Self-Stabilization
from Efficacy to Efficiency
Mea Culpa!

The Castle of Self-Stabilization
SSS 2009

I would like to apologize in advance for everything you may find obvious or offensive!

- Frog’s eye view, frog is outside(r)!
- Frog may be pretty ignorant, but doesn’t stop frog from being curious, (or even cocky)
Self-Stabilization: Frog’s Eye View

“fever curve” of the system

Failure

Last failure

Time

Transient failures

Stabilizing...

Correct...

“Eventually”

Efficiently!
Example: Maximal Independent Set (MIS)

- **Input:** Given a graph (network), nodes with *unique IDs*.
- **Output:** Find a Maximal Independent Set (MIS)
 - a non-extendable set of pair-wise non-adjacent nodes

A self-stabilizing algorithm:

IF no higher ID neighbor is in MIS \rightarrow join MIS
IF higher ID neighbor is in MIS \rightarrow do not join MIS

- Can be implemented by constantly sending (ID, in MIS or not in MIS)
- This algorithm has all the beauty of a typical self-stabilizing algorithm: It is simple, and it will eventually stabilize!
Example

IF no higher ID neighbor is in MIS \rightarrow join MIS
IF higher ID neighbor is in MIS \rightarrow do not join MIS

- What about transient failures?

- Proof by animation: Stabilization time is linear in the diameter of the network
 - We need an algorithm that does not have linear causality chain ("butterfly effect")
An Efficient Algorithm

• Nodes constantly send the following message

• Blue box: At which position does your „parent“ box differ from the neighbor with the lowest value in the same parent box? (Cole/Vishkin)

0010100110 0010111110 0100110110
neighbor A neighbor B

“four” 100 4th bit
An Efficient Algorithm (2)

- In the first box (left-right, then top-bottom) where your value is smaller than that of any of your neighbors, you declare to be in the MIS.
- If any neighbor declares to be in the MIS, you declare not to be in the MIS.
- Algorithm is much more difficult; I cheated extensively...
It can be shown...

- „Eventually“ a MIS will emerge, not depending on graph or node IDs
- In fact, for an important class of graphs, so-called bounded-independence graphs (well-suited for practical networks), the message will only have $O(1)$ columns, in other words

```
Message size is $O(\log n)$
Stabilization time is $O(\log^* n)$
```

- Stabilization Proof: As soon as there are no more transient failures, each node will recompute the correct message in $O(\log^* n)$ time.

- Results basically taken from [Schneider et al., 2008]
Connectivity Models for Wireless Networks: Overview

- General Graph
- UDG

Too pessimistic: Bounded Independence

Too optimistic: Unit Ball Graph, Quasi UDG
Bounded Independence Graph (BIG)

- Size of any independent set grows polynomially with hop distance r
- e.g., $f(r) = O(r^2)$ or $O(r^3)$
- A set S of nodes is an independent set, if there is no edge between any two nodes in S.

- BIG model also known as bounded-growth
 - Unfortunately, the term bounded-growth is ambiguous
Local Algorithm

- Given a graph, each node must determine its decision (e.g., in MIS or not in MIS) as a function of the information available within radius t of the node.

- Alternatively: Given a synchronous algorithm, no failures whatsoever, each node can exchange a message with all neighbors, for t communication rounds, and must then decide.
Self-Stabilization vs. Local Algorithms

Self-Stabilization
[Dijkstra, 1974]
- Trans. Byz. Faults
- Long-Lived
- Asynchronous

Local Algorithms
[1980s]
- No Faults
- One-Shot
- Synchronous
Results: MIS, Local Algorithms vs. Self-Stabilization

Upper Bounds
- Growth-Bounded Graphs [Schneider et al., 2008]
- General Graphs, Randomized [Luby, 1986], [others, 1986]
- Naive self-stab algorithm
- Advanced* self-stab algorithm [2007]

Lower Bounds
- Growth-Bounded Graphs [Linial, 1992]
- General Graphs [Kuhn et al., 2004]

*Advanced in the sense of „optimizing something else“
Results: Maximal Matching, Local Algorithms vs. Self-Stabilization

Upper Bounds
- Growth-Bounded Graphs [Schneider et al., 2008]
- General Graphs, Randomized [Luby, 1986], [others, 1986]
- [2002] [2009] [1994]

1 \(\log^* n \) \(\log n \) \(n \) \(n^2 \) \(n^3 \)

Lower Bounds
- Growth-Bounded Graphs [Linial, 1992]
- General Graphs [Kuhn et al., 2004]

... similarly connected dominating sets, coloring, covering, packing, max-min LPs, etc.
Self-Stabilization vs. Local Algorithms

Self-Stabilization
[Dijkstra, 1974]
Trans. Byz. Faults
Long-Lived
Asynchronous

Faults are just transient, not while stabilizing

No problem really (e.g. synchronizers)

Local Algorithms
[1980s]
No Faults
One-Shot
Synchronous

Just let the algorithm run forever

Theorem: Self-Stabilization = Local Algorithms

In other words: Self-Stabilization „Re-Invented“ by Local Algorithms
Self-Stabilization = Local Algorithms

This direction is known for a very long time, and considered to be a folk theorem, e.g. [Afek, Kutten & Yung 1990], [Awerbuch & Varghese, 1991].

The general idea is to let nodes simulate the local algorithm forever. Nodes do notice a transient failure because the information of a neighbor does not correspond to the local simulation („local checking“); nodes then simply (and automatically) adapt their solution.

This direction is even simpler. Lower bounds for local algorithms also hold in the self-stabilization model because the self-stabilization model is „harder“.

