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Abstract
We study the problem of learning comparisons
between numbers with neural networks. Despite
comparisons being a seemingly simple problem,
we find that both general-purpose models such as
multilayer perceptrons (MLPs) as well as arith-
metic architectures such as the Neural Arithmetic
Logic Unit (NALU) struggle with learning com-
parisons. Neither architecture can extrapolate to
much larger numbers than those seen in the train-
ing set. We propose a novel differentiable ar-
chitecture, the Neural Status Register (NSR) to
solve this problem. We experimentally validate
the NSR in various settings. We can combine the
NSR with other neural models to solve interesting
problems such as piecewise-defined arithmetic,
comparison of digit images, recurrent problems,
or finding shortest paths in graphs. The NSR
outperforms all baseline architectures, especially
when it comes to extrapolating to larger numbers.

1. Introduction
Mathematical reasoning is a cornerstone for intelligence. In
this paper, we study an innocent, yet critical part: compar-
isons. Nearly all species intuitively use comparisons, for
example, to find the bigger of two food sources. Also, hu-
mans subconsciously compare all the time: Even at a glance,
we can see whether two people have the same height or if
one person is taller. On the other hand, we also consciously
use comparisons in computer programs, for example in if
and while statements. Given how ubiquitous comparisons
are, we study how well neural networks can model them.

We find that common neural networks like multilayer per-
ceptrons struggle with comparisons. While they can learn
a comparison over the training set, these networks cannot
extrapolate. A model can extrapolate if it can also solve
comparisons far beyond the training set. A model failing to
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extrapolate suggests that the model did not fully understand
how to compare the numbers but at least partially relied on
artifacts in the training set. Furthermore, other popular arith-
metic architectures such as the NALU (Trask et al., 2018) or
NAU (Madsen & Johansen, 2020) cannot extrapolate either.

To address this problem, we propose a novel differentiable
neural architecture, the Neural Status Register (NSR). The
NSR mimics status registers (or condition code registers)
that we can find in virtually all hardware processors. When
a processor executes the code line if x == y:, it first
subtracts y from x and sets certain condition code bits. We
are interested in two bits for the NSR: the sign bit (if the
difference is negative) and the zero bit (if the difference is 0).
To evaluate x == y, for example, we can simply read the
zero bit after the subtraction x− y. The NSR transfers this
idea into a differentiable neural architecture that learns (i) to
pick the right x, y from the input and (ii) which comparison
to evaluate.

In isolation, we can use the NSR to learn comparisons ro-
bustly. However, it is more interesting to plug the NSR into
a larger architecture to solve problems that require compar-
isons. For example, we combine the NSR with GNNs which
benefit from a model that can find the minimum from a set
of numbers to compute shortest paths. We summarize our
contributions as follows:

• We introduce the NSR as novel neural architecture for
comparisons. The NSR is a differentiable version of
status registers found in processors that allows end-to-
end training with gradient descent or in combination
with other neural architectures. The NSR shows strong
extrapolation, even to numbers many orders of magni-
tude larger than the training set.

• We analyze the gradient space of the NSR to propose
optimizations to make the training more stable and ef-
ficient. We show how to choose the NSR components
to obtain good gradient signals. We further propose
adding some redundancy to make the NSR less ini-
tialization dependent. We experimentally validate the
efficacy of these changes in an ablation study.

• We experimentally evaluate the NSR in a variety of
tasks, mainly in conjunction with other architectures.
This allows learning interesting tasks such as learning
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simple comparisons, piecewise-defined functions, com-
paring images of digits, recurrent problems, shortest
paths in graphs. The NSR outperforms baseline com-
parison architectures on all tasks and shows remarkable
extrapolation.

2. Related Work
2.1. Mathematical Reasoning in Neural Networks

Our proposed NSR is an architecture that allows neural
networks to do mathematical reasoning. Prior works ex-
ist which we roughly divide into two subgroups: neuro-
symbolic versus quantitative models. Neuro-Symbolic mod-
els encode numbers into symbols (for example a sequence
of digits) and reason over those symbols. Quantitative mod-
els instead have neurons that hold the number itself. The
NSR belongs mostly to the latter group.

Neuro-Symbolic Models. One example approach is to en-
code numbers as a sequence of symbols in text and use
text-based architectures such as transformers for reasoning.
Saxton et al. (2019); Lample & Charton (2020); Lewkowycz
et al. (2022) show that a tailored language model can achieve
impressive results for a variety of tasks. Even general large
language models such as GPT3 (Brown et al., 2020) can
solve some mathematical problems. Another idea is to align
symbols of numbers in grids and use convolutions over
them. This approach is taken by NeuralGPUs (Kaiser &
Sutskever, 2016) and their improvements by Freivalds &
Liepins (2017). Kim et al. (2021) also learn to reorganize
sequences (of symbol-encoded numbers) into grids to solve
with convolutional architectures.

A set of related works in neuro-symbolic reasoning devel-
oped differentiable read-write memory modules (Graves
et al., 2014; Weston et al., 2015; Zaremba & Sutskever,
2016; Zaremba et al., 2016; Graves et al., 2016; Le et al.,
2020), or stacks (Grefenstette et al., 2015). We can then use
this memory to learn algorithms similar to imperative pro-
grams. Some example algorithms we can learn are addition
or sequence reversion. But other approaches for neuro-
symbolic algorithm inference that follow different program-
ming paradigms are possible. For example, some previ-
ous works use compositions of simple instructions Reed
& de Freitas (2016); Li et al. (2017); Chen et al. (2018)
or recursion Cai et al. (2017); Feser et al. (2017) which
resembles functional programming. Evans & Grefenstette
(2018); Dong et al. (2019) follow the ideas of declarative
programming and learn logical reasoning.

