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Abstract

We conduct a preliminary inquiry into the abil-
ity of generative transformer models to deduc-
tively reason from premises provided. We ob-
serve notable differences in the performance of
models coming from different training setups
and find that the deductive reasoning ability in-
creases with scale. Further, we discover that
the performance generally does not decrease
with the length of the deductive chain needed
to reach the conclusion, with the exception of
OpenAI GPT-3 and GPT-3.5 models. Our study
considers a wide variety of transformer-decoder
models, ranging from 117 million to 175 billion
parameters in size.

1 Introduction

It is inherently desirable for foundation language
models to be capable of reasoning. This is espe-
cially true for generative models, where the hope
is that the models could ultimately hold a profound
conversation or continue a chain logical reasoning
with human-like performance.

The most tractable of modes of reasoning is de-
duction, which employs premises and general laws
to reach conclusions. In contrast to inductive rea-
soning, which deals with generalisation of observed
phenomena, and abductive reasoning, which is in-
voked to find a likely cause for a conclusion in
some context of knowledge, deduction is the mode
of reasoning used to find the consequences of avail-
able knowledge. As such, it is a natural and nec-
essary part of any generative language model – a
model trained on a large corpus of knowledge and
queried to make use of it must internally perform a
chain of deductions to produce a true consequence
of its knowledge as prompted.

Our aim is to study large language models, as-
sess their ability to perform deductive reasoning,
and see how they fare as the size of the model and
the complexity of required deductions grow. Note
that the use of deductive reasoning is implicitly

assumed when interacting with a large generative
language model. It is expected that regardless of
the prompt, the model will produce an output that
logically follows either from the model’s knowl-
edge or the context provided, and that this output
complies with the prompting instruction. Even
when asked to perform creative writing or continue
a paragraph, it is expected that the generated text
will logically follow or at least not contradict the
context (Yuan et al., 2022). Hence, our study con-
siders the native scenario in which no particular
prompting instruction is provided.

Large language models have been shown to ex-
cel at memorising fragments of factual statements
in their training data and at internalising highly co-
occurring factual associations (Li et al., 2022; Car-
lini et al., 2022). A study that would hope to eval-
uate model’s deductive reasoning ability while re-
quiring “common sense” (Lourie et al., 2021; Singh
et al., 2021) would thus also be indirectly evalu-
ating its common sense knowledge. We therefore
steer clear of any factual knowledge and carry out
our evaluation under a restricted setting, in which
we provide the model with a context of premises (a
theory) and ask a single yes/no question, insisting
that

P1. all premises are generic in their wording (they
only involve neutral entities and properties),

P2. all premises are precise in their meaning (there
are no ambiguities arising from synonymy,
paraphrasing, or categorical adherence),

P3. all conclusions that may be queried by the
question can be arrived at by (possibly several)
applications of modus ponens (if A and if A
then B then B), and that

P4. all premises that hold true are explicitly listed
and provided to the model, with any fact that
is not a premise nor a consequence assumed



not to be true (i.e. we make the closed-world
assumption).

We set out to answer three research questions:

Q1. How does the deductive reasoning ability
(DRA) of large language models evolve with
their growing size?

Q2. How does the DRA of general-purpose gen-
erative large language models depend on the
number of deductive steps required to reach
the conclusions?

Q3. Do the specifics of a training setup, such as
the model variant, dataset multilingualism, or
dataset size have a decisive influence on the
DRA?

We measure DRA by binary accuracy on the an-
swers of the model; in other words, by the propor-
tion of the instances in which the model answered
the question about the theory given as context cor-
rectly. A detailed account of our experimental setup
is presented in Section 2.

Q1 sets the first dimension of our inquiry – the
impact of the size of the language model on DRA.
Even relatively small pre-trained language models
(BERT, RoBERTa) have been shown to perform
well on isolated instances of unstructured natural
language inference when fine-tuned to that end
(Wang et al., 2021; Sun et al., 2020). Models of
similar size were also fine-tuned for small struc-
tured languages to determine whether a statement
follows from a theory, but it was observed that the
performance of such models deteriorated rapidly
when the number of deductive steps (“depth”) re-
quired to arrive at the answer in test examples was
higher than what had been seen in training (Clark
et al., 2020). Instances of models twice as large
were successfully fine-tuned for proof generation
in structured language, though it should be noted
that when asked to generate the proof in a single
run, the models suffered from the same limitation
on the question depth (Tafjord et al., 2020). The
largest of language models remain largely untested
in this regard, though it has been shown that they
perform rather poorly even on elementary reason-
ing and arithmetic tasks unless prompted through
chains of thought or by explicitly providing the
relevant algorithm (Wei et al., 2022; Zhou et al.,
2022). To answer Q1, we comprehensively evalu-
ate 16 models in total, ranging from 117 million to
175 billion parameters in size.

