors (ALPHA, PowerPC), connected to an
application specific memory structure allowing shortest access times or data pipelining.

Address Processor

Sum Dis

Memory

37

Intelligent 2nd
Level Cache

CPU

Address Unit
Module 0

Module 1

...

Host Interface
10 MByte/s

Dedicated Hardware Approaches: New Proposals

HAM: Hardware Moved Molecules 41 TIK Report No. 38

The address processor acts as a bus master on coprocessor side distributing data and collect-
ing and adding up the partial forces to keep the number of data to transfer over the host
interface low.

4.2.3 Hardware with Sharc Signal Processor

Analog Device’s SHARC (Super Harvard ARchitecture Computer) is a high performance
32-bit digital signal processor. The SHARC builds on the ADSP-21000 family DSP core to
form a complete system on-a-chip, adding a dual-port on-chip SRAM and integrated I/O
peripherals supported by a dedicated I/O bus. Four independent buses for dual data, instruc-
tions, I/O, plus crossbar switch memory connections, comprise the super Harvard architec-
ture. It has a clock-frequency of 40 MHz, which results in a sustained performance of 40
Mips and a peak performance of 120 Mflops. The block diagram of the SHARC DSP is
shown in Fig. 4.17.

The ADSP-2106x core processor consists of three independent computation units: an ALU,
a multiplier with a fixed-point accumulator and a shifter. The computation units process
data in three formats: 32-bit fixed-point, 32-bit floating-point and 40-bit floating-point.
Floating-point formats are compatible to standard IEEE format. The ALU performs a stand-
ard set of arithmetic and logic operations in fixed- and floating-point formats. The multiplier
performs fixed- and floating-point multiplication as well as fixed-point multiply/add and
multiply/subtract operations. The shifter performs logical and arithmetic shifts, bit manipu-
lation, field deposit, extraction and exponent derivation operations on 32-bit operands. The
computation units perform single-cycle operations without being pipelined. There can be a
multifunction computation where the ALU and multiplier perform independent, simultane-
ous operations.

Fig 4.17 Block diagram of SHARC DSP

TIK Report No. 38 42 HAM: Hardware Moved Molecules

Dedicated Hardware Approaches: New Proposals

The data register file contains two sets of sixteen 40 bit registers, to allow for fast context
switching. It is used for transferring data between the computation units and the data buses
and for storing intermediate results.

The program sequencer supplies instruction addresses to the program memory. It controls
loop iterations and evaluates conditional instructions. The ADSP-2106x achieves its fast
execution rate by means of pipelinedfetch, decode andexecute cycles. With its instruction
cache, it can simultaneously fetch an instruction from cache and access two data operands
from memory.

The data address generators (DAGs) provide memory addresses when data is transferred
between memory and registers. Dual data address generators enable the processor to simul-
taneous output any addresses for two operand reads or writes. DAG1 supplies 32-bit
addresses to data memory. DAG2 supplies 24-bit addresses to program memory for pro-
gram memory access. Each DAG keeps track of up to eight address pointers, eight modifiers
and eight length values. A length value may be associated with each pointer to perform
automatic modulo addressing for circular data buffers. With an internal loop counter and
loop stack, the ADSP-2106x executes loop code with zero overhead. No explicit jump
instructions are required to decrement and test the counter. The DAGs automatically handle
address pointer wraparound, reducing overhead, increasing performance, and simplifying
implementation. Each DAG register has an alternate register that can be activated for fast
context switching.

The processor core has four buses: program memory address bus, data memory address bus,
program memory data bus, and data memory data bus. The data memory stores data oper-
ands while the program memory is used to store both instructions and data. This allows for
dual data fetches, when the instruction is supplied by the instruction cache. The PM Address
bus is 24 bits wide, allowing access of up to 16 Mwords of mixed instructions and data. The
PM Data bus is 48 bits wide to accommodate the 48-bit instruction width. The DM Address
bus is 32 bits wide allowing direct access of up to 4 Gwords of data. The DM data bus is 40
bits wide. The PX bus connect registers permit data to be passed between the 48-bit PM
data bus and the 40-bit DM Data bus or between the 40-bit register file and the PM Data
bus.

The ADSP-21060 contains 4 Mbits of on-chip SRAM, organized as two blocks of 2 Mbits
each, which can be configured for different combinations of program and data storage. The
ADSP-21062 includes 2 Mbit SRAM, organized as two 1 Mbit blocks. Each memory block
is dual-ported for single-cycle, independent access by the core processor and I/O processor
or DMA controller. The memory can be configured as a combination of different word sizes
up to 4 or 2 Mbits. All of the memory can be accessed as 16-bit, 32-bit or 48-bit words.

The external port provides the processor’s interface to off-chip memory and peripherals.
The four Gword off-chip address space is included in the ADSP-2106x’s unified address
space. The separate on-chip buses are multiplexed at the external port to create an external
system bus with a single 32-bit address bus and a single 48-bit data bus. External SRAM
can be either 16, 32, or 48 bits wide. The ADSP-2106x’s on chip DMA controller automati-
cally packs external data into the appropriate worth width. Separate control lines allow for
simplified addressing of page-mode DRAM. The ADSP-2106x provides programmable
memory wait states and external memory acknowledge controls to allow interfacing to
DRAM and peripherals with variable access, hold and disable time requirements.

Dedicated Hardware Approaches: New Proposals

HAM: Hardware Moved Molecules 43 TIK Report No. 38

The host interface allows easy connection to standard microprocessor buses with little addi-
tional hardware required. It is accessed through the external port and is memory mapped
into the unified address space. The host can directly read and write the internal memory of
the ADSP-2106x.

The ADSP-2106x has two synchronous serial ports that provide an inexpensive interface to
a wide variety of digital and mixed-signal peripheral devices. It can operate at the full clock
rate of the processor. Serial port data with word lengths selectable from 3 to 32 bits, can be
automatically transferred to and from on-chip memory via DMA. The ADSP-2106x has six
4-bit link ports, which can be clocked twice per cycle allowing both to transfer 8 bits per
cycle. Link port I/O is especially useful for point-to-point interprocessor communication in
multiprocessing systems. The link port can operate independently and simultaneously, with
a maximum data trough-put of 240 Mbytes/s. Data is packed into 32-bit or 48-bit words and
can be directly read by the core processor or DMA-transferred to on-chip memory.

The DMA controller allows zero-overhead data transfers without processor intervention. It
operates independently and invisibly to the processor core. DMA transfers can occur
between the ADSP-2106x’s internal memory and external memory, external peripherals, or
a host processor. DMA transfers can also occur between the ADSP-2106x’s internal mem-
ory and its serial port or link ports. Ten channels of DMA are available on the ADSP-
2106x; two over the link ports, four over the serial ports and four over the processor’s exter-
nal port. Therefore code and data transfers can be accomplished with low software over-
head.

Up to six ADSP-2106xs and a host processor can directly be connected together. Distributed
bus arbitration logic is included on chip. Bus arbitration is selectable as either fixed or rotat-
ing priority. The unified address space allows direct interprocessor access of each ADSP-
2106x’s internal memory. Master processor change-over requires only one cycle of over-
head. Maximum throughput for interprocessor data transfer is 240 Mbytes/s over the link
ports or external port. Broadcast writes allow simultaneous transmission of data to all
ADSP-2106xs.

Fig 4.18 Hierarchical sharc coprocessor board

We implemented the distance algorithm on an ADSP-21060 and have optimized and simu-
lated the programming code. A benchmark is shown in paragraph 6. The ADSP-2106x is
described in more details in Analog Devices SHARC documentation [28].

• solvForce
1..N

CPU RAM

ADSP

CPU RAM

ADSP

CPU RAM

ADSP

CPU RAM

ADSP

CPU RAM

ADSP

CPU RAM

ADSP

CPU RAM

ADSP

Host Interface
10 MByte/s

RAM RAM

... ...

• Parts, solvPair, soluPair
• fork
• join

• dis1/2
• sum 1/2

TIK Report No. 38 44 HAM: Hardware Moved Molecules

Dedicated Hardware Approaches: Comparison

To map the Gromos functions on a SHARC architecture, we suggest a hierarchical architec-
ture as in fig. 4.18: The connections between the SHARC’s are high speed link ports, the
host connection may be a PCI bus to provide enough bandwidth.

The bulleted function-list near the processors in Fig. 4.18 relates to those in Fig. 4.15.

4.3 Comparison

4.3.1 Existing Third-Party Solutions

MD-Grape calculates forces and viral directly. For energies two runs are necessary. It could
be used in force- or potential mode. DFT/IDFT mode is not necessary for GROMOS. With
MD-Grape you have a problem to generate a pairlist, because distances are stored internally
in the MD-chip and cannot be obtained externally. Position vectors are stored in 40-bit fixed
point format. This is more precise than the 32-bit floating point format but the number range
is not so high as used for GROMOS where coordinates are stored in 32-bit floating point
format. Therefore MD-Grape is not suitable to implement the GROMOS algorithm.

GRAPE-4 is huge system, on which one could compute all the necessary calculations,
which should be made on our coprocessor. But GRAPE-4 is not suited as coprocessor
because of its size. In addition it is quite expensive. The GROMOS-coprocessor should be
small box, which can be placed close to a workstation and which should not be too expen-
sive.