Quantitative Models. Quantitative models have neurons
holding the actual quantity, that may be encoded. Quantita-
tive architectures then aim to learn mathematical operations
on the quantities, for which conventional neural architec-
tures often fail (Mistry et al., 2022). One seminal work are

the Neural Arithmetic Logic Units (NALUs) by (Trask et al.,
2018) that can compute addition and subtraction. NALUs
further support multiplication and division by transforming
the operands into logspace before adding and subtracting
and back to the original space after. However, these oper-
ations are error-prone when facing potentially negative in-
puts. The authors further report unstable results for division.
Schlör et al. (2020) propose improvements to the NALU,
for example for robustness to negative inputs and divisions.
Madsen & Johansen (2020) propose the Neural Arithmetic
Unit (NAU), which comes with more robust initialization
and training than the NALU. Heim et al. (2020) improve
upon the NAU by allowing complex numbers and create the
Neural Power Unit (NPU). The NPU can handle division
and other power functions such as square roots. However,
we found that none of these methods can reliably solve com-
parisons. The NSR is tailored to solve comparisons and can
fill this gap.

2.2. The Importance of Extrapolation

Most of the above methods share their definition of suc-
cess: A model is successful only if it can also solve out-
of-distribution examples and/or extrapolate. Extrapolation
is a special form of out-of-distribution sampling where the
samples also become harder to solve. For example, we can
create extrapolating test instances for neuro-symbolic se-
quences by increasing the sequence length, we can make
arithmetic tasks harder by adding more digits to num-
bers (Kim et al., 2021). In quantitative architectures, we
can sample larger numbers as inputs. Madsen & Johansen
(2020) and Heim et al. (2020) train some problems on the
range [−2; 2] but evaluate on a larger range minus the train-
ing part, for example, [−6; 6] \ [−2; 2].

Extrapolation is a desirable property since it suggests the
model learned the real underlying problem. For example, if
a model learned the true algorithm for digit-wise addition, it
should not matter how many digits the inputs have. On the
other hand, a model failing to extrapolate suggests that the
model failed to learn the true solution. This idea of extrapo-
lation exists in other fields of deep learning (Santoro et al.,
2018) or reinforcement learning (Martius & Lampert, 2017;
Sahoo et al., 2018). Extrapolation and out-of-distribution
also exist in natural language processing (Lake & Baroni,
2018) or computer vision where they are often referred to
as zero-shot learning(Xian et al., 2017).

Xu et al. (2021) investigate when neural architectures are
likely to exhibit promising extrapolation. Neural architec-
tures whose architecture algorithmically aligns with a given
problem will generally be both more training data efficient
and extrapolate better. For example, GNNs align well with
the Bellman-Ford algorithm which makes them good at
learning shortest paths (Xu et al., 2020).
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Figure 1. High-level architecture for the NSR. The NSR mimics
physical status registers/condition code registers by subtracting
the numbers to compare and analyzing if the subtraction returned
a positive number or zero. The NSR has two sets of learnable
parameters, highlighted in red. The first setWM ,WS learns which
parts of the inputs should be compared. The second set b,W+,W0

learns which comparisons to use.

We will show that quantitative architectures can learn com-
parisons but fail to extrapolate to much larger numbers. On
the other hand, the NSR is well aligned with the comparison
problem. Therefore the NSR can even extrapolate to num-
bers that are many orders of magnitude larger than those in
the training set.

3. Neural Status Registers
3.1. The Basic NSR Model

In this section, we introduce the NSR model. The NSR
learns to model functions of the form f(x) = p ∈ [0; 1]
where p is the probability of some comparison (from >,≥
,=, 6=,≤, <) being true. The NSR learns this comparison by
following status registers/condition code registers: It learns
a minuend m and a subtrahend s from x, subtracts them,
and applies a function approximating the sign and zero bits.
We design the NSR to neither assume which numbers in x
are important nor which comparison it needs. Instead, the
NSR resolves both via learnable parameters. With two sets
of parameters WM and WS , which we activate with soft-
max, the NSR learns the minuend and the subtrahend of the
comparison. The second set of parameters b, W+, and W0

weigh the activation of the sign and zero-bit approximations
and thus learn the comparison. The weighed activation of
these bits is activated with σ to produce p. Figure 1 illus-
trates this flow, with learnable parameters highlighted in red.
We can write the update mathematically as:

m = 〈x, softmax(WM )〉
s = 〈x, softmax(WS)〉
p = σ(b+W+Ŝ(m− s) +W0Ẑ(m− s))

The learnable weights b,WM , and W0 and the intermediate
values m, s receive the following gradients with respect to

the output p:

∂p

∂b
= p(1− p)

∂p

∂W+
= p(1− p)Ŝ(d)

∂p

∂W0
= p(1− p)Ẑ(d)

∂p

∂m
= p(1− p)(Ŝ′W+ + Ẑ ′W0)

∂p

∂s
= p(1− p)(Ŝ′W+ + Ẑ ′W0) · (−1)

The last two equations require the derivative of the sign and
zero functions. This means that we cannot use bits from
physical status registers. We need to approximate the bits
with continuous functions. We have to be thoughtful about
which continuous approximations to use. Let us for example
consider Ẑ = 1− tanh (m− s)2 as an approximation for
the zero bit. Figure 2a shows the gradient landscape for W0

for different values of m and s. Since most numbers are not
equal, Ẑ approximates 0 in most of the space which causes
a vanishing gradients signal for W0.