Q2 asks about the influence of the reasoning
depth required on model DRA. As already men-
tioned, previous work (Clark et al., 2020; Tafjord
et al., 2020) has shown that even the deductive per-
formance of models fine-tuned in the context of
deductive reasoning considerably decreases once
the depth required for inference climbs above the
maximum depth seen in training. We test all 16
models considered for Q1 for depths 0, 1, 2, and 3,
paying attention to any changes in scores.

Q3 leverages the experiments conducted for Q1-
2 in an attempt to see whether there might be other
factors influencing DRAs of foundation language
models. While large language models tend to be
trained on enormously large datasets, they vary
in many details of their training, for example the
proportions of different languages used, the use of
code versus the pure use of the natural language,
and the level to which edited sources (e.g. books,
news) are emphasised over spontaneous language
(e.g. chats, tweets). We inspect the results of all ex-
periments for patterns aligned with the boundaries
between different training setups.

In Section 3, we answer each of the questions
Q1-3 in turn and comment on our further findings.
We structured our study under the hypothesis that
the model size would play a decisive role in model
DRA, that the model performance would quickly
decrease with depth, and that the role of the training
setup would be negligible.

REPRODUCIBILITY STATEMENT. For full repro-
ducibility, we make the datasets, runtime configu-
rations, and all our code available at anonymised.

2 Experiments

2.1 Data

We use the closed-world variant of the RuleTakers
dataset introduced in (Clark et al., 2020) and fur-
ther expanded in (Tafjord et al., 2020). The dataset
contains groups of 100,000 randomly generated
theories for depths ranging from 0 to 5, written
in structured language. A group of depth k con-
tains yes/no questions that ask about statements
(dis)provable in up to k deductive steps, generated
at random but such that the dataset is balanced on
average. The dataset further contains two special
groups, NatLang and Birds-Electricity, each
containing examples written freely in natural lan-
guage and with separating punctuation where ap-
propriate, but still abiding by the principles P1-4.
Appendix A gives examples of theories written



both in structured and natural language.

2.2 Inputs

Inputs given to our models consist of the theory,
leading examples (if considered), and the question
that is to be answered. The three components are
concatenated, with whitespace and punctuation in-
serted where appropriate. The leading examples are
provided in the form “Question? Answer.”, where
question is as provided by the dataset and answer
is either “Yes” or “No”.

There are always either 0 or 3 leading examples
provided. In the latter case, we give one leading
example for each answer, determined at random,
and a distinct example with either answer, also
determined at random. This was done to make
sure that the models (especially the ones below 3bn
parameters) are not tempted by continuing a series
of three “Yes” or three “No” answers instead of
answering the question.

2.3 Evaluation

We ran the inferences of 11 open-source models on
the test slice of the dataset locally, and further eval-
uated 4 recent OpenAI models via the OpenAI API.
In either case, we provided the model with inputs
as in Section 2.2 and asked it to make predictions
for the next token.

2.3.1 Open-source models
The open-source models had between 117 million
and 66 billion parameters and can be sorted into
three families based on their training setup: Ope-
nAI GPT-1/2 models, Bloom models, and Face-
book OPT models. The smaller from among those
models would answer our questions with “Yes”,
“No”, but also with “ True”, “<line-break>False”,
and with varying capitalisation. Further, “Yes” and
“No” were not always the most favoured answers,
and the models sometimes exhibited a tendency
to either continue the theory by inventing more
facts, or continue asking questions without answer-
ing the question they were asked. To evaluate the
models consistently, we therefore inspected the pre-
dicted probability distribution of the first token and
considered the model to have answered “Yes” if it
answered “Yes” or “True” irrespective of capitalisa-
tion, and similarly considered it to have answered
“No” if it answered with “No” or “False”.

We also experimented with equipping some of
the ≤ 1bn-parameter models with a linear classi-
fication head on the embeddings of the final to-

ken as in (Radford et al., 2018) and training it to
perform yes/no classification with the base either
completely model frozen or frozen except for the
final transformer layer. We did not observe any
improvements over the results of the evaluation as
above. Due to us wishing to evaluate the original
version of the model and because of the limits on
our computational resources, we did not attempt to
fine-tune entire networks.