The GROMACS system is built similar as our coprocessor system could be. Only non-
bonded forces are calculated on GROMACS and the calculation space is splitted into boxes
for calculating the neighbour list as we may consider for our pairlist calculation. Particles
data distribution and communication over the ring is a good idea to solve the N2-problem.
We will probably use a ring architecture too, if our coprocessor system is a parallel proces-
sor, but we will need to use then faster processor elements.

There is a similar problem to use the MD-Engine as for GRAPE-4: it is a large, expensive
system. The most interesting thing about MD-Engine is the MODEL-chip, with which we
could calculate the forces, virial and energies of the atoms.

4.3.2 New Proposals

Both suggestions are scalable architectures. This is important to adapt the performance of
the coprocessor system to the simulation complexity. The major advantages of the SHARC
system are the simplicity of assembly, the availability of a C compiler for the processors
including third party libraries and drivers, the disadvantage is the need to program in assem-
bler to get efficient implementations. The advantage of the RISC system is the availability
of excellent compilers so there is no need to program in assembler. This fact leads to porta-
ble and therefore reusable function specifications and implementations. The need of lots of
user specified hardware, ASIC’s, and the general heterogeneity of the system are the disad-
vantages.

Hardware Modelling: Communication Models for Host and Sharc

HAM: Hardware Moved Molecules 45 TIK Report No. 38

5 Hardware Modelling

5.1 Communication Models for Host and Sharc

Our target system will be a kind of distributed memory multiprocessor (host and coproces-
sor system) in which processors communicate with each other by point to point links. Our
communication model describes the performance data of the underlying interconnection
network, but not the physical layer itself. We defined the following main communication
parameters:

L latency: time to communicate one single word from the source processor to a
destination memory of another processor.

o overhead: time that a processor is occupied in the transmission or reception of
data. During this time, the processor cannot perform other operations.

g gap: minimum time between two consecutive writes or reads on a channel. The
reciprocal of g is the bandwidth available on this channel.

We used this communication model to model the MD algorithm and the hardware
(paragraph 6). We set L=0 and g=0 for host internal and sharc internal communication. The
host-coprocessor interface is specified with g=0.1sec/Mbyte, the sharc-sharc communica-
tion according to the data sheet (link ports) with g=0.025sec/Mbyte.

With a first approximation the latency and overhead
was neglected (o=0 in Fig. 5.1). It was assumed that
communication is done in the background without
slowing down the processor. In addition, an overlap
scheme is introduced enabling the subsequent oper-
ation to start even if the communication is not fin-
ished.

5.2 Performance Models for Host and Sharc

The pairlist and solvent force calculation routines were tested on different host machines to
compare the specified performance (common used benchmarks on workstations) with the
real performance achieved for our functions. We made use of eqn (3.7) and eqn (3.9), com-
bined with the measured time, and get 41 Mflops for the Sun (Sun ultra 1 creator, 170 MHz,
specification from sun: SPECint_95: 7.44, SPECfp_95: 10.4). The SHARC could not yet be
measured, we choose an average of 80 Mflops, what seems suitable for functions directly
programmed in assembler.

5.3 Generally Applicable Multiprocessor Models

In this chapter we examine speed-up and communication overhead of different parallel
processor topologies with respect to the number of processing elements (PEs). The architec-
tures of the examined systems are distributed memory systems. Each PE consists of a proc-
essor, a memory block and a communication node, which interconnects the PE and the
communication net. The goal was to find a possible data distribution among PEs such that
data can be exchanged without or with only few collisions. Similar topics are treated in [12]
and [15].

Task0 ohost

interface

target Task1 o

overlap

Fig 5.1 Overlap

TIK Report No. 38 46 HAM: Hardware Moved Molecules

Hardware Modelling: Generally Applicable Multiprocessor Models

5.3.1 General Calculation Problem

As simple example we use the solution of the O(N2) pairlist calculation problem. The calcu-
lation of distances, forces, energies and virial in GROMOS is always done between pairs of
atoms. The pairlist is generated by calculating the distances between all molecules. There-
fore the acceleration of the distance calculation is an important part of the algorithm. The
results of the distance calculation can then be placed in a matrix (Fig. 5.2), where the mole-
cules (molecule number) specifies the x-y coordinate. The matrix is symmetric and always
one of the two corresponding entries is positive, the other negative. Therefore only half of
the matrix has to be calculated and can then be mirrored and multiplied with -1. In Fig. 5.2
only the parts in the upper triangle must be calculated and can then be mirrored into the
hatched part, which has to be multiplied with -1.

For our investigations only the solvent-solvent part is considered on the GROMOS copro-
cessor.

Fig 5.2 Calculation matrix

To determine which molecules interact, the question is how to distribute the molecules
among the PEs. Assuming that all PEs are identical, the best thing would be to distribute all
molecules evenly onto PEs to save memory space. With this, there is the problem that the
first molecule has to be compared with all others, the second must be compared with all oth-
ers except the first, the third must be compared with all others except the first and the second
and so on (Fig. 5.3). This complicates communication or requires uneven distribution of
molecules among PEs.

Fig 5.3 Tie of the molecules

In the following chapters different communication topologies and data exchange methods
between PEs are described. We have estimated the communication overhead with the
number of PEs and molecules and have compared the different topologies.

Solute Solvent

Solute

Solvent

0

Solute-Solvent

Solvent-Solvent

Solute-Solute

1 2 3 4
molecules

Hardware Modelling: Generally Applicable Multiprocessor Models

HAM: Hardware Moved Molecules 47 TIK Report No. 38

The communication time to transfer data from the host to the coprocessor is neglected in the
estimations. Only the number of computation steps and communication cycles on the copro-
cessor are taken into account. In one computation step two molecules per processor are
compared. As further simplification we assume, that a processor is able to calculate the dis-
tance of one molecule-pair within one clock cycle. This is e.g. made possible with pipelin-
ing, where in each clock cycle a new pair of coordinates is read and a distance is transferred
to memory.

Each processor can access the memory of any other PE through its communication node. As
memory we assume dualported SRAMs. With this, the communication node can access data
without interrupting the processor. We have modelled the communication node, such that it
can send data to a PE and simultaneously request data from another PE.

The number of communication cycles is determined by the communication latency. The
latency is measured in clock cycles. We assume the data width such, that one of the three
coordinates of an atom can be sent within one cycle. Therefore three communication cycles
are needed to transfer the coordinates of one atom or one molecule.

Molecules, are only stored in the memory of one single PE. Locally not available molecules
are requested through the communication net from the corresponding PE and are immedi-
ately used by the requesting processor for computation. The result is stored in the local
memory of the PE where it was calculated and the requested molecule is discarded. We
compare our estimation with an ideal speed-up, where communication time is 0 and load is
evenly balanced on all PEs. The computation time on an ideal parallel processor is:

(5.1)

where P is the number of PEs and NSM is the total number of molecules.

5.3.2 Bus Architecture

A bus is the simplest architecture but also implies the biggest communication overhead, if
the molecules are equally distributed on the PEs

Fig 5.4 Bus Architecture

T
1
P
--- i

i 1=

NSM 1–

∑

 1

2P
------ NSM 1–() NSM⋅= =

Dual-Port
SRAM

Prozessor

0

K
Dual-Port
SRAM

Prozessor

1

K
Dual-Port
SRAM

Prozessor

2

K
Dual-Port
SRAM

Prozessor

3

K

TIK Report No. 38 48 HAM: Hardware Moved Molecules

Hardware Modelling: Generally Applicable Multiprocessor Models

For this case it is not possible having computation and communication in parallel, therefore
we have not further analysed this case.

Here the best thing is to store all molecules on all PEs. With this, the molecules must be dis-
tributed over all PEs at the beginning of the calculation, therefore the bus is not used during
computation. This model allows for almost linear speed-up with the number of processors
but at the cost of memory.

Because there is no communication during computation the communication time is 0 as for
the ideal speed-up. The computation time for a bus system is:

(5.2)

5.3.3 2D-Net

With a 2D-net including diagonal connections every processor can simultaneous read data
from any other neighbouring PE’s memory, see fig. 5.5. All communication links are
assumed to be full duplex.

Fig 5.5 2D-net with 6 communication links

If we look at the calculation problem in paragraph 5.3.1 we see, that every processor must
first compare all molecules in its local memory. Then all molecules from its local memory
must be compared with all molecules from the other PEs. To avoid double calculations,
every processor must only compare half of the molecules in its local memory with all mole-
cules on the other PEs to avoid double calculating. For a better understanding, we split the
molecules in a PE’s memory into two sets A and B. Each set of every PE must be compared
with all other sets of the same and the other PEs.