To prevent this issue, we slightly alter the sign and zero-
bit definitions to return 1 as the true value, but −1 as
the false value. We show the gradient landscape for the
modified function Ẑ = 1− (2 tanh (m− s)2) in Figure 2b
which now has a non-zero gradient almost everywhere.

With continuous Ŝ and Ẑ we have one more issue to over-
come. There will be differences m − s where Ŝ ≈ 0 and
neither +1 nor −1 (we will choose a function where this
happens for m ≈ s). As a consequence, the gradients for
W+ that have Ŝ as a factor will vanish. Equally, there must
be some m, s, such that m 6= s but Ẑ(m, s) > 0. In these
cases, we say the difference is below the NSR’s resolution
limit. For example, the definition of Ẑ in Figure 2b have a
resolution limit of ≈ 0.88 (the smallest difference m − s
where Ẑ is still positive). The two yellow highlight a differ-
ence of only 0.5. This difference falls in the orange region
where the NSR considers the numbers equal. We say that
differences of 0.5 are out of the resolution limit.

We can overcome these resolution issues by applying Ŝ
and Ẑ not directly on m − s, but scale this difference by
a factor λ. If λ > 1, we can lower the resolution limit
and handle very small differences between numbers. If we
choose λ < 1, we can compensate for very large differences
and prevent vanishing gradients. Ultimately, we propose the
following approximations. Appendix B plots these functions
for illustration.

Ŝ(d) = tanh (λ(m− s))
Ẑ(d) = 1− 2 ∗ tanh (λ(m− s))2
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(a) Gradient landscape for W0 for Ẑ =
1 − tanh (m− s)2. The gradients are
mostly zero except for when x1 ≈ x2
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(b) Gradient landscape for W0 for the im-
proved Ẑ = 1 − 2 tanh (m− s)2. Gra-
dients are almost nonzero everywhere.
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(c) Gradient landscape for m with Ŝ =
tanh (m− s),W0 = 0,W+ = 1. Gra-
dients tend towards 0 as |m− s| grows.

Figure 2.

Another gradient problem might appear when the difference
between two numbersm−s becomes large. Figure 2c shows
the derivative of m, assuming Ŝ = tanh (m− s),W0 =
0, andW+ = 1. The larger the differences x1−x2 the more
Ŝ and Ẑ saturate. In turn, their derivatives approach 0 which
might cause vanishing gradients for WM and WS . Using
λ < 1 to downscale the difference can also combat this
problem.

For simplicity, we will initially experiment with integers
that require a resolution limit of at most 1. We later ana-
lyze the performance of different resolution limits δ versus
different scale factors λ in Section 4.6. We also investigate
the potential issue of vanishing gradients for WM and WS ,
however, we do see this problem materializing in practice.

3.2. The Redundant NSR Model

Next, we investigate how to initialize the NSR robustly.
Bland (1998) did an initial study on which parts of the
parameter space in an MLP allow for learning XOR (the
bitwise version of 6=). Not the whole space leads to a so-
lution. Frankle & Carbin (2019) obtain similar results ex-
perimentally. They further report that wider models with
redundant neurons substantially increase the chance of good
initial values (that the authors call lottery tickets) and there-
fore learning success. We also find this idea in Kaiser &
Sutskever (2016). The authors report that creating redundant
sets of parameters, which eventually are forced to converge,
drastically helps the stability of their model. Based on these
works, we measured the success probability of learning x
== y with the NSR, searching over initial values for W+

and W0 while initializing WM and WS glorot uniform (Glo-
rot & Bengio, 2010). While the NSR generally learns equal-
ity for most of the weight space, there are cases where a
low value for W0 lead to failure. This seems plausible since
NSR requires positive weights in W0 to express equality.
Nevertheless, we can get unlucky initial weights for the

NSR. Following previous work, we reduce the chance of
such bad initialization by adding redundancy to the NSR.

We can create redundancy by having multiple instances
of WM ,WS ,W+, and W0. Practically, we can extend
the learnable weights to matrices instead of vectors (for
WM ,WS) and vectors instead of scalars (for W+,W0).
We additively combine all redundant parts with the bias
term. Then, we activate the sum with sigmoid to produce p.
We experimented with a regularizing loss similar Kaiser &
Sutskever (2016) that forces the redundant structures even-
tually collapse in the end to one solution. We found no
improvements with such a regularization and removed it
again for simplicity.

4. Experiments
Code for all experiments is available1. We experimentally
try the NSR in five different settings. First, we use a vanilla
NSR to learn comparisons between numbers. Second, we
learn piecewise-defined functions with two branches. We
wire the NSR to two arithmetic units such as NALU or NAU
that each learn a branch. The NSR learns the comparison
directly on the input and gates which of the two branches
to take. Third, we learn image comparisons. We use a
standard convolutional neural network to predict the digit
in the image. The NSR takes two such predictions and
learns a comparison of the numbers. The entire architecture
(CNN+NSR) is trained from scratch end-to-end. Fourth, we
use the NSR in a recurrent architecture to find the minimum
element or count the first element in a sequence of numbers.
For finding the minimum, the NSR compares an internal
state with the next input number and controls to what extent
to keep the internal state or the new number. For counting,
the NSR compares the next input number to the first number

1https://github.com/lukasjf/neural_
status_register
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Table 1. Overview of the experiments. Comparisons: A vanilla NSR learns to compare numbers. Functions: The NSR gates downstream
arithmetic units (NAU, NALU) to compute piecewise-defined functions. MNIST: An upstream CNN feeds image predictions into an NSR
to compare MNIST digits. Recurrent The NSR operates on a list of numbers to find the minimum or count a number’s occurrences. SSSP:
The NSR is used instead of an aggregation function inside a GNN to find shortest paths.