2.3.2 OpenAI GPT-3 and GPT-3.5 models
Since the OpenAI API does not provide access to
the probabilities of the tokens predicted, we con-
figured the models with temperature 1 and asked
them to predict a single token. In all instances
where leading examples were provided, the models
were consistently outputting either “Yes” or “No”
with some variance in capitalisation. In instances
where no leading examples were given, all mod-
els but the GPT-3.5 “da Vinci” tended to behave
similarly to ≤ 3bn-parameter open-source models
and either continued the theory or continued gen-
erating questions instead of answering. Due to the
lack of information about other predicted tokens
we did not perform the full set of experiments with
no leading examples.

3 Results

Table 1 lists the results of our experimentation on
the open-source models, and Figure 1 shows the
performance of the OpenAI models available only
through the OpenAI API. Appendices B-C give the
detailed results for natural language datasets and
OpenAI GPT-3 and GPT-3.5 models.

We hypothesized that an increase in model size
would correspond to an increase in the model’s
DRA. Table 1 shows that this is often the case
within respective model families except OpenAI
GPT-1 and 2 models but not across the board –
for example, OPT-66b outperforms OPT-30b but
underperforms Bloom-7b.

Q1: How does the deductive reasoning abil-
ity (DRA) of large language models evolve with
their growing size? We find that with the train-
ing setup and model architecture kept constant,
larger model size leads to higher DRA, but also
that this effect can often be compensated by choices
made in the training configuration. Previous work
has shown that the DRA of models fine-tuned for
deduction decreases on data that requires longer
chains of reasoning that have been seen in training.
Table 1 shows that this does not seem to be the
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Depth 0
none +0.08 +2.15 +1.89 +1.33 -1.20 +6.76 +1.05 +3.13 +5.64 +1.68 +4.20
YNR -0.05 -24.32 -19.79 -11.14 -14.77 -0.98 -5.12 +3.97 -0.43 -11.47 -7.14

Depth 1
none -0.09 +0.83 +0.13 +0.35 -1.24 +3.57 +1.11 +1.19 +3.12 +0.39 +3.11
YNR -0.01 -7.52 -5.79 -2.35 -3.50 +0.07 -0.14 +0.94 +0.29 -3.00 -2.54

Depth 2
none -0.03 +2.59 +2.22 +0.69 -1.17 +5.95 +1.78 +3.57 +4.56 +0.78 +2.68
YNR -0.04 -3.58 -1.80 -0.57 +0.44 +1.20 +1.83 +2.29 +1.29 +0.80 +2.68

Depth 3
none +0.09 +3.43 +3.43 +0.55 -0.86 +6.57 +2.32 +4.22 +5.24 +1.18 +4.88
YNR +0.01 -1.99 -0.08 +1.53 +2.12 +1.36 +2.53 +2.72 +1.41 +2.06 +4.65

Table 1: Results of our evaluation of open-source models. The models are listed by family and then given in the
order of their growing size. “LEs” denotes leading examples, where “none” means no leading examples were
provided and “YNR” means that examples of “Yes”, “No”, and a random question were given. The metric used is
binary accuracy displayed in percentage points relative to the baseline coin-flip performance of 50%, measuring the
proportion of answers that were correct. Emphasis and emphasis mark the best performances overall and for the
model family.

Figure 1: The performance of OpenAI GPT-3 and GPT-
3.5 models plotted against the increasing length of ques-
tions in the dataset. The detailed results are in Ap-
pendix C.

case for foundation models as we evaluated them,
that the performance of many models on deeper
questions is similar to that on shallower questions,
and that it sometimes even increases, especially for
OpenAI GPT-1/2 models.

Q2: How does the DRA of general-purpose
generative large language models depend the
number of deductive steps required to reach the
conclusions? For depths considered in our study,
it remains largely similar throughout, except for
the OpenAI GPT-3 and 3.5 models, for whom the
performance decreases as seen in Figure 1.

Q3: Do the specifics of a training setup, such

as the model variant, dataset multilingualism,
or dataset size have a decisive influence on the
DRA? Yes. As noted for Q1, the differences be-
tween model training setups in many cases play a
larger role than the size of the model. An example
outlier is Bloom-560m, which comfortably outper-
forms all larger Bloom models, and Bloom setting
as a whole, which in turn outperforms much larger
OPT and GPT-2 XL models. This is perhaps due to
the multi-lingual training setup (including multiple
programming languages) of Bloom models, which
is in contrast to natural language English used for
GPT-1/2 and OPT models.