Theorem (just a bit more detail): Every local algorithm with quality guarantee q and time complexity t can be turned into a self-stabilizing algorithm with quality guarantee q, stabilizing efficiently in time t; transient faults will at most affect nodes in radius t. The very same holds for lower bounds. [Details in SSS 2009 paper]
Relations!

- Self-Assembling Robots
- Applications e.g. Multicore
- Self-Stabilization
- Local Algorithms
- Sublinear Estimators
- Dynamics
Lower Bound Example: Minimum Dominating Set (MDS)

- **Input:** Given a graph (network), nodes with unique IDs.
- **Output:** Find a Minimum Dominating Set (MDS)
 - Set of nodes, each node is either in the set itself, or has neighbor in set

- **Differences between MIS and MDS**
 - Central (non-local) algorithms: MIS is trivial, whereas MDS is NP-hard
 - Instead: Find an MDS that is “close” to minimum (approximation)
 - Trade-off between time complexity and approximation ratio
Lower Bound for MDS: Intuition

- Two graphs \((m << n)\). Optimal dominating sets are marked red.

\[|DS_{OPT}| = 2. \]

\[|DS_{OPT}| = m+1. \]
Lower Bound for MDS: Intuition (2)

- In local algorithms, nodes must decide only using local knowledge.
- In the example green nodes see exactly the same neighborhood.

So these green nodes must decide the same way!
Lower Bound for MDS: Intuition (3)

- But however they decide, one way will be **devastating** (with $n = m^2$)!

$$|\text{DS}_{\text{OPT}}| = 2.$$
$$|\text{DS}_{\text{OPT without green}}| \geq m.$$
$$|\text{DS}_{\text{OPT with green}}| > n$$
Graph Used in the Lower Bound

- The example is for $t = 3$.
- All edges are in fact special bipartite graphs with large enough girth.
The Lower Bound

• Lower bounds (Kuhn et al., PODC 2004, SODA 2006):
 – Local model: In a network/graph G, each node can exchange a message with all its neighbors for t rounds. After t rounds, node needs to decide.
 – We construct the graph such that there are nodes that see the same neighborhood up to distance t. We show that node ID’s do not help, and using Yao’s principle also randomization does not.

 – Results: Many problems (vertex cover, dominating set, matching, etc.) can only be approximated by factors $\Omega(n^{c/t^2} / t)$ and/or $\Omega(\Delta^{1/t} / t)$.
 – It follows that a polylogarithmic dominating set approximation (or a maximal independent set, etc.) needs at least $\Omega(\log \Delta / \loglog \Delta)$ and/or $\Omega((\log n / \loglog n)^{1/2})$ time.
Self-Stabilization & Local Algorithms (Lower & Upper Bounds)

Theorem: Self-Stabilization = Local Algorithms

Corollary: Local algorithm lower bounds apply to the self-stabilization model as well.

1 \log^* n \quad \text{about } \log n

Diameter

Growth-Bounded Graphs (different problems)
- E.g., dominating set approximation in planar graphs

Approximations of dominating set, vertex cover, etc.

MIS, maximal matching, etc.

MST, Sum, etc.

Covering and packing LPs
The “Gretchen” Question

Theorem: Self-Stabilization = Local Algorithms

Is this known?!?
Is „Self-Stab = Local Algos“ Known?

If I ask my friends that are into self-stabilization, the answer is „sure!“

However, if I search „self-stabilization XYZ“ in Google Scholar, I always find published papers (some very recently) that are exponentially worse than the state-of-the-art local algorithm, and that do not cite any local algorithms or lower bounds.

My friends in self-stabilization say “There is more to self-stabilization!”

– But your algorithms are often randomized, ours are usually deterministic!
– But what about bit complexity?
– But what about asynchronous systems?
– But what about snap-stabilization, super-stabilization, ...?
But…

- **Randomization**
 - There are some *pretty fast deterministic local algorithms*.
 - One simple idea is to *store random seed in ROM*. Any self-stabilizing algorithm needs some kind of storage (for code) that cannot be tampered.

- **Bit Complexity**
 - Local algorithms often just need *(poly)logarithmic* many rounds, during which they often exchange just a few bits. In addition, information may be compressed, so that all in all, messages are usually of *(poly)logarithmic* size.

- **Asynchronous Systems**
 - When turning a local algorithm into a self-stabilizing algorithm using the technique presented on slides 6 and 7, it will *automatically* be asynchronous, as there is no notion of time. In other words, no synchronizer is needed.

- **Snap-Stabilization, Super-Stabilization, Silent Stabilization, etc.**
 - I cannot claim that local algorithms solve everything; for that I am not familiar enough with the area (frog’s eye view!).
Summary & Open Problems

- Self-Assembling Robots
- Applications e.g. Multicore
- Self-Stabilization
- Local Algorithms
- Dynamics
- Sublinear Estimators

Open Problems

- **Self-Assembling Robots**
- **Applicatons** e.g. Multicore
- **Local Algorithms**
- **Dynamics**
- **Sublinear Estimators**

- **Growth-Bounded Graphs** (different problems)
- **E.g., dominating set approximation in planar graphs**
- **Approximations of dominating set, vertex cover, etc.**
- **MST, Maximal matching, etc.**
- **Covering and packing LPs**
- **MST, Sum, etc.**

Bounded-Independence Graph (BIG)

\[(\cdot, \cdot, \ldots) \]
Thank You!

Comments? Questions?

Once more, I would like to apologize for everything you found obvious or offensive!

Thanks to my collaborators
Fabian Kuhn
Thomas Moscibroda
Christoph Lenzen
Johannes Schneider
Jukka Suomela

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich