Approximating Fault-Tolerant Domination in General Graphs

Klaus-Tycho Förster
Minimum Dominating Set

- Can be approximated with ratio
 - \(\ln(n) - \ln(\ln(n)) + 0.78 \) \([\text{Slavík, 1996}]\)
 - \(H_{\Delta+1} - 0.5 < \ln(\Delta + 1) + 0.5 \) \([\text{Chlebík and Chlebíková, 2008}]\)

- NP-hard lower bound of
 - \(0.2267 \ln(n) \) \([\text{Alon, Moshkovitz and Safra, 2006}]\)
Minimum k-tuple Dominating Set

- k-tuple dominating set:
 - Every node should have k dominating nodes in its neighborhood

 [Harary and Haynes, 2000 and Haynes, Hedetniemi and Slater, 1998]

- Can be approximated with ratio
 - $\ln(\Delta + 1) + 1$ [Klasing and Laforest, 2004]
Minimum k-Dominating Set

- k-dominating set:
 - Every node should be in the dominating set or have k dominating nodes in its neighborhood [Fink and Jacobson, 1985]

- Best known approx.-ratio
 \[(e^2 + e)\ln(\Delta)\] [Kuhn, Moscibroda and Wattenhofer, 2006]
Overview of the remaining Talk

- k-tuple domination vs k-domination

- NP-hard lower bound for k-domination

- Improved approximation ratio for k-domination
k-tuple Domination versus k-Domination

- k-tuple dominating set only exists if min. degree $\geq k - 1$

- Every k-tuple dominating set is a k-dominating set

- But how “bad” can a k-tuple dom. set be in comparison?
k-tuple Domination versus k-Domination: With $k = 2$

- $|K| = k = 2$, $|M| = 9$, $\left\lfloor \frac{M}{K} \right\rfloor = \left\lfloor \frac{9}{2} \right\rfloor = 5$
- At least $|M| = 9$ nodes for a k-tuple dom. set
- But $|K| + \left\lfloor \frac{M}{K} \right\rfloor = 7$ nodes suffice for a k-dom. set
k-tuple Domination versus k-Domination

- $M \to \infty$: Off by a factor of nearly k!

- For $1 < \alpha < k$ and $n \geq k - 1 + \frac{(k-1)^2}{\alpha-1}$: Off by a factor $\geq \frac{k}{\alpha}$ (tight)
NP–hard lower bound for k–domination

- NP-hard lower bound for 1-domination
 - $0.2267 \ln(n)$ [Alon, Moshkovitz and Safra, 2006]

- If we could approx. k-dom. set with ratio of $s(n)$
 - Then build a k-multiplication graph:

\[G \]

Example for $k = 3$

- NP-hard lower bound for k-domination
 - $0.2267/k \ln(n/k)$
Improved approximation ratio for k–domination

- Utilizes a **greedy**-algorithm

- Use "**degree**" of k–domination per node
 - k, if in the k-dominating set
 - else **#neighbors** in the k-dominating set, but at most k

- Pick a node that **improves total sum** of degree the **most**
When does the Greedy Algorithm finish?

- Let a fixed optimal solution have \(r > 1 \) nodes

- Greedy does at least \(1/r \) of remaining work per step

- If it does more, also good 😊

- Total amount of work is \(n \cdot k \)

- This gives an approximation ratio of roughly \(\ln(n \cdot k) + 1 \)
When to stop when chopping off...

- When is chopping off \(\frac{1}{r} \) of the remaining work ineffective?

- When remaining work is less than \(r \)

- Then **at most** \(r \) more steps are needed

- Stop chopping after \(\ln\left(\frac{nk}{r}\right)/\ln\left(\frac{r}{r-1}\right) \) steps

- Gives an approx. ratio of \(1 + \ln\left(\frac{nk}{r}\right)/r \cdot \ln\left(\frac{r}{r-1}\right) \)
Calculating the approximation ratio

- $1 + \ln\left(\frac{nk}{r}\right)/r \cdot \ln\left(\frac{r}{r-1}\right)$ does not look too nice...

- 1) $\frac{1}{\ln\left(\frac{r}{r-1}\right)} \leq r \left(1 - \frac{1}{2r}\right) < r$

- 2) $\frac{nk}{\Delta + k} \leq r \iff \frac{nk}{r} \leq \Delta + k$

- Yields: Approx. ratio of less than $\ln(\Delta + k) + 1$

- $\ln(\Delta) + 1.7 < \ln(n) + 1.7$
Extending the Domination Range

• Instead of dominating the 1-neighborhood...

• ... dominate the h-neighborhood

• Often called h-step domination cf. [Hage and Harary, 1996]
Extending the Domination Range

• The black nodes form a **2-step** dominating set

• But **not** a 2-step 2-dominating set!
Extending the Domination Range

• Instead of having \(k \) dominating nodes in the \(h \)-neighborhood ...
 – (unless you are in the dominating set)

• ... have \(k \) \textbf{node-disjoint paths} of length at most \(h \)

• Results in approximation ratio of:

• \(\ln(\Delta_h + k) + 1 < \ln(n) + 1.7 \)
Thank you