T Round
1
P
--- i

i 1=

NSM 1–

∑

1+ Round
1

2P
------ NSM 1–() NSM⋅

 1+= =

Dual-Port
SRAM

Dual-Port
SRAM

Dual-Port
SRAM

Dual-Port
SRAM

Prozessor

2

Prozessor

0

Prozessor

1

Prozessor

3

K

K K

K

Hardware Modelling: Generally Applicable Multiprocessor Models

HAM: Hardware Moved Molecules 49 TIK Report No. 38

With this a computation scheme can be found, that implies no communication conflicts. The
table below shows, how calculation is done and from which memory each processor takes
the molecules:

We see, that the available communication bandwith is not fully utilized in table 5.1. There
are 6 full duplex links. With this 12 data sets can be exchanged simultaneously among PEs.
In the above computation scheme only 4 connections are used simultaneously. If we only
allow for half duplex links, the following computation scheme can be found.

Also here only 4 communication connections are used simultaneously. The results in
table 5.2 also show, that in the first three time steps no connections are utilized. During the 9
timesteps only 24 connections are set up in total. Without diagonal communication links,
two adjacent communication links must be used to support one diagonal transaction. Since
there are 8 diagonal transactions, we need 24+8=32 connections for the whole calculation.

Table 5.3 shows the computation scheme when only 4 half duplex links are available.

With the 2D-net and 6 communication links, load balancing is regular in each timestep. If
we only have 4 links, load balancing is not regular. In table 5.3, we see that at timestep 3
processors 0 and 3 calculate molecules both within the second half of their local memory
and where processors 1 and 2 calculate molecules from their local and from other memo-
ries. Therefore processors 1 and 2 have to calculate more interactions than processors 0 and
3 in timestep 2. In timestep 4 its the same but vice versa.

Timestep P0 P1 P2 P3

1 0A - 0A 1A - 1A 2A - 2A 3A - 3A

2 0B - 0B 1B - 1B 2B - 2B 3B - 3B

3 0A - 0B 1A - 1B 2A - 2B 3A - 3B

4 0A - 1A 1B - 0B 2A - 3A 3B - 2B

5 0A - 1B 1A - 0B 2A - 3B 3A - 2B

6 0A - 2A 1A - 3A 2B - 0B 3B - 1B

7 0A - 2B 1A - 3B 2A - 0B 3A - 1B

8 0A - 3A 1A - 2A 2B - 1B 3B - 0B

9 0A - 3B 1A - 2B 2A - 1B 3A - 0B

Table 5.1 Computation scheme with 4 processor elements and 6 full duplex links

Timestep P0 P1 P2 P3

1 0A - 0A 1A - 1A 2A - 2A 3A - 3A

2 0B - 0B 1B - 1B 2B - 2B 3B - 3B

3 0A - 0B 1A - 1B 2A - 2B 3A - 3B

4 0A - 1A 1B - 3B 2B - 0B 3A - 2A

5 0A - 2A 1B - 0B 2B - 3B 3A - 1A

6 0A - 1B 1A - 2B 2A - 3B 3A - 0B

7 0A - 3B 1A - 0B 2A - 1B 3A - 2B

8 0A - 2B 1B - 3A 2A - 1A 3B - 0B

9 0A - 3A 1B - 2B 2A - 0B 3B - 0B

Table 5.2 computation scheme with 4 processor elements and 6 half duplex links

TIK Report No. 38 50 HAM: Hardware Moved Molecules

Hardware Modelling: Generally Applicable Multiprocessor Models

Fig 5.6 2D-net with four communication links

The communication links are only used, when a new molecule from another PE has to be
fetched. After that, the communication net is not used. Therefore processors must not be
halted, if load balancing is uneven at a timestep. They can already begin to calculate the
interactions for the next timestep. In this way, load balancing over the whole computation
gets regular, because all processors have to calculate the same number of interactions during
the whole computation. The calculation time for a 2D net can be computed as follows:

(5.3)

For the communication time only the number of molecules must be considered, which are
transferred through the communication net. These number has to be multiplied with the
communication latencyl: The communication time in a 2D-net results in:

Timestep P0 P1 P2 P3

1 0A - 0A 1A - 1A 2A - 2A 3A - 3A

2 0A - 0B 1A - 2A 2B - 1B 3A - 3B

3 0B - 0B 1A - 2B 2A - 1B 3B - 3B

4 0A - 3A 1B - 1B 2B - 2B 3B - 0B

5 0A - 3B 1A - 1B 2A - 2B 3A - 0B

6 0A - 1A 1B - 3B 2B - 0B 3A - 2A

7 0A - 1B 1A - 3B 2A - 0B 3A - 2B

8 0A - 2A 1B - 0B 2B - 3B 3A - 1A

9 0A - 2B 1A - 0B 2A - 3B 3A - 1B

Table 5.3 Computation scheme with 4 processor elements and 4 half duplex links

Dual-Port
SRAM

Dual-Port
SRAM

Dual-Port
SRAM

Dual-Port
SRAM

Prozessor

2

Prozessor

0

Prozessor

1

Prozessor

3

K

K K

K

Tcal i
i 1=

NSM
P

------------- 1–

∑

1
2
--- NSM

P
------------- 1 1

P
---–

 NSM⋅ ⋅+=

Hardware Modelling: Generally Applicable Multiprocessor Models

HAM: Hardware Moved Molecules 51 TIK Report No. 38

(5.4)

The whole computation time for the 2D net is:

(5.5)

(5.6)

A 2D-net supports up to four PEs. If more need be used, the communication network will
become a bottleneck. In the next section we examine communication nets, which support
more processors.

5.3.4 Hyper Cube

Fig 5.7 Hyper cube (3D-net)

In a hyper cube only the PEs on the edges at one side are directly connected together. Trans-
fers of data from across the diagonal have to be routed through another PEs. As for the 2D-
net the communication links are assumed to be half duplex.

Let’s consider a system with 8 PEs. The molecules are divided into two sets again as in
paragraph 5.3.3. One set on a processor has to be compared with all other sets on the other
PEs, which takes 7*2=14 timesteps. In addition each processor has to compare all mole-
cules within its local memory. This takes 3 timesteps since each of the two sets have to be
compared with itself and with each other. Therefore it takes 17 timesteps to calculate all
interactions.

We can now calculate the required connections. 17 timesteps and 12 communication links
are available. This results in totally 204 available connections for the entire computation. It
takes two communication links at a time for fetching data from a diagonally placed PE on

Tcom l 1 1
P
---–

 NSM⋅=

T Tcal Tcom+=

T
1
2
--- NSM

P
------------- 1–

 NSM
P

 NSM

2P
------------- l+

 1 1
P
---–

 NSM+=

Prozessor

1

Dual-Port
SRAM

K

Prozessor

3
Dual-Port
SRAM

K

Prozessor

0

Dual-Port
SRAM

K

Prozessor

2
Dual-Port
SRAM

K

Prozessor

5

Dual-Port
SRAM

K

Prozessor

7
Dual-Port
SRAM

K

Prozessor

4

Dual-Port
SRAM

K

Prozessor

6
Dual-Port
SRAM

K

TIK Report No. 38 52 HAM: Hardware Moved Molecules

Hardware Modelling: Generally Applicable Multiprocessor Models

the same plane and three communication links for fetching data from a PE, which is placed
diagonally across the cube. Determining the required links, we get 8*(2*3*1 + 2*3*2 +
2*1*3)=192 connections for the entire computation.

It should theoretically be possible, to develop a computation method without communica-
tion collisions. But the problem is that 192/17=11.3, which means, that in every timestep all
communication links must be used. But no computation method could be found, which can
utilize all 12 communication links.

As stated above 8 PEs are available and on the average 8 connections can be used at time.
Thus 136 connections are available within 17 timesteps. This is to few for communication
without conflicts. That’s why we have added four diagonal communication links as shown
in Fig. 5.7. Thus reduces the required number of connections to 8*(2*3*1 + 2*3*2 +
2*1*1)=80 for the entire computation. Table 5.4 shows the computation scheme. As in
table 5.3 the load balancing is not equal in all timesteps, but processors need not to be halted
for the same reason as discussed in paragraph 5.3.3, thus making the load balancing even
over the whole computation.

Since the same number of molecules are transferred through the communication net as with
the 2D-net, the computation time of the hyper cube can also be calculated with eqn (5.3),
eqn (5.4), eqn (5.5) and eqn (5.6).

An extension of a hyper cube to more processors is difficult. With 16 processors you would
have a 4D-net, with 32 processors you need a 5D-net and so on. It is expensive to physically
realize such a system.

