Dozer
Ultra-Low Power Data Gathering in Sensor Networks

Nicolas Burri
Pascal von Rickenbach
Roger Wattenhofer
Environmental Monitoring

- Continuous data gathering
- Unattended operation
- Low data rates
- Battery powered
- Network latency
- Dynamic bandwidth demands

Energy conservation is crucial to prolong network lifetime
Energy-Efficient Protocol Design

- Communication subsystem is the main energy consumer
 - Power down radio as much as possible

<table>
<thead>
<tr>
<th>TinyNode</th>
<th>Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>uC sleep, radio off</td>
<td>0.015 mW</td>
</tr>
<tr>
<td>Radio idle, RX, TX</td>
<td>30 – 40 mW</td>
</tr>
</tbody>
</table>

- Issue is tackled at various layers
 - MAC
 - Topology control / clustering
 - Routing

→ Orchestration of the whole network stack to achieve duty cycles of ~1%.

Pascal von Rickenbach, ETH Zurich @ IPSN 2007
Dozer System

• Tree based routing towards data sink
 – No energy wastage due to multiple paths
 – Current strategy: SPT

• TDMA based link scheduling
 – Each node has two independent schedules
 – No global time synchronization

• The parent initiates each TDMA round with a beacon
 – Enables integration of disconnected nodes
 – Children tune in to their parent’s schedule
Dozer System

- Parent decides on its children data upload times
 - Each interval is divided into upload slots of equal length
 - Upon connecting each child gets its own slot
 - Data transmissions are always ack’ed

- No traditional MAC layer
 - Transmissions happen at exactly predetermined point
 - Collisions are explicitly accepted
 - Random jitter resolves schedule collisions

Clock drift, queuing, bootstrap, etc.
Evaluation

• Platform
 – TinyNode
 – MSP 430
 – Semtech XE1205
 – TinyOS 1.x

• Testbed
 – 40 Nodes
 – Indoor deployment
 – > 1 month uptime
 – 30 sec beacon interval
 – 2 min data sampling interval
Dozer in Action
Tree Maintenance

1 week of operation

on average 1.2%

Node id

Connection attempts

Packet loss
Energy Consumption

Mean energy consumption of 0.082 mW

Pascal von Rickenbach, ETH Zurich @ IPSN 2007
Conclusions & Future Work

• Conclusions
 – Dozer achieves duty cycles in the magnitude of 1‰.
 – Abandoning collision avoidance was the right thing to do.

• Future work
 – Incorporate clock drift compensation.
 – Optimize delivery latency of sampled sensor data.
 – Make use of multiple frequencies to further reduce collisions.
Questions?
Comments?

Pascal von Rickenbach, ETH Zurich @ IPSN 2007