From Partial to Global Asynchronous Reliable Broadcast

Diana Ghinea Martin Hirt Chen-Da Liu-Zhang

ETH Zurich

DISC 2020

Broadcast allows a party to consistently distribute a message to n recipients.

Broadcast allows a party to consistently distribute a message to n recipients.

Broadcast allows a party to consistently distribute a message to n recipients.

Broadcast allows a party to consistently distribute a message to n recipients.

(Consistency)

Broadcast allows a party to consistently distribute a message to n recipients.

(Validity)

Model

Synchronous channels

Model

Asynchronous channels

Model

Asynchronous channels

Adversary

- Controls the delay time of the messages.
- Corrupts up to t parties: they send wrong messages or they do not send some of the messages.

Achieving Asynchronous Reliable Broadcast

To achieve asynchronous reliable broadcast, a protocol must satisfy the following properties:

Validity

Honest Sender with input m

 \implies Every honest recipient terminates and outputs m.

Consistency

An honest recipient terminates with output m

 \implies Every honest recipient terminates with output m.

	Synchronous BC	Asynchronous RBC
Traditional	t < n/3 [PSI 80]	t < n/3 [BraTou85]
model	v < n/5 [I DL00]	
PKI		
b-cast		

	Synchronous BC	Asynchronous RBC
Traditional	t < n/3 [PSI 80]	t < n/3 [BraTou85]
model	$\iota < \iota / 3$ [I Shoo]	
PKI	t < n [DolStr83]	t < n/3
b-cast		

		Synchronous BC	Asynchronous RBC
Traditional		t < n/3 [PSI 80]	t < n/3 [BraTau85]
model	$\iota < \iota / 3$ [I SLOO]		t < h/5 [Dia10005]
PKI	t < n [DolStr83]		t < n/3
b-cast	b = 3	t < n/2 [FitMau00]	

		Synchronous BC	Asynchronous RBC
Traditional	$t < n/3 \; [PSL80]$		t < n/3 [BraTou85]
model			
PKI	t < n [DolStr83]		t < n/3
b-cast	b = 3	t < n/2 [FitMau00]	
	b < n	$t < \frac{b-1}{b+1}n$ [CFFLMM05]	

		Synchronous BC	Asynchronous RBC
Traditional		t < n/3 [PSL80]	t < n/3 [BraTou85]
model	$\iota < \iota / 5$ [I SLOO]		t < h/5 [Dia10005]
PKI	$t < n \; [\text{DolStr83}]$		t < n/3
b-cast	b = 3	t < n/2 [FitMau00]	?
	b < n	$t < \frac{b-1}{b+1}n$ [CFFLMM05]	•

Feasibility

Impossibility

In the asynchronous setting, there is no protocol achieving () reliable broadcast secure against $t \ge \frac{b-1}{b+1}n$ corruptions.

Feasibility

 An asynchronous reliable broadcast protocol for b = 3, secure against t < n/2 corruptions.

Impossibility

In the asynchronous setting, there is no protocol achieving () reliable broadcast secure against $t \ge \frac{b-1}{b+1}n$ corruptions.

Feasibility

- An asynchronous reliable broadcast protocol for b = 3, secure against t < n/2 corruptions.
- An asynchronous reliable broadcast protocol, secure against $t < \frac{b-4}{b-2}n$ corruptions.

Impossibility

In the asynchronous setting, there is no protocol achieving () reliable broadcast secure against $t \ge \frac{b-1}{b+1}n$ corruptions.

Feasibility

- An asynchronous reliable broadcast protocol for b = 3, secure against t < n/2 corruptions.
- An asynchronous reliable broadcast protocol, secure against $t < \frac{b-4}{b-2}n$ corruptions.
- A nonstop reliable broadcast protocol, secure against $t < \frac{b-1}{b+1}n$ corruptions.

Impossibility

In the asynchronous setting, there is no protocol achieving (nonstop) reliable broadcast secure against $t \ge \frac{b-1}{b+1}n$ corruptions.

• 3-cast channels among any 3 parties.

• 3-cast channels among any 3 parties.

• P mega-sends m:

P sends m to every pair of recipients via 3-cast.

$$\underbrace{\underbrace{\circ}}_{P} m \underbrace{}_{m} \underbrace{(\star, \star)}$$

• 3-cast channels among any 3 parties.

• P mega-sends m:

 ${\cal P}$ sends m to every pair of recipients via 3-cast.

• R mega-receives m from P:

 ${\cal R}$ received m from ${\cal P}$ through all the available 3-cast channels.

$$(R,\star)$$
 p $m \bigoplus_{P} m \bigoplus_{P} m$

• 3-cast channels among any 3 parties.