Timestep P0 P1 P2 P3 P4 P5 P6 P7

1 0A - 0A 1A - 1A 2A - 2A 3A - 3A 4A - 4A 5A - 5A 6A - 6A 7A - 7A

2 0A - 0B 1A - 4A 2A - 2B 3A - 6A 4B - 1B 5A - 5B 6B - 3B 7A - 7B

3 0B - 0B 1A - 4B 2B - 2B 3A - 6B 4A - 1B 5B - 5B 6A - 3B 7B - 7B

4 0A - 5A 1B - 1B 2A - 7A 3B - 3B 4B - 4B 5B - 0B 6B - 6B 7B - 2B

5 0A - 5B 1A - 1B 2A - 7B 3A - 3B 4A - 4B 5A - 0B 6A - 6B 7A - 2B

6 A0 - 2A 1B - 0B 2B - 3B 3A - 1A 4B - 5B 5A - 7A 6A - 4A 7B - 6B

7 0A - 2B 1A - 0B 2A - 3B 3A - 1B 4A - 5B 5A - 7B 6A - 4B 7A - 6B

8 0A - 4A 1B - 3B 2B - 0B 3A - 7A 4B - 6B 5A - 1A 6A - 2A 7B - 5B

9 0A - 4B 1A - 3B 2A - 0B 3A - 7B 4A - 6B 5A - 1B 6A - 2B 7A - 5B

10 0A - 1A 1B - 6B 2A - 4A 3A - 5A 4B - 2B 3B - 5B 6A - 7A 7B - 0B

11 0A - 1B 1A - 6B 2A - 4B 3A - 5B 4A - 2B 3B - 5A 6A - 7B 7A - 0B

12 0A - 3A 1B - 5B 2B - 6B 3B - 0B 4A - 7A 5A - 2A 6A - 1A 7B - 4B

13 0A - 3B 1A - 5B 2A - 6B 3A - 0B 4A - 7B 5A - 2B 6A - 1B 7A - 4B

14 0A - 6A 1A - 7A 2B - 5B 3A - 2A 4B - 3B 5A - 4A 6B - 0B 7B - 1B

15 0A - 6B 1A - 7B 2A - 5B 3A - 2B 4A - 3B 5A - 4B 6A - 0B 7A - 1B

16 0A - 7A 1A - 2A 2B - 1B 3A - 4A 4B - 0B 5A - 6A 6B - 5B 7B - 3B

17 0A - 7B 1A - 2B 2A - 1B 3A - 4B 4A - 0B 5A - 6B 6A - 5B 7A - 3B

Table 5.4 Computation scheme with 8 processors in a hyper cube

Hardware Modelling: Generally Applicable Multiprocessor Models

HAM: Hardware Moved Molecules 53 TIK Report No. 38

5.3.5 Recursive Structure

Fig 5.8 Recursive structure

A multiple processor architecture could e.g. be built recursive from a 2D system as shown in
fig. 5.8. In this approach one PE is a cluster with 4 PEs. The computation method on the PEs
in a cluster is the same as in table 5.3 of the 2D-net. Additionally each communication node
is connected to a global node, which are itself connected to the global communication net,
on which again the same computation method is used as on the processor clusters.

Table 5.5. shows a possible computation scheme. It is a recursive extension of table 5.3 of
the 2D-net and is simplified to improve readability. Only the number of the processor mem-
ory from which the second particle is fetched, is listed, because the first molecule is always
fetched from the own processor memory. Remember: each of the processor calculates only
half of the interactions from the memories, this is not listed in the table because of the com-
plexity.

With the recursive structure the calculation time remains the same as with the other struc-
tures:

(5.7)

Concerning the communication time we have now to consider two different latencies. One
is the local latencyl l for fetching data in the same processor cluster over the local net and
the second is the global latencylg for fetching data from another processor cluster over the
global nodes and global communication net, which takes more time.

ProzessorDual-Port
SRAM

Prozessor

0
K

Dual-Port
SRAM

Prozessor

2

K

Dual-Port
SRAM

1
K

Prozessor

Dual-Port
SRAM

3

K

GK

ProzessorDual-Port
SRAM

Prozessor

4
K

Dual-Port
SRAM

Prozessor

6

K

Dual-Port
SRAM

5
K

Prozessor

Dual-Port
SRAM

7

K

GK

ProzessorDual-Port
SRAM

Prozessor

8
K

Dual-Port
SRAM

Prozessor

10

K

Dual-Port
SRAM

9
K

Prozessor

Dual-Port
SRAM

11

K

GK

ProzessorDual-Port
SRAM

Prozessor

12
K

Dual-Port
SRAM

Prozessor

14

K

Dual-Port
SRAM

13
K

Prozessor

Dual-Port
SRAM

15

K

GK

Tcal i
i 1=

NSM
P

------------- 1–

∑

NSM
2P

------------- 1 1
P
---–

 NSM⋅+=

TIK Report No. 38 54 HAM: Hardware Moved Molecules

Hardware Modelling: Generally Applicable Multiprocessor Models

For the communication time in a recursive structure follows

(5.8)

whereP stands for the number of processors andQ is the number of processor clusters.

The total computation time for a recursive structure is

(5.9)

(5.10)

The advantage of this communication structure is, that it can simply be extended up to a
system with 64 processors. In this case, the global structure would be a hyper cube and
every processor cluster would be again a hyper cube itself. A system with 32 processors
could either be a 2D-net with hyper cube processor clusters or a hyper cube with 2D-net
processor clusters. Concerning communication time the first is better, since only 3/4 of the
communication is done over the global net compared to 7/8 as in the second case.

The recursive structure can be refined into more recursive steps so that you have for exam-
ple a 2D-net global net with 4 processor systems, every processor system itself being a
hyper cube with 8 processors clusters and every processor cluster is a 2D-net again with 4
processor elements, but the communication latency would increase to an unacceptable level.

Time-
step

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11

P
12

P
13

P
14

P
15

1 0 2 3 1 8 8 8 8 12 12 12 12 4 4 4 4

2 3 1 0 2 9 9 9 9 13 13 13 13 5 5 5 5

3 1 3 2 0 10 10 10 10 14 14 14 14 6 6 6 6

4 2 0 1 3 11 11 11 11 15 15 15 15 7 7 7 7

5 12 12 12 12 4 6 7 5 0 0 0 0 8 8 8 8

6 13 13 13 13 7 5 4 6 1 1 1 1 9 9 9 9

7 14 14 14 14 5 7 6 4 2 2 2 2 10 10 10 10

8 15 15 15 15 6 4 5 7 3 3 3 3 11 11 11 11

9 4 4 4 4 12 12 12 12 8 10 11 9 0 0 0 0

10 5 5 5 5 13 13 13 13 11 9 8 10 1 1 1 1

11 6 6 6 6 14 14 14 14 9 11 10 8 2 2 2 2

12 7 7 7 7 15 15 15 15 10 8 9 11 3 3 3 3

13 8 8 8 8 0 0 0 0 4 4 4 4 12 14 15 13

14 9 9 9 9 1 1 1 1 5 5 5 5 15 13 12 14

15 10 10 10 10 2 2 2 2 6 6 6 6 13 15 14 12

16 11 11 11 11 3 3 3 3 7 7 7 7 14 12 13 15

Table 5.5. Computation scheme with 16 processors in a recursive communication structure

Tcom l l
1
Q
---- 1

P
---–

 NSM lg 1 1
Q
----–

 NSM⋅+⋅=

T Tcal Tcom+=

T
1
2
--- NSM

P
------------ 1–

 NSM
P

 NSM

2P
------------ 1 1

P
---–

 l l
1
Q
---- 1

P
---–

 lg 1 1
Q
----–

 + +
 NSM+=

Hardware Modelling: Generally Applicable Multiprocessor Models

HAM: Hardware Moved Molecules 55 TIK Report No. 38

5.3.6 Ring

Fig 5.9 Ring structure

For a ring structure a different approach for the computation method has to be taken. It is
not possible to transfer data directly from one PE to another PE without intermediate steps,
if they are not adjacent. But if we look at the computation schemes of the other structures,
we see, that for example the second part of the molecules of PE 0 is sent to all other PEs.
Because the molecules are temporarily stored on the PEs, on which they are calculated, they
need not to be sent directly from PE 0 to one of the other PEs at the beginning of each time-
step, they can directly be forwarded from the PE, on which they are calculated, to the next
PE.

Table 5.6 shows this computation method. All molecules are sent directly from the preced-
ing PE in the timestep above. The scheme is made with the structure of Fig. 5.9. The mole-
cules of a processor element must only be sent over half of the ring. In table 5.6 memory are
still splitted into two parts and every part is sent separately over the ring. A better method is
to send all molecules together over half of the ring. If the number of processors is even, only
half of the molecules have to be compared in the last timestep because the two processors,
which are opposite over the ring have the molecules from each other. E.g. in Fig. 5.9 there
are processors 0 and 3. If the number of processors is odd, the molecules of the processors
have to be only sent over the half of the ring minus one and then all molecules are compared
in the last timestep.

The calculation time is the same as with eqn (5.3) and the communication time is the same
as in eqn (5.4). With this the computation time is the same as for the 2D-net, see eqn (5.5).
The cost of the circuit are much lower for a ring compared to the another structures, because
data on the ring must be sent only in one direction and therefore all links are unidirectional.

Dual-Port
SRAM

Dual-Port
SRAM

Dual-Port
SRAM

Dual-Port
SRAM

Prozessor

5

Prozessor

0

Prozessor

2

Prozessor

3

K

K K

K

Dual-Port
SRAM

Prozessor

4

K

Dual-Port
SRAM

Prozessor

1

K

TIK Report No. 38 56 HAM: Hardware Moved Molecules

Hardware Modelling: Conclusion

In this case the communication time is shorter than in the other structures. Another advan-
tage of this structure is the simple expansion possibility. The ring can be easily expanded
with more processors.

5.4 Conclusion

In this section we make a brief comparison of the five communication structures. As shown
above the calculation time is the same for all structures, thus we only need to compare the
efficiency and speed-up of the structures with respect to its communication time. Most of
the computation time is used by the calculation itself and not for communication. Therefore
communication time is less important, when more molecules must be calculated. In our
examinations, we took a simulation with 1000 and one with 10,000 molecules. We com-
pared systems with up to 64 processors.