Task Example input Example output Extrapolation

Comparisons 10 > 5 1 Larger numbers
1 > 5 0

Functions

f(11, 10, 22, 44, 62) 66

Larger numbers for comparisonsf(10, 11, 22, 44, 62) 22
g(10, 10, 22, 44, 62) 66
g(11, 10, 22, 44, 62) 22

MNIST > 0 N/A
= 1

Recurrent min([3, 5, 2, 7, 1]) 1 Longer sequences and/or larger numbers
count([3, 3, 5, 2, 3, 1]) 2

SSSP More nodes and/or larger edge weights

to control a ”+1”-counter if it should increment or not. Last,
we combine the NSR with graph neural networks (GNNs) to
learn shortest paths. The NSR is replacing the aggregation
function in the GNN, so it receives several input messages
and has to reduce them to one embedding. In the case of
finding shortest paths, the NSR should learn to find the
minimum. Table 1 also shows an overview of the different
tasks with examples.

In addition to the NSR and other arithmetic architectures,
we attempt to solve these problems with a large generative
language model for which we picked ChatGPT2 with the
default hyperparameter settings. We experimented with the
following prompts

Comparison Which of the numbers x1 and x2 is larger

Functions Let f(a, b, c, d, e) be a piecewise defined func-
tion that computes e+ 4 if a > b and d− c otherwise.
What is f(x1, x2, x3, x4, x5)

Minimum What is the smallest number in [x1, x2, . . . ]

Counting How many times does x1 occur in [x2, x3, . . . ]

Shortest Paths I am describing to you a graph in a set of
triples (a,b,c) of undirected edges. a and b are node
IDs and c is the distance between the two nodes. The
edge list is [e1, e2, . . . ]. Can you compute the lengths
of shortest paths from v to all other nodes. You can

2https://openai.com/product/chatgpt

skip the intermediate steps and only provide the final
result

ChatGPT solved all instances of the first three problems The
solutions also extrapolated to larger numbers. On the other
hand, ChatGPT often failed on the counting task, especially
as sequences became longer. ChatGPT also failed to com-
pute shortest paths though most distances were in the right
ballpark. We found the final instruction necessary to ensure
the reply does not exceed the output size. We also experi-
mented with encoding MNIST images in text but found no
encoding that ChatGPT understood. This small study shows
the impressive progress general-purpose symbolic architec-
tures made on arithmetic tasks but it also demonstrates that
quantitative architectures are still the better choice for some
tasks.

4.1. Comparisons

Our first experiment is the seemingly simple task of learning
comparisons between numbers. We sample integers from
[−10, 9] and compare them with >,≥,=, 6=,≤, <. The
target variable is 1 if the comparison evaluates to true
and 0 otherwise. For >,≥,≤, and < we train with all pairs
of digits. For = and 6= we create balanced training sets
as follows: For every i ∈ [−10, 9] we add (i, i) and (i, j)
for one j 6= i to the training set. After training, we test
models in an extrapolation setting: We take pivot numbers
x = 10i, i ∈ [1, 7] and compose the testing set of all pairs
(x, x + o), o ∈ [−5, 5] for >,≥,≤, and <. For = and 6=
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Table 2. Learning comparisons between numbers. For each column in the table, the column header is compared with every integer number
with difference at most 5. Table entries denote the mean absolute error for model predictions (lower numbers are better).

Comparison Model 101 102 103 104 105 106 107

>

MLP 0.00 ±0.00 0.00 ±0.00 0.01 ±0.01 0.23 ±0.16 0.49 ±0.12 0.52 ±0.01 0.52 ±0.01
NPU 0.75 ±0.19 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02

NALU 0.00 ±0.00 0.00 ±0.00 0.11 ±0.06 0.50 ±0.09 0.52 ±0.00 0.52 ±0.00 0.52 ±0.00
NAU 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
NSR 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

=

MLP 0.18 ±0.16 0.28 ±0.17 0.47 ±0.14 0.52 ±0.05 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00
NPU 0.40 ±0.15 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00

NALU 0.45 ±0.10 0.45 ±0.10 0.48 ±0.08 0.52 ±0.07 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00
NAU 0.33 ±0.11 0.33 ±0.11 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12
NSR 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

we again create a balanced testing set by using o = 0 and
one other non-zero offset from [−5, 5]. The reason for these
pivot plus offset sets is to test the models on the hardest
predictions right at the decision boundary.

We train five different models on this problem: a normal
two-layer MLP, Neural Power Units (NPU) (Heim et al.,
2020), Neural Arithmetic Logic Units (NALU) (Trask et al.,
2018), Neural Arithmetic Units (NAU) (Madsen & Jo-
hansen, 2020), and our Neural Status Register (NSR). For
all models but the NSR, we add hidden units that we com-
bine with a linear readout to create a fair setup in terms of
available parameters. We supervise, in this and all subse-
quent experiments, with the mean absolute error and use the
Adam (Kingma & Ba, 2015) optimizer with default settings.
All results are averaged over 10 different seeds. We train
for 50000 epochs and then test around each pivot element
separately. Table 2 shows the results for > and =, for space
reasons we defer the full comparison table to Appendix C.