In summary, we conclude that all our initial hy-
potheses were partially incorrect, and that the sub-
ject of deductive reasoning ability in large language
models warrants further examination from a wider
set of angles.

4 Limitations

Our work only considers the token probabilities di-
rectly as provided by the generative models. Since
the models are trained with generation of patches of
text in mind, it can be argued that the model might
in fact be trying to output a verbose answer. We
attempt to to mitigate this by priming the model,
but higher accuracy could perhaps be achieved by
fine-tuning the language modelling head.
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A Input Examples

Erin is kind. Erin is quiet. Erin is round. Fiona is green. Gary is big.
Gary is green. Harry is quiet. If Harry is round then Harry is young.
If something is kind then it is big. If something is green and not round
then it is white. Quiet things are green. If Fiona is young and Fiona is
not round then Fiona is quiet. If something is white then it is young.

Figure 2: An example of a theory of the RuleTakers dataset, written in structured language. Whether Erin is round
would be a question of depth 0, whether Erin is big would be a question of depth 1, and whether Harry is young
would be a question of depth 3.

For being so cold , it 's good Alan can remain nice. Charlie might be rough
and red but he 's actually very kind. Dave can be rough and cold , but he is
also green , an avid gardener. Fred is a round and rough around the edges ,
and he is also big. People who have green body paint and act kind to others
are quite young. A nice , green , big person is also sure to be a red person.
Cold people that are big and red are usually nice. Someone with rough and
green feet is invariably kind. Tom is a rough , young person to know , he is
very green at his job but he is very round from his weight.

Figure 3: An example of a theory from the NatLang part of the RuleTakers dataset, paraphrased into natural
language. Here, “Is Dave green?” is a question of depth 0, “Is Dave kind?” is a question of depth 1, and ‘Is Dave
young?” is a question of depth 3.

Erin is kind. Erin is quiet. Erin is round. Fiona is green. Gary is big.
Gary is green. Harry is quiet. ... Erin is round? Yes. Harry is round? No.
Fiona is green? Yes. Fiona is quiet?

Figure 4: An instance of input based on the theory from Figure 2, supplemented with three leading examples of
depth 0 and the question to be answered by the model.



B Detailed Results of the Evaluation on Natural Language Datasets
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NatLang
none -0.49 +0.84 -0.41 +0.50 -0.52 0.34 -0.60 -0.27 0.55 -0.71 N/A
YNR 0.00 -3.37 -1.89 -2.51 -1.97 -0.51 -0.50 -0.87 -1.29 -3.06 N/A

Birds-Elec.
none -0.27 0.00 +6.36 -12.01 -0.04 -5.52 -6.41 +1.19 -7.42 -7.77 +2.58
YNR 0.00 -2.49 -6.81 -6.53 -1.04 -7.59 -9.37 -4.72 1.46 -2.72 -6.80

Table 2: Results of our evaluation of open-source models on natural language datasets. The models are listed by
family and then given in the order of their growing size. “LEs” denotes leading examples, where “none” means
no leading examples were provided and “YNR” means that examples of “Yes”, “No”, and a random question
were given. The metric used is binary accuracy displayed in percentage points relative to the baseline coin-flip
performance of 50%, measuring the proportion of answers that were correct. Emphasis and emphasis mark the best
performances overall and for the model family.



C Detailed Results of the Evaluation of OpenAI GPT-3 and 3.5 models

Data LEs Model

GPT-3 Ada GPT-3 Babbage GPT-3 Curie GPT-3.5 da Vinci

unknown 1bn 6.7bn 175bn

Depth 0 YNR +4.67 +14.96 +15.49 +26.28
Depth 1 YNR +1.23 +2.88 +7.09 +17.23
Depth 2 YNR +1.72 +3.20 +8.68 +14.48
Depth 3 YNR +1.65 +2.66 +8.93 +12.44

Table 3: Results of our evaluation of OpenAI GPT-3 and GPT-3.5 models on structured langauge datasets. These
were also the results used in Figure 1. The models are listed in the order of their growing size. “LEs” denotes
leading examples, “YNR” means that examples of “Yes”, “No”, and a random question were given. As explained
in Section 2.3, we did not comprehensively evaluate the models for their performance with no leading examples
due to the limited information available through the OpenAI API. The metric used is binary accuracy displayed in
percentage points relative to the baseline coin-flip performance of 50%, measuring the proportion of answers that
were correct. Emphasis and emphasis mark the best performances overall and for the model family.