Timestep P0 P1 P2 P3 P4 P5

1 0A - 0A 1A - 1A 2A - 2A 3A - 3A 4A - 4A 5A - 5A

2 0B - 0B 1B - 1B 2B - 2B 3B - 3B 4B - 4B 5B - 5B

3 0A - 0B 1A - 1B 2A - 2B 3A - 3B 4A - 4B 5A - 5B

4 0A - 5A 1A - 0A 2A - 1A 3A - 2A 4A - 3A 5A - 4A

5 0B - 5A 1B - 0A 2B - 1A 3B - 2A 4B - 3A 5B - 4A

6 0A - 4A 1A - 5A 2A - 0A 3A - 1A 4A - 2A 5A - 3A

7 0B - 4A 1B - 5A 2B - 0A 3B - 1A 4B - 2A 5B - 3A

8 0A - 3A 1A - 4A 2A - 5A 3B - 0A 4B - 1A 5B - 2A

9 0A - 5B 1A - 0B 2A - 1B 3A - 2B 4A - 3B 5A - 4B

10 0B - 5B 1B - 0B 2B - 1B 3B - 2B 4B - 3B 5B - 4B

11 0A - 4B 1A - 5B 2A - 0B 3A - 1B 4A - 2B 5A - 3B

12 0B - 4B 1B - 5B 2B - 0B 3B - 1B 4B - 2B 5B - 3B

13 0B - 3B 1B - 4B 2B - 5B 3A - 0B 4A - 1B 5A - 2B

Table 5.6 Computation scheme in a ring communication structure

Communication
Structure

Communicatio
Latency Reason

bus l=1 The simplest architecture. Communication net is not used dur-
ing computation.

2D-net l=3 Communication relatively simple. Every communication node
has to handle two communication links and memory access.

hyper cube l=3 This is the 3D-expansion of the 2D-net. The distances between
the PEs is not larger than that on the 2D-net, which results in
the same latency.

recursive structure ll=3, lg=5 The local communication is as in the 2D-net, because we have
4 clusters with 4 processors. The global communication is the
sum of the local communication and that of the 2D-net minus
1, then the global communication nodes can access directly via
the local communication nodes.

ring l=2 Communication is very simple, because you have only unidi-
rectional communication links.

Table 5.7 Communication latencies

Hardware Modelling: Conclusion

HAM: Hardware Moved Molecules 57 TIK Report No. 38

The following figures show the speed-up of the different communication systems on a sim-
ulation with 1000 and 10,000 molecules:

Fig 5.10 Speed-up of different communication structures with 1000 molecules

Fig 5.11 Speed-up of different communication structures with 10000 molecules

On Fig. 5.10 and Fig. 5.11 we see, that the communication loss on a ring architecture is the
smallest, on a 2D-net and a hyper cube a little larger and on a recursive structure the largest.
Additionally we learn that the communication loss matches less if we have more molecules.

0 10 20 30 40 50 60
0

10

20

30

40

50

60 ideal and

ring structure

2D-Net and

recursive

bus structure

hyper cube

structure

0 10 20 30 40 50 60
0

10

20

30

40

50

60
ideal and

ring structure

recursive

bus structure

structure

2D-Net and
hyper cube

TIK Report No. 38 58 HAM: Hardware Moved Molecules

Hardware Modelling: Conclusion

In the next table we have listed the advantages and disadvantages of the different communi-
cation structures:

Although the bus structure has the best speed-up, hardware costs are relatively high,
because all molecules are distributed onto every PE’s memory. Therefore a large memory is
needed. Additionally it’s relatively complex to define, which processor calculates which
molecule-pairs.

Therefore we see, that the ring structure is the best for the O(N2) pairlist calculation prob-
lem. It’s structure is simple, few memory is used and the structure and expansion possibility
are easily feasible. Further ring structure has the fewest communication loss.

topic bus 2D-net
hyper-
cube

recursive
structure ring

calculation distribution complex simple simple simple simple

data distribution / memory use bad good good good good

computation scheme not used complex very com-
plex

complex simple

speed-up ideal medium medium bad good

expansion possibility simple difficult difficult medium simple

Table 5.8 Comparison of the different communication structures

Model Refinement: Distance Calculation with the Sharc DSP

HAM: Hardware Moved Molecules 59 TIK Report No. 38

6 Model Refinement

Goal: exact performance models for the workstations and communication systems for dif-
ferent target architecture. The results of this chapter can be used as input for the Mathema-
tica and Codesign model described in paragraph 7. This is not done by now, the parameters
actually used in paragraph 7 are these described in paragraph 3 and paragraph 5.

We made benchmarks on the ADSP-2106x SHARC DSP processor simulator to compare its
performance with an FPGA and a host computer. The ADSP-2106x SHARC can be either
programmed in C or in Assembler. The programming source of the GROMOS software is in
Fortran. We translated first the Fortran routines into C, have then optimized the code for the
Sharc DSP and at last we have translated it into Assembler, thus it is possible to use special-
ities of the Sharc to improve speed.

The benchmark examples used in this chapter are a simple distance calculation algorithm to
compare the Sharc with an FPGA and a tightly more complicated pairlist algorithm to com-
pare the Sharc with the host computer.

6.1 Distance Calculation with the Sharc DSP

The distance algorithm is a good part of GROMOS to compare the speed of the SHARC
with the speed of a hardware implementation on an FPGA. For distance algorithm only
adders, subtractors and multipliers are needed. In addition, this algorithm is the most used
for calculating the nonbonded forces in GROMOS because it is used for force, energy and
virial calculation.

6.1.1 Method

The distance algorithm is a single programming routine. The coordinates of two atoms are
sent to the program and it gives back a distance vector and the square of the distance. Differ-
ent spatial arrangements with different kinds of periodic boundary conditions can be mod-
elled with the distance algorithm in GROMOS. First, the distance algorithm can calculate
the distance of atoms, which are in the vacuum. Second distances of atoms in a space, with
periodically boundary boxes, can be calculated. This boxes can also be distorted. The third
is a space with truncated octahedrons. Additionally the atoms can also be in a space with
four dimensions. Therefore a three- or a four-dimensional distance can be calculated with
this routine. As concerned on its physical definition and chemical requirements the dis-
tances in the octagonal space and the space with the distorted boxes can only be calculated
in three dimensions.

There are many conditions in the distance algorithm program. First the distance vector is
calculated. Then the distance is calculated for atoms, which are in the vacuum, otherwise
the distance vector is adjusted to the space with periodic boundary boxes and the distance is
calculated. If we have a space with distorted boxes with periodic boundary octagons, the
distance vector is adjusted to this structure.

The components of the distance vector is calculated sequential. Therefore many loops are
programmed, where the components of the distance vector are calculated in three or in four
dimensions. The following graph shows the structure of the program.

TIK Report No. 38 60 HAM: Hardware Moved Molecules

Model Refinement: Distance Calculation with the Sharc DSP

Fig 6.1 Distance algorithm

The ‘periodical adjustment of the distance vector’ runs as follows. Every component of the
distance vector is first compared with the positive value of the half length of the periodic
boundary box. If the component is higher, the side length of the box is subtracted. Else the
component is compared with the negative value of the half length of the box. If it is lower,
the side length of the box is added.

As a lot of if-statements are used in the whole program routine, additionally a lot of if-state-
ments are used in this part of the program routine.

6.1.2 C-Program Optimization

To migrate the distance algorithm from GROMOS to SHARC, we took firstly the routine in
Fortran source code and translated it directly into C. Then we tested its correctness in the
SHARC DSP simulator. After that, we made the first benchmark. The SHARC compiler has
an automatic optimizer for the C-code. Therefore in table 6.1 two values are listed, the first
with no optimizer, the second with automatic optimizer.

vacuum

in vacuum
distance calculation

calculation of
distance vector

periodical adjustment
of the distance vector

distance calculation

yes no

octagonal space

adjustment of the
distance vector and

the distance distorted box

yes

no

adjustment of
the distance

yes

Model Refinement: Distance Calculation with the Sharc DSP

HAM: Hardware Moved Molecules 61 TIK Report No. 38

For benchmarking we took the time, which is used by processor, for calculating the distance
vector and the distance from only one pair of atoms. There are many possible runs through
the program and we have all of them examined:

• Atoms in vacuum can be calculated in three and four dimensions.

• There are three possible runs, if distances in a space with periodic boundary boxes are
calculated. The first is, that both atoms are in the middle of the box and their distance
vector must not be adjusted. The second is a positive adjustment and the third a negative
adjustment of the distance vector. This can also be calculated in three or four dimensions.

• The same runs are possible for the distorted box, but only in three dimensions.

• If atoms in a space with periodic boundary octagons are calculated, we have also a peri-
odic adjustment of the distance vector first and after then an adjustment of the distance
vector for the octagonal space. If both atoms are in the middle of the octagon, no adjust-
ment is needed, this is the fourth possible run.