NPUs excel at power functions but are misaligned with
comparing numbers which require subtractions. Therefore
NPU struggles with the problem. While MLP and NALU
can solve > on the training range, they cannot extrapolate.
NAU can solve > and extrapolate but cannot solve =. The
NSR outperforms all other methods and is the only method
capable of learning and extrapolating in both problems.

4.2. Piecewise-defined Functions

In this experiment, we combine the NSR with arithmetic
architectures to perform conditional calculations. We learn

to compute the two piecewise-defined functions.

f(a, b, c, d, e) =

{
e+ 4 if a > b

d− c otherwise

g(a, b, c, d, e) =

{
e+ 4 if a == b

d− c otherwise

We sample values for a and b in the same way as for the
previous experiments, for training and testing sets. The
remaining numbers c, d, and e are randomly sampled from
[−100, 100]. We wire the comparison architectures from
the previous experiment to two arithmetic units. One unit
is weighted by the comparison output score, the other with
its inverse property. We experiment with NALU and NAU
as arithmetic architectures. However, our experiments show
using NALU as arithmetic architecture works better in all
instances. We report the results with NAU to Appendix D.
We train for 500000 epochs and report the results in Table 3.

We hypothesize that due to the clipping of weights and
zeroing gradients, NAU makes it harder for upstream units
to also receive meaningful gradients. The NSR proves to be
the superior comparison unit for this task, providing among
the best extrapolation for f . However, the NSR is the only
architecture to solve g.

4.3. Digit Comparison with CNNs

In this task, we combine the NSR with convolutional neural
networks (CNNs). The base architecture is the CNN sam-
ple implementation for MNIST from pytorch.3 Instead of
supervising the output with the target image, we feed two
images through the CNN, interpret the model outputs as
numbers and input these numbers into a NSR or comparable

3https://github.com/
pytorch/examples/blob/
234bcff4a2d8480f156799e6b9baae06f7ddc96a/
mnist/main.py
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Table 3. Learning piecewise-defined functions. The condition is between the first two parameters. One parameter is the column header the
other parameter can be integers with difference at most 5. The remaining numbers are sampled from [−100, 100]. Table entries denote
the mean absolute error for model predictions.

Function Model 23 24 25 26 27 28 29

f

MLP 0.00 ±0.00 0.00 ±0.00 0.01 ±0.00 0.01 ±0.00 0.96 ±2.72 3.92 ±4.69 3.95 ±5.57
NALU 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.01 ±0.00 0.02 ±0.03 0.30 ±0.81 2.77 ±4.77
NAU 0.00 ±0.00 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00 0.02 ±0.01 0.03 ±0.01 0.06 ±0.03
NSR 0.00 ±0.00 0.00 ±0.00 0.01 ±0.00 0.01 ±0.00 0.01 ±0.01 0.02 ±0.01 0.05 ±0.06

g

MLP 4.78 ±8.78 5.81 ±9.18 4.71 ±8.52 5.42 ±8.73 4.26 ±6.55 12.72 ±13.34 25.93 ±16.09
NALU 34.51 ±10.76 36.23 ±13.06 36.75 ±14.96 34.85 ±15.66 33.97 ±14.21 32.75 ±11.56 40.14 ±18.70
NAU 33.86 ±11.40 37.59 ±11.18 35.92 ±13.19 37.52 ±13.16 40.80 ±16.17 42.15 ±24.79 57.77 ±37.23
NSR 0.04 ±0.03 0.04 ±0.04 0.12 ±0.19 0.08 ±0.11 0.06 ±0.05 0.08 ±0.08 0.21 ±0.30

Table 4. Classification results on image comparison tasks. For
Image>, models need to predict if the first image shows a larger
digit than the second, for Image= if they are equal. We train a CNN
plus a comparison model together and only on the comparison
signal. The table shows the test accuracy for different comparison
architectures on their best epoch over 10 seeds.

Model Image> Image=

MLP 95.18±0.78 70.79±5.25
NALU 75.90±20.36 64.99±0.97
NAU 76.01±20.44 63.26±1.68
NSR 96.92±1.06 80.05±12.07

comparison architecture. The label is whether the number
in the first image is larger/equal to that of the second. We
supervise the entire architecture including the CNN only
with this binary signal. Initially, the CNN will not be able
to distinguish numbers, therefore we decrease the resolution
limit of the NSR by setting λ = 10.

We create the data from normal MNIST batches: for >, we
pair all images in a batch of 50 images. For =, we pair all
images with the same digit within batches of 100 images.
For every such pair we add an non-equal pair. Table 4 shows
the test accuracy for the best epoch per model for both image
comparison tasks.

Unsurprisingly, accuracy is lower than in a direct digit clas-
sification task (which reaches around 99%). To compare
two digits, we need to identify the digits in the images (as
in the classification task), but the supervision signal is much
weaker. In vanilla MNIST, we supervise an image of a 4
with the label 4. In the image comparison task, we need to
compare the image 4 with at least one image of almost every
other digit to know if it is a 4. NALU und NAU produce
mediocre results compared to MLP and NSR. The NSR
produces better results than MLP, especially for the equality
comparison.

4.4. Recurrent Computation and Control.

In this experiment, we use the NSR and comparable com-
parison architectures in recurrent problems. We look at two
problems, where we input sequences of numbers. We pro-
cess numbers from the input sequence recurrently one at
a time. In the first problem min, comparison architectures
compare the hidden state versus the new input and learn to
identify the minimum element. In the second problem count,
comparison architectures compare sequence elements versus
the initial sequence element. On equality, the method learns
to increment a counter to count the number of occurrences
of that first element.