The possible runs and its benchmark values are listed in table 6.1. After the benchmarking
of the C-routine, we made different manual optimization:

1. We made a simplification of the if-statements to make the code more efficient. We
adapted the if-conditions to the internal structure of the SHARC-processor.Additionally
we moved some if-statements to another place in the routine, such that fewer if-state-
ments are executed in certain runs.

2. We replaced the loops with sequential code. Although the SHARC has a program
sequencer, which controls loops more efficiently than in a normal processor, it’s faster to
code the loops sequential in the program, because the loops in the program are executed
only for three or four times.

3. We removed all temporary variables. This caused an interesting effect, when we used the
automatic optimizer.

Dim Space Adjustment Optimization Step

Origin 1. 2. 3.

3

vacuum no 219/159 219/163 106/55 106/55

cubic

no 309/225 309/229 194/116 172/121

positive 303/216 303/220 188/107 169/118

negative 330/237 330/241 206/122 190/139

octahedron

no 333/247 333/251 218/138 196/143

positive 514/399 509/396 284/193 265/204

negative 541/420 536/417 290/196 274/213

octagon only 520/408 515/405 290/202 268/207

monoclinic

no 330/241 330/245 215/130 193/135

positive 324/232 324/236 209/121 190/132

negative 351/253 351/257 227/136 211/153

4

vacuum no 287/211 259/193 133/67 133/67

cubic

no 404/296 372/275 244/144 218/152

positive 396/284 364/263 236/132 214/148

negative 432/312 397/289 260/152 242/176

Table 6.1 Benchmark of the distance algorithm in C on SHARC

TIK Report No. 38 62 HAM: Hardware Moved Molecules

Model Refinement: Distance Calculation with the Sharc DSP

In table 6.1 we have listed all benchmark values. The values are give in number of clock
cycles, which are used by SHARC. If we look at the values in the 2nd and 3rd column, we
see, that the values with no automatic optimization in the 3rd column are lower than that in
the 2nd. But the values with automatic optimization in the 3rd column are higher than that
in the 2nd column.

The reason is, because we removed all temporary variables in the 3rd optimization step.
This causes a more efficient code if we do not use the automatic optimizer, because the val-
ues are not copied into temporary variables, which are stored then in memory. If we use the
automatic optimizer, we got a better result, compared to using temporary variables, because
the automatic optimizer recognizes temporary variables and uses registers in the register file
for it. Then the calculation is done with using more registers, what makes the calculation
more efficient. If we have no temporary variables defined, the optimizer uses so few regis-
ters as possible and all temporary values are stored in memory, which needs more time.

6.1.3 Assembler Optimization

The best performance on a DSP is reached with Assembler program coding. Therefore we
used this program language to make further speed optimization.

By examining the compiled assembler code of the best C program version, we saw that
there are mainly three properties of the SHARC to make the program faster, which was not
used by the C code and must therefore be introduced manually.

We optimized the assembler code in four steps and made the following optimization:

1. The compiler uses registers of the DAG to fetch values from the memory and to store
values of the register file into memory. This needs extra clock cycles for storing the
pointers into the DAG registers. We changed the program so, that fetches from and to the
memory are done by direct addressing.

2. In the C code, many intermediate results are stored in the internal memory, although
there are registers in the processors register file, which are not used. This needs more
time. Therefore we optimized the code for better using the register file.

3. The SHARC has a instruction pipeline with three steps:fetch - decode - execute. There-
fore it can execute one instruction per clock cycle. If there is a branch, the program
pointer is set to the branch destination only(erst) in theexecute stage. Thus the pipeline is
filled with the two instructions, which are placed immediately after the branch in the pro-
gram code. These are then in thefetch anddecode stages of the pipeline and the pipeline
must be refilled with the new instructions after branch is executed. Thus the program
flow idles for two clock cycles.

There are a special instruction to avoid this and is calleddelayed branch. In thedelayed
branch the two instructions in the program code, which are placed after the branch
instruction are then executed too. In this way the two instructions before the branch
instruction can be placed after the latter and the branch instruction can be changed into a
delayed branch. The C compiler does not use this instruction and we have optimized the
Assembler code with this in our first optimization step.

Model Refinement: Distance Calculation with the Sharc DSP

HAM: Hardware Moved Molecules 63 TIK Report No. 38

4. On SHARC many arithmetic functions and memory transfer instructions can be paral-
lelized. Nothing of them is done, if C code is used. In the last optimization step we tried
to parallelize the instructions as lot as possible and we reached a high speed-up in com-
parison with the last optimization step once again.

In the following table we have listed the benchmark values of the Assembler code versions.
They are separated in all possible runs of the program again. Additionally the values of the
fastest C code are listed for comparison too. All values are give in number of clock cycles.

6.1.4 Conclusions

In fig. 6.2, we made a comparison of the calculation time of every space, in which the atoms
can be calculated. For the spaces, on which more possible runs in the program are possible,
we took the worst case of the program execution time.

On C we considered only the runtime of the origin program, the runtime of the origin pro-
gram with automatic optimization, the runtime of the best manual only optimized code and
the runtime of the best C code, which is manually and automatically optimized. On Assem-
bler, we considered the runtime of these codes, on which the optimization had the highest
effect (fig. 6.2). The effect of the optimization is well seen for every space in the diagram.
The calculation times are taken by a SHARC with a clock frequency of 40 MHz.

In table 6.3 the runtime of the C code, which was directly translated from Fortran and the
runtime of the fastest C and Assembler codes are listed.

Fig. 6.3 shows the speed-up, which we have reached with our optimization. As in the dia-
gram of Fig. 6.2, we compared the speed-ups of every space, in which the atoms can be cal-
culated and drawn a separate speed-up line for each.

Dim Boundaries Adjustment Optimization step

best C 1. 2. 3. 4.

3

vacuum no 106/55 50 42 37 23

rectangular

no 172/121 110 81 76 50

positive 169/118 104 75 64 48

negative 190/139 110 81 76 50

octahedron

no 196/143 117 84 79 51

positive 265/204 145 101 89 60

negative 274/213 151 104 96 65

octagon only 268/207 151 107 101 62

monoclinic

no 193/135 120 86 81 54

positive 190/132 114 80 69 52

negative 211/153 120 86 81 54

4

vacuum no 133/67 52 44 43 24

rectangular

no 218/152 112 86 83 48

positive 214/148 104 78 67 45

negative 242/176 112 86 83 48

Table 6.2 Benchmark of the distance algorithm in Assembler on SHARC

TIK Report No. 38 64 HAM: Hardware Moved Molecules

Model Refinement: Distance Calculation with the Sharc DSP

In fig. 6.3 we considered the speed-up of the same C and Assembler programs, of which we
have taken the runtime in fig. 6.2.

Fig 6.2 Runtime of the distance routine on SHARC

Fig 6.3 Speed-up of the distance routine on SHARC

If we look at these lines, we see first, that with manually optimized C code the optimizer is
able to make a better automatic optimization. Further speed-up can be reached with register

Programming Language
Version

Vacuum Rectangular Octahedron monocl.

3D 4D 3D 4D 3D 3D

C (directly from Fortran) 5.48 7.18 8.25 10.8 13.53 8.78

C (fastest code) 1.38 1.68 3.05 3.8 5.05 3.4

Assembler (fastest code) 0.58 0.6 1.25 1.2 1.63 1.35

Table 6.3 Run time of the distance routine in slowest C code and fastest C and Assembler codes

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

vacuum
3D

vacuum
4D

period.
box 3D

period.
box 4D

octagon distorted
box

µs

C (no optimation) AAA
AAA
AAA

C (automatic) AA
AA
AA

C (manual) AAA
AAA
AAA

C (auto & manual)
AA
AAAssembler (direct memory)AAAAAAAssembler (registers) AA

AA Assembler (parallel)

0

2

4

6

8

10

12

no optimation
(C)

automatic
(C)

manual
(C)

auto & manual
(C)

direct memory
(Assembler)

registers
(Assembler)

parallel
(Assembler)

S
p
e
e
d
u
p

vacuum 3D vacuum 4D period. box 3D period. box 4D octagon distorted box

Model Refinement: Distance Calculation in Hardware using FPGA’s

HAM: Hardware Moved Molecules 65 TIK Report No. 38

optimizing in Assembler and at last the most speed-up is reached with parallelism of the
processor operations.

The following table shows the reached speed-up in C and Assembler in contrast to the direct
translated C program from Fortran and additionally the reachable speed-up of Assembler in
contrast to the best C code is listed:

The effort for Assembler programming is much higher than that for C programming. We
needed three times longer for the Assembler programming and code optimization than for C
code optimization. But we see, that with the SHARC processor an average speed-up of2.5
is reachable on using Assembler programming!

6.2 Distance Calculation in Hardware using FPGA’s

The required accuracy for the pairlist is in the range of 0.1nm to 0.5nm. If we assume a sim-
ulation box length of 10nm an 8 bit fixed point distance calculator may fulfil the demand.
The behavioural VHDL specification according Fig. 6.4was synthesized with the Synopsys
behavioural compiler and implemented in a Xilinx FPGA XC4025-5.

Fig 6.4 Pairlist distance calculation block diagram

Programming Language
Version

Vacuum Rectangular Octahedron monocl.

3D 4D 3D 4D 3D 3D

C (fastest code) 3.98 4.28 2.7 2.84 2.68 2.58

Assembler (parallel) 9.52 11.96 6.6 9 8.32 6.5

fastest C code in contrast
to fastest Assembler code

2.39 2.79 2.44 3.17 3.11 2.52

Table 6.4 Speed-up of the distance routine in fastest C and Assembler Code

4MUX1

00

box1

01 10 11
1
2

2MUX1

00 01
1

boxh1
-boxh1

xi xj

dx=xi-xj

4MUX1

00

box2

01 10 11
1
2

2MUX1

00 01
1

boxh2
-boxh2

dy=yi-yj

4MUX1

00

box3

01 10 11
1
2

2MUX1

00 01
1

boxh3
-boxh3

dz=zi-zj

yi yj zi zj

LVAC

RCUTP2

PAIRLIST

TIK Report No. 38 66 HAM: Hardware Moved Molecules

Model Refinement: Distance Calculation in Hardware using FPGA’s

After reset, the parameters (cutoff radius, box dimensions, LVAC) are read in. LVAC is a
boolean specifying if periodic boundary conditions applies or not. The output is also a boo-
lean indicating if the pair goes into the pairlist or is skipped. A two stage pipeline was intro-
duced to increase the total throughput. With the mentioned target the maximum clock
frequency is 6.4 MHz, with a valid result on the output every 2 cycles we could test 1.6 mil-
lion pairs per second.

Given the Thrombin benchmark with a 1.4nm cutoff radius 20 million comparisons are
needed for one pairlist construction. The sun accomplish in 9.5 seconds, the FPGA need
12.5 seconds. The relatively low performance of the FPGA implementation may be
explained with shortcomings in the synopsys behavioural compiler, and a rather old fash-
ioned and slow FPGA. We did not optimized anything by hand, so there are further possibil-
ities for optimization.

Gromos MD-Algorithm Specification: Specification in Mathematica

HAM: Hardware Moved Molecules 67 TIK Report No. 38

7 Gromos MD-Algorithm Specification

In this chapter we describe two specification models and their implementation in Mathemat-
ica and Codesign [25]. The Mathematica model uses the performance and communication
scheme as described in paragraph 5.1and paragraph 5.2, the Codesign description varies
slightly because of compatibility restrictions of the system synthesis tool [24].

7.1 Specification in Mathematica

This model was initially developed to implement the data dependencies on the Gromos MD
algorithm, e.g. the number of floating point operations depending on typical problem
parameters (number of molecules, cutoff radius, etc.). The model also provides numeric val-
ues for data transfer rates and the memory requirement in dependence of the problem
parameters. The further development included models of communication channels and
coprocessor architectures. Within the environment it is possible to calculate the time for one
MD step with or without pairlist calculation, speed-ups for different coprocessor architec-
tures and function mappings, etc. The function mapping and the schedule are hand-coded
and costly to change.

In our example we chose a coprocessor architecture
as in fig. 4.18 with ten SHARC processors for the
solvent-solvent force calculation. The implemented
schedule forces the pairlist calculation on the dis/
join processor. Fig. 7.1 shows the distribution of
the coordinates according the spatial division of the
simulation box. Note that for one coordinate five
words must be communicated (three atom coordi-
nate components, one atom sequence number, box
member coordinates or number).

A lot of functions must be evaluated on host, e.g. to
write and read files a Fortran function must be
used. This leads to the situation of maximal reacha-
ble speed-ups for as many coprocessor power you like, depending on the number of tasks
forced to the host. The maximum speed-up for a Sun Ultra 1 is reached with only two force
processors (Fig. 7.2). Note that in this example only solvent-solvent forces are permitted to
be calculated on the coprocessor.

Fig 7.2 Speed-up with a 41 Mflop host

overlap
(cutoff)

Bx

By
Bz

Input
sequence

M1

M2

Fig 7.1 Spatial decomposition

4 6 8 10
number of force processors

3.5

4.5

5

5.5

Speedup

TIK Report No. 38 68 HAM: Hardware Moved Molecules

Gromos MD-Algorithm Specification: High level Synthesis using GP

If we design a coprocessor with ten SHARC processors, the performance of the workstation
must be increased by a factor of 5. So a final implementation with 10 SHARC’s seems to be
a well-balanced system for future workstations. Mapping all nonbonded forces and the pair-
list on the coprocessor, we reach a speed-up of about 25 with the fastest workstation availa-
ble in two years, accelerated with the new parallel hardware.

7.2 High level Synthesis using GP

The goal is to find an optimal system architecture using formal methods: Specification with
object-oriented Petri nets, partitioning with constraints using Genetic Programming (GP)
[24]. The latter task includes the optimization for minimal latency and finding the best
schedule. The scheduling problem can be outlined as follows: a set of tasks has to be exe-
cuted on a set of resources where each task has a certain execution time. There exist
dependencies between the tasks. One looks for an assignment of the tasks to the resources
that minimizes the total execution time of all tasks. Usually the dependencies are displayed
in a task graph as shown in fig. 3.2. The nodes of the graph are the tasks and the dependen-
cies are given by the edges in the graph.

In high level synthesis the nodes are viewed as operations (activities, small programs, etc.),
and the edges describe the data dependencies between the operations. The resources are the
available hardware units (multiplier, CPU’s, etc.). A valid schedule is then given by an
assignment of the starting time to each task, so that all dependencies are satisfied and not
more than the available resources are required.

A scheduling algorithm is an algorithm that takes the task graph as input and returns a valid
schedule as output. In the Mathematica specification scheme in paragraph 7.1 scheduling
was done by hand. The integer linear programming algorithm guarantees to find the optimal
solution but is unsuited as it needs exponential computation time on the input data. A lot of
heuristic algorithms exist that are content with a near optimal solution at affordable compu-
tation time. Examples are ASAP-, ALAP- or list-scheduling.

Here we try to find an optimal mapping of functions to the architecture graph and finding a
latency minimizing schedule for it using a GP tool [24].

7.2.1 Codesign

TheCodesign Tool [25] is a graphic system modelling environment based on high-level
object-oriented timed Petri nets. Other formalism can be embedded into the model due to
the object-oriented structure. We used the tool as a graphic editor to draw the problem and
architecture graph (fig. 7.3 and fig. 7.4).

Fig 7.3 Architecture graph

Gromos MD-Algorithm Specification: High level Synthesis using GP

HAM: Hardware Moved Molecules 69 TIK Report No. 38

Fig 7.4 Problem graph

The architecture graph corresponds to the SHARC hierarchic approach of fig. 4.18, with
one combined fork/join node, two dis/sum processors and totally ten force processors. Note
that not all communication links are shown, the five force processors per dis/sum node are
treated as one processors with five times the performance of one SHARC. The communica-
tion requirements are adopted accordingly. The problem graph is not simplified and reflects
the real MD algorithm.

7.2.2 System Synthesis using Evolutionary Algorithms

The specification model consists of three main components:

• The algorithm to be mapped on a architecture in addition to the class of possible archi-
tectures described with a dependence graph (fig. 7.3 and fig. 7.4).

• User-defined mapping constraints between algorithms and architectures are described in
a specification graph. Additional functional constraints are associated to the nodes.

• An activation is associated to nodes and edges of the specification graph characterizing
allocation and binding

The specification graph is not shown due to the high complexity. Refer to the literature for
examples [24]. The concept of a dependence graph is used to describe algorithms as well as
architectures on different levels of abstraction. For example, the dependence graph to model
dataflow dependencies on a given algorithm will be termed problem graph. The architecture
including functional resources and buses can also be modelled by a dependence graph
termed architecture graph consisting of hardware and communication resources.

An evolutionary algorithm solves the system synthesis problem considering a design space
exploration by exploring the Pareto set of implementations. The exploration technique takes
into account: (1) The communication requirements, (2) finite computation and communica-
tion resources and (3) loop pipelining (iterative schedule).

Exploration is an iterative optimization task repeating the steps a, b, c. To start an explora-
tion, one has to specify an optimization goal, e.g. latency minimization (period) under
resource constraints (cost). The input for the first iteration is a randomly generated popula-

TIK Report No. 38 70 HAM: Hardware Moved Molecules

Gromos MD-Algorithm Specification: High level Synthesis using GP

tion of feasible bindings. The result of each step is a set of implementations, illustrated as
points in fig. 7.5.

Fig 7.5 Solutions in the search space after the last iteration

The best solutions are chosen by afitness function (selection). The Pareto points indicated
by lines in fig. 7.5 generally achieve a high score. The initial population size then is restored
through recombination (crossover or mutation) in order to exploit new points in the search
space. Iteration is aborted when no better implementations are found.

For all solutions in fig. 7.5 there exist a feasible binding and a schedule such as the one in
fig. 7.7. Depending on cost or time constraints, one or two of the Pareto points serve as final
implementation with the appropriate mapping and schedule.

7.2.3 Design Space Exploration

We have chosen the architecture graph of fig. 7.6 and the problem graph of fig. 7.4. The
parameters are assigned appropriate for one fork/join processors, two dis/sum processors
and ten force processors.