For training we create 400 sequences of length 5 (for min)
or 6 (for count) with numbers sampled from [1, 10]. During
testing, we create 50 test sequences that we independently
extrapolate in two dimensions: We increase the upper limit
of the sampling range by powers of two and also increase
the sequence length up to 50 and 51, respectively. For min,
we sample numbers from the entire interval. For count, we
first sample a random pivot number to count and sample
the remaining numbers such that they have a difference of
at most 5 to this pivot. In addition to the previous models,
we also run an LSTM (Hochreiter & Schmidhuber, 1997)
baseline. Previous works have shown that LSTMs can also
learn counting in some scenarios (Weiss et al., 2018; Suzgun
et al., 2019a;b). We show the results in Figure 3.

The LSTM achieves close to 0 error on the counting task
when there is little to no extrapolation. However, the LSTM
fails to learn the minimum and can extrapolates neither to
larger numbers nor to longer sequences in both tasks. MLP,
NALU and NAU keep some error in both tasks. These
models extrapolate to some extent to larger numbers but do
not extrapolate to larger sequences. On the other hand, the
NSR completely solves both problems and also perfectly
extrapolates in both dimensions.
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Figure 3. Mean absolute error of recurrent comparison architectures on finding the minimum element of a sequence (first row) and
counting the occurrences of an element in the sequence (second row). We extrapolate training models to handle larger numbers than
during training and larger sequences. The NSR outperforms all other architectures and is the only model solving and extrapolating both
tasks.

4.5. Shortest Paths with Graph Neural Networks

In this experiment, we combine the NSR with the popular
message passing structure (Gilmer et al., 2017; Battaglia
et al., 2018) for graph neural networks (GNNs). Our prob-
lem is the algorithmic task of finding shortest paths from
a source node (Velickovic et al., 2020; Tang et al., 2020;
Xu et al., 2020). In contrast to existing work, the NSR will
learn that the minimum is part of the solution, the model
is not given this aggregation. We create a GNN variant—
NSR-GNN— that uses an NSR in the aggregation step to
aggregate the neighborhood messages in sequence form.
Formally we can compare our NSR-GNN as follows against
NEG (Velickovic et al., 2020) and IterGNN (Tang et al.,
2020):

NEG:hl+1 = UPDATE(hl, min
v∈N(v)

(MESSAGE(v)))

IterGNN:hl+1 = UPDATE(hl, min
v∈N(v)

(MESSAGE(v)))

NSR-GNN:hl+1 = NSR(hl, ‖
v∈N(v)

(MESSAGE(v)))

N(v) contains the neighbors of v, MESSAGE and UPDATE
are linear functions. Compared to NEG, IterGNN uses
MESSAGE and UPDATE functions that must be homomor-
phic, NEG makes no restriction.

We train these models to learn to imitate the Bellman-Ford
algorithm with an iteration-level supervision, following
Velickovic et al. (2020). Nodes receive messages from
all neighbors and their previous state (via a self loop edge).
For training we create 10 graphs with 10 nodes each and
edge weights uniformly sampled from the integers 1 to 10.
Graphs are based on a random spanning tree, making all

connected graphs equally likely. On average we add one
random edge to every graph. We train for 1000 epochs.

After training we expose the model to extrapolation in two
dimensions. On the one hand we scale the maximum possi-
ble edge weight, on the other hand, we increase the graph
size. Both extrapolations increase exponentially in powers
of 2. In every extrapolation step, we compute the mean aver-
age error across 10 random test graphs. We repeat the entire
setup for 10 different seeds. Figure 4a shows the results.

NEG struggles with extrapolating to larger weights while
extrapolating well to larger graphs. IterGNN improves upon
NEG: The homomorphic functions that allow IterGNN to
better extrapolate across edge weights. The NSR outper-
forms both methods and achieves almost perfect extrapola-
tion in both dimensions.

4.6. Ablation Study

Ablation on λ. We finish our analysis with a study on using
the NSR for floats. We introduced the scaling constant λ to
combat the vanishing gradients for WM and WS for very
different inputs and to control the resolution limit of Ẑ. We
repeat the experiment setup from Section 4.1. However,
we scale the inputs so that their differences δ are different
powers of 10 (with 100 being the integer setup as in the first
experiment) and analyze the impact for different values of
λ. Figure 4b shows the mean absolute error for the training
set.

In both experiments, we can see that the NSR can even learn
when the differences between numbers are large (errors in
the bottom right are zero). This suggests vanishing gradients
for WM and WS because of saturation in Ŝ and Ẑ might
not be as much of a practical concern.
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Figure 5. Mean absolute error on a testing set (with no extrapola-
tion) for the piecewise-defined functions from Section 4.2. We
experiment with different levels of redundancy from 1 to 15 as
outlined in Section 3.2. Increased redundancy substantially re-
duces the error which reaches zero for already 3 redundant units.
Afterwards there are diminishing benefits.

However, we can see errors in the top left corner in the left
plot of Figure 4b. This is when differences between numbers
become very small such that Ŝ ≈ 0. This causes a vanishing
gradient on the important weight W+ and prevents learning
(the first resolution error).

In the right plot of Figure 4b, we can see the other resolu-
tion error where different numbers are close and the NSR
mistakenly considers them equal. This error happens when
λ < δ−1. Setting λ = δ−1 solves both resolution errors.