Fig 7.6 Simplified architectures graph

Gromos MD-Algorithm Specification: High level Synthesis using GP

HAM: Hardware Moved Molecules 71 TIK Report No. 38

The first three columns in table 7.1 correspond to the three “fastest“ Pareto points in fig. 7.5,
where all valid implementations after 30 iterations are listed.

The fastest implementation is a hierarchy with one fork/join and two dis/sum processors
and five Sharc’s per dis/sum processor. The second column in table 7.1 is also a three level
hierarchy, but with only one dis/sum processor and thus five force processors. The third col-
umn is a solution without force processors, the forces are calculated on the two dis/sum
processors. The last column is derived from another exploration run with all parameters
kept the same except the host performance. The resulting fastest architecture is the same as
this in the first column, the corresponding schedule is illustrated in fig. 7.7, where the step-
by-step communication through the hierarchy is apparent. The cycle time is limited by the
tasksoluforce which is forced to be executed on the host. To use the performance of 13
coprocessors we need either a faster host or we must allow the evolutionary algorithm to
mapsoluforce to the coprocessors.

Fig 7.7 Schedule of the fastest implementation

After exploring all problem graphs the most promising solutions (hierarchical DSP, ASIC
processors, workstation cluster, distributed memory RISC multiprocessor) are further inves-
tigated: A better architecture model is combined with a generic model of the MD algorithm
(CDFG) and implemented in Mathematica as in the previous chapter. This task is still man-
ual but necessary if we want to emulate a real MD step.

Host
performance

Number of
coprocessors Iterations Cost Time

Ultra1/170=1 13 30 420 43

1 7 30 220 57

1 3 30 90 143

2 13 30 440 34

Table 7.1 Comparison

TIK Report No. 38 72 HAM: Hardware Moved Molecules

Conclusion and Further Work: High level Synthesis using GP

8 Conclusion and Further Work

The investigations presented in this report show that a pure ASIC solution as a coprocessor
is not suitable to achieve our main goal. Only if the coprocessor can calculate all nonbonded
forces, an acceleration factor of ten is possible. A typical MD run is a simulation of one or
more identical proteins dissolved in solvent. One protein may have thousands of atoms, dis-
solved in ten thousands of solvent atoms.

Possible architectures are mixed solutions with ASIC’s for pairlist and distance calcula-
tions, eventually for the solvent forces calculation, and standard processors (DSP, RISC) for
the solute nonbonded forces. The pairlist and the nonbonded forces calculation algorithms
are easy to parallelise and may be executed on the same RISC processors. Obviously a
homogenous hardware architecture without custom chips is much easier to develop, imple-
ment and maintain. A mixed solution is complicated due to device driver issues, hardware
complexity, time to market, and price. Therefore, the focus is now on RISC solutions inter-
connected with a general purpose network like Myrinet or interconnected with a new cus-
tom network optimized for low latency. The RISC processor boards have a simple structure
and may consist of several processors on one board or of scalable single processor boards.
Possibly such boards may be bought with an operating system and device drivers.

The further work includes more profiling on the newest processors like DEC alpha 21064
and 21164, MIPS and PowerPC. With these profiling results similar design space explora-
tion and modelling techniques will be used to find a final implementation. Depending on
this hardware structure the processing elements and/or the communication system must be
developed, built and tested. With the modelling technique and the design space exploration
methods presented in this report, it is rather easy and straightforward to check new architec-
tures and solutions against our requirements. Depending on the interconnection network,
existing or new PCI device drivers for IRIX and Solaris must be customised for the coproc-
essor. Target machines are SUN Ultra 30 and Silicon Graphics Octane workstations.

In addition, the Gromos software must be adapted for parallel coprocessors. A C code ver-
sion of a new pairlist algorithm as well as the nonbonded forces routines are parallelised
and tested. The entry point of the new software is well defined and established in co-opera-
tion with the Computational Chemistry Group. Special care must be taken because Fortran
code and C code coexist. A detailed software concept is under development. Generic paral-
lelisation should be possible for different hardware structures or acceleration techniques.
For this purpose, one can imagine a new specification language for the target hardware, the
software partitioning and the algorithm specification. With that, automatic generation of
code is possible.

Literature

HAM: Hardware Moved Molecules 73 TIK Report No. 38

Literature

Related Hardware Projects

[1] A.F. Bakker, C. Bruin: Design and Implementation of the Delft molecular-dynamics
processor. Special purpose computers, 183-222, Academic Press Inc. (1988)

[2] W. Scott, A. Gunzinger: Parallel molecular dynamics on a multi signal processor sys-
tem. Computer Physics Communication 75, 65-86, (1993)

[3] T. Fukushige, J. Makino: WINE-1: Special-purpose computer for N-body simulations
with a periodic boundary condition. Publ. Astron. Soc. Japan 45, 361-375, (1993)

[4] T. Ebisuzaki, T. Fukushige, J. Makino: GRAPE Project: An Overview. Publ. Astron.
Soc. Japan 45, 269-278, (1993)

[5] T. Ito, J. Makino, T. Fukushige: A special-purpose computer for n-body simulations:
GRAPE-2A. Publ. Astron. Soc. Japan 45, 339-347, (1993)

[6] J. Makino, M. Taiji: (directly from makino@chianti.c.u-tokyo.ac.jp)

GRAPE-4: A massively-parallel special-purpose computer for collisional N-body
simulations.

GRAPE-4: A special-purpose computer for gravitational N-body problems.

GRAPE-4: A one-Tflops special-purpose computer for astrophysical N-body Prob-
lem.

Astrophysical N-body simulations on GRAPE-4 special-purpose computer.

Next generation GRAPE systems.

[7] T. Fukushige, M. Taiji: A highly-parallelized special-purpose computer for many-
body simulations with an arbitrary ventral force: MD-GRAPE. The Astrophysical
Journal, 468: 51-61, (1996)

[8] J. Makino: Design trade-off in Grape systems. From makino@chianti.c.u-tokyo.ac.jp

[9] H.J.C. Berendsen, D. van der Spoel, R. van Drunen: GROMACS: A Message Passing
Parallel MD Implementation. Computer Physics Communication 91, 43-56, (1995)

Papers

[10] W.F. van Gunsteren, H.J.C Berendson: On searching neighbours in computer simula-
tion of macromolecular systems. Journal of Comuputational Chemistry, Vol. 5, No. 3,
272-279, (1983)

[11] R. Everaers, K. Kremer: A fast grid search algorithm for molecular dynamics simula-
tions with short-range interactions. Computer Physics Communications 81 (1994)

[12] W. Smith: Molecular dynamics on hypercube parallel computers. Computer Physics
Communications 62 (1991)

[13] G.S.Grest, B. Dünweg, K. Kremer: Vectorized link cell fortran code for molecular
dynamics simulations for a large number of particles. Computer Physics Communica-
tions 55 (1989)

[14] D.C. Rapaport: Multi-million particle molecular dynamics I-III. Computer Physics
Communications 62 (1991), 76 (1993)

TIK Report No. 38 74 HAM: Hardware Moved Molecules

Literature

[15] V.E.Taylor, R.L. Stevens, K.E.Arnold: Parallel molecular dynamics: Communication
requirements for massively parallel machines. IEEE (1995)

[16] W. Scott: MD Profiling. IGC internal paper (June 19, 1995)

[17] M. Eisenring, J.Teich: Rapid Prototyping of Dataflow programs on hardware/software
architectures. Swiss Federal Institute of Technology (ETH) Zürich, TIK, (1997)

Books

[18] M.P. Allen, D.J. Tildesley: Computer Simulation of Liquids. Oxford University Press
1987

[19] R.W. Hockney, J.W. Eastwood: Computer Simulation using Particles. IOP Publishing
Ltd. 1988

[20] R. Haberlandt, S. Fritzsche, G. Peinel, K. Heinzinger: Molekulardynamik, Grundla-
gen und Anwendungen. Vieweg Lehrbuch Physik 1995

[21] H.P. Lenhof: Distanz- und Suchprobleme in der algorithmischen Geometrie und
Anwendungen in der Bioinformatik. Dissertation der Technischen Fakultät der Uni-
versität des Saarlandes, Saarbrücken 1993

[22] T. Ottmann, P. Widmayer: Algorithmen und Datenstrukturen. Mannheim; Wien;
Zürich: BI-Wissenschaftsverlag 1990

[23] W.F. van Gunsteren: Biomolecular Simulation: The GROMOS96 Manual and User
Guide. Hochschulverlag vdf AG an der ETH Zürich, 1996

[24] T. Blickle: Theory of Evolutionary Algorithms and Application to System Synthesis.
Hochschulverlag vdf AG an der ETH Zürich, 1997

[25] R. Esser: An Object Oriented Petri Net Approach to Embedded System Design. Hoch-
schulverlag vdf AG an der ETH Zürich, 1997

[26] D.C. Rapaport: The Art of Molecular Dynamics Simulation. Cambridge University
Press 1995

[27] D.D. Gajski, F. Vahid, S. Narayan, J. Gong: Specification and design of embedded
systems. Prentice Hall, 1994

[28] Analog Devices: ADSP-2106x SHARC User’s Manual