Therefore, we can control the NSR to support a resolution δ
that we want the NSR to achieve by setting λ = δ−1. We
already used λ in the image comparison task to adjust the
NSR resolution to smaller differences while the CNN still
needs training.

Ablation on redundancy. We experimented with different
redundancy levels from Section 3.2 for learning f and g
(the piecewise-defined functions from Experiment 4.2). We
vary the redundancy in the NSR from 1 to 15 and repeat

the experiment for 10 different seeds. Figure 5 shows the
mean average error of the testing set without extrapolation
for each redundancy level.

For both functions the error with using one NSR unit is
high, suggesting that at least some seeds suffered from bad
initialization. This effect is even more prominent in g which
requires solving = internally. We established in Section 3.2
that = is already initialization dependent so functions build-
ing on top of this method surely are as well. However, the
error rapidly declines with increasing redundancy and after
3 units, the error drops almost to zero (except one outlier).
This confirms that redundancy is indeed an effective way to
largely eliminate unlucky initial parameter values.

5. Conclusion
This paper introduced Neural Status Registers, a new ar-
chitecture tailored for quantitative reasoning. Like other
quantitative architectures such as the NAU or NALU, the
NSR works directly on the input numbers and does not en-
code them like neuro-symbolic methods. The NSR fills the
gap of learning comparisons between numbers that existing
architectures struggle with.

We show that the NSR excels at learning comparisons. More
importantly, we can plug the NSR into larger neural architec-
tures as a neural module to solve comparisons. This allows
us to solve interesting problems: For example we can com-
bine the NSR with arithmetic models for piecewise-defined
arithmetic, with CNNs for image digit comparisons, with
recurrent architectures for numeric sequence problems, or
with GNNs to compute shortest paths. The NSR clearly out-
performs baseline comparison architectures and learns all
these problems well. The NSR also extrapolate to more dif-
ficult problems, such as larger numbers, longer sequences,
or larger graphs.
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A. Motivating Example for a Redundant NSR
We conducted a small experiment to test the NSR’s sensitivity to weight initialization. The task was to learn equality
between numbers. The first set of weights WM and WS were glorot-uniform initialized. The possible initialization values of
W+ and W0 varied from −0.25 to 0.25 in 0.05 increments. We repeated every setup 10 times and measured how often the
NSR successfully learned equality. Figure 6 shows the results. In all settings, the NSR learnt equality in at least half the
runs. On the other hand, low values for W0 resulted in lower chances at learning equality. A redundant NSR would have
multiple chances to roll a high value for W0 for one of the initializations.
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Figure 6. Number of succesful training trials (out of 10) for learning equality for given W0 and W+ while initializing WM and WS glorot
uniform and b = 0. Not all parameter initializations for W0 and W+ learn equally well. This motivates to use redundant structure in the
NSR to have multiple random initializations.
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B. Continuous Approximations for sign and zero Bits
Recall that we use the following functions Ŝ and Ẑ to approximate the sign bits:

Ŝ(d) = tanh (λ(m− s))
Ẑ(d) = 1− 2 ∗ tanh (λ(m− s))2

Figure 7a shows the alignment of Ŝ and Ẑ with their respective bits when not using the rescaling factor (λ = 1). The right
Figure 7b shows the bit approximations for λ = 3 and λ = 1

3 . Setting λ > 1 sharpens the bit approximation and the NSR
can resolve smaller differences. On the other hand, we can soften the approximations by setting λ < 1 to keep unsaturated
functions and large gradients for larger differences m− s.
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(a) Discrete sign and zero bits for integers and the continuous
approximations Ŝ and Ẑ. Their scaling parameter λ is set to 1.

4 3 2 1 0 1 2 3 4
x

1.0

0.5

0.0

0.5

1.0

S 
an

d 
Z

S = 3

S = 1
3

Z = 3

Z = 1
3

(b) Two rescaled versions of Ŝ and Ẑ with λ = 3 and λ = 1
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C. Full Experiment Results for Learning Comparisons
Table 5 shows the results for all comparisons >,≥,=, 6=,≤, <. For >,≥,≤, and < from Section 4.1.

Table 5. Learning comparisons between numbers. For each column in the table, the column header is compared with every integer number
with difference at most 5. Table entries denote the mean absolute error for model predictions (lower numbers are better).

Comparison Model 101 102 103 104 105 106 107

>

MLP 0.00 ±0.00 0.00 ±0.00 0.01 ±0.01 0.23 ±0.16 0.49 ±0.12 0.52 ±0.01 0.52 ±0.01
npu 0.75 ±0.19 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02
nalu 0.00 ±0.00 0.00 ±0.00 0.11 ±0.06 0.50 ±0.09 0.52 ±0.00 0.52 ±0.00 0.52 ±0.00
nau 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
nsr 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

<

MLP 0.00 ±0.00 0.00 ±0.01 0.09 ±0.14 0.33 ±0.18 0.52 ±0.01 0.52 ±0.01 0.52 ±0.01
npu 0.83 ±0.14 0.52 ±0.02 0.52 ±0.01 0.52 ±0.01 0.52 ±0.01 0.52 ±0.01 0.52 ±0.01
nalu 0.00 ±0.00 0.00 ±0.00 0.11 ±0.05 0.51 ±0.03 0.52 ±0.00 0.52 ±0.00 0.52 ±0.00
nau 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
nsr 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

=

MLP 0.18 ±0.16 0.28 ±0.17 0.47 ±0.14 0.52 ±0.05 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00
npu 0.40 ±0.15 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00
nalu 0.45 ±0.10 0.45 ±0.10 0.48 ±0.08 0.52 ±0.07 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00
nau 0.33 ±0.11 0.33 ±0.11 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12
nsr 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

6=

MLP 0.18 ±0.11 0.27 ±0.12 0.42 ±0.11 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00
npu 0.43 ±0.15 0.52 ±0.05 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00
nalu 0.38 ±0.12 0.38 ±0.12 0.41 ±0.13 0.50 ±0.10 0.52 ±0.07 0.50 ±0.00 0.50 ±0.00
nau 0.33 ±0.11 0.33 ±0.11 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12
nsr 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

≥

MLP 0.00 ±0.00 0.00 ±0.00 0.01 ±0.01 0.23 ±0.16 0.49 ±0.12 0.52 ±0.01 0.52 ±0.01
npu 0.75 ±0.19 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02
nalu 0.00 ±0.00 0.00 ±0.00 0.11 ±0.06 0.50 ±0.09 0.52 ±0.00 0.52 ±0.00 0.52 ±0.00
nau 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
nsr 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

≤

MLP 0.00 ±0.00 0.00 ±0.00 0.02 ±0.04 0.25 ±0.19 0.52 ±0.01 0.52 ±0.00 0.52 ±0.00
npu 0.74 ±0.20 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02
nalu 0.00 ±0.00 0.00 ±0.00 0.11 ±0.06 0.50 ±0.08 0.52 ±0.00 0.52 ±0.00 0.52 ±0.00
nau 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
nsr 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
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D. Complete Results for Piecewise Functions
Table 6 shows results for all comparison architectures trying both NALU and NAU as the arithmetic model. Across both
learning tasks and all comparison architectures, NALU performs better as NAU as arithmetic unit. There are two exceptions
for learning g where NAU as arithmetic unit is better. However, the error in those two cases is so large we would argue
learning failed completely.

We hypothesize that NALU works better since it does not clip gradients—which NAU does. In case of gradient clipping,
NAU propagates 0 gradients to the upstream comparison unit which makes learning that unit much more difficult. On the
other hand, NALU always provides gradients to the comparison unit.

Table 6. Learning piecewise-defined functions. The condition is between the first two parameters. One parameter is the column header the
other parameter can be integers with difference at most 5. The remaining numbers are sampled from [−100, 100]. Table entries denote
the mean absolute error for model predictions.

Function Comparison 21 22 23 24 25 26 27

f

MLP+NALU 0.00 ±0.00 0.00 ±0.00 0.01 ±0.00 0.01 ±0.00 0.96 ±2.72 3.92 ±4.69 3.95 ±5.57
MLP+NAU 1.46 ±1.67 4.45 ±8.09 6.42 ±8.88 17.72 ±24.86 27.41 ±37.65 49.67 ±56.88 103.28 ±152.32

NALU+NALU 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.01 ±0.00 0.02 ±0.03 0.30 ±0.81 2.77 ±4.77
NALU+NAU 7.28 ±12.25 14.83 ±21.82 9.72 ±12.24 14.12 ±14.42 21.86 ±23.19 25.78 ±27.84 65.97 ±114.87
NAU+NALU 0.00 ±0.00 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00 0.02 ±0.01 0.03 ±0.01 0.06 ±0.03
NAU+NAU 7.19 ±12.28 13.45 ±21.69 9.76 ±12.22 16.15 ±18.70 21.41 ±22.59 37.93 ±53.33 93.63 ±142.86

NSR+NALU 0.00 ±0.00 0.00 ±0.00 0.01 ±0.00 0.01 ±0.00 0.01 ±0.01 0.02 ±0.01 0.05 ±0.06
NSR+NAU 1.75 ±1.83 2.27 ±2.54 4.01 ±5.34 5.84 ±6.28 10.28 ±15.71 15.58 ±23.08 24.01 ±42.46

g

MLP+NALU 4.78 ±8.78 5.81 ±9.18 4.71 ±8.52 5.42 ±8.73 4.26 ±6.55 12.72 ±13.34 25.93 ±16.09
MLP+NAU 8.28 ±9.89 8.64 ±10.52 9.30 ±9.71 15.96 ±13.28 18.37 ±13.11 33.30 ±9.29 37.38 ±10.04

NALU+NALU 25.39 ±9.36 30.76 ±14.19 37.31 ±29.58 43.95 ±47.93 75.85 ±119.67 139.51 ±254.32 204.69 ±357.51
NALU+NAU 34.51 ±10.76 36.23 ±13.06 36.75 ±14.96 34.85 ±15.66 33.97 ±14.21 32.75 ±11.56 40.14 ±18.70
NAU+NALU 24.89 ±9.20 28.86 ±12.74 29.62 ±14.80 32.59 ±21.83 57.92 ±71.28 82.04 ±120.31 148.11 ±256.99
NAU+NAU 33.86 ±11.40 37.59 ±11.18 35.92 ±13.19 37.52 ±13.16 40.80 ±16.17 42.15 ±24.79 57.77 ±37.23

NSR+NALU 0.04 ±0.03 0.04 ±0.04 0.12 ±0.19 0.08 ±0.11 0.06 ±0.05 0.08 ±0.08 0.21 ±0.30
NSR+NAU 5.66 ±8.20 6.48 ±8.34 7.24 ±6.48 12.72 ±11.35 17.48 ±12.49 23.94 ±24.45 41.20 ±50.47
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