• P mega-sends m:

 ${\cal P}$ sends m to every pair of recipients via 3-cast.

- R mega-receives m from P: R received m from P through all the available 3-cast channels.
- R mega-receives m from $P \implies R'$ receives m from P.

$$(R,\star) \bigoplus_{P} m \bigoplus_{P} \Longrightarrow (R,R') \bigoplus_{P} m \bigoplus_{P} m$$

Code for Sender S

① On input m: mega-send (MSG, m)

Code for Sender S

- 1 On input m:mega-send (MSG, m)
- Code for Recipient R_i

```
\mathbf{mega-send}~(\mathtt{READY},\mathbf{m})
```


Code for Sender S

1 On input m:mega-send (MSG, m)

Code for Recipient R_i

 $\textbf{When mega-receiving (MSG, m)} \\ from S or when receiving \\ (READY, m) from t + 1 recipients: \\ mega-send (READY, m) \\$

- Code for Sender S
 - ① On input m: mega-send (MSG, m)
- Code for Recipient R_i
 - $\textbf{When mega-receiving (MSG, m)} \\ from S or when receiving \\ (READY, m) from t + 1 recipients: \\ mega-send (READY, m) \\$
 - 2 When mega-receiving (READY, m) from n - t - 1 recipients and (READY, m) was mega-sent: output m and terminate

Validity: t < n - t

Code for Sender S

On input m: mega-send (MSG, m)

Code for Recipient R_i

- When mega-receiving (MSG, m) from S or when receiving (READY, m) from t + 1 recipients: mega-send (READY, m)
- When mega-receiving (READY, m) from n t 1 recipients and (READY, m) was mega-sent:
 output m and terminate

Honest Sender's input: m

Fact:

Honest R cannot mega-send (READY, m')

- $\implies R \text{ mega-sends } (\texttt{READY}, m)$
- $\implies R \text{ outputs } m$

Consistency: t < n - t

Code for Sender S

 On input m: mega-send (MSG, m)

Code for Recipient R_i

- When mega-receiving (MSG, m) from S or when receiving (READY, m) from t + 1 recipients: mega-send (READY, m)
- When mega-receiving (READY, m) from n t 1 recipients and (READY, m) was mega-sent:
 output m and terminate

Fact #1: An honest R mega-sends (READY, m) \implies No honest R' mega-sends (READY, m')

 \implies No honest R' outputs m'

Fact #2: An honest R outputs m \implies Any honest R' mega-sends (READY, m)

 \implies Any honest R' outputs m

• Model $\mathcal{N}_{\mathbf{b}}$ (b > 3): b-cast channels among every group of b parties.

- Model $\mathcal{N}_{\mathbf{b}}$ (b > 3): b-cast channels among every group of b parties.
- Goal when b = 3: t < n t
- Goal when b > 3: $t \ge n t$

- Model $\mathcal{N}_{\mathbf{b}}$ (b > 3): b-cast channels among every group of b parties.
- Goal when b = 3: t < n t
- Goal when b > 3: $t \ge n t$

- Model $\mathcal{N}_{\mathbf{b}}$ (b > 3): b-cast channels among every group of b parties.
- Goal when b = 3: t < n t
- Goal when b > 3: $t \ge n t$

 \implies Levels of confidence

Initially, S forwards his input m to every group of b-1 recipients.

Initially, S forwards his input m to every group of b-1 recipients.

• R_1 **1-receives** m:

 R_1 receives m from S through all the available b-cast channels.

 $(R_1, \star, \star, \star, ..., \star, \star)$

Initially, S forwards his input m to every group of b-1 recipients.

• R_1 **1-receives** m:

 R_1 receives m from S through all the available b-cast channels.

$$(R_1, \star, \star, \star, ..., \star, \star)$$

• R_2 **2-receives** m:

 R_2 receives *m* from *S* through all the *b*-cast channels shared with one other recipient R_1 .

$$(R_1, R_2, \star, \star, ..., \star, \star)$$

Initially, S forwards his input m to every group of b-1 recipients.

• R_1 **1-receives** m:

 R_1 receives m from S through all the available b-cast channels.

$$(R_1, \star, \star, \star, ..., \star, \star)$$

• R_2 **2-receives** m:

 R_2 receives *m* from *S* through all the *b*-cast channels shared with one other recipient R_1 .

$$(R_1, R_2, \star, \star, ..., \star, \star)$$

• R_{b-1} (b - 1)-receives m:

 R_{b-1} receives *m* from *S* through all the *b*-cast channels shared with **b** - **2** other recipients R_1, \ldots, R_{b-2} .

$$(R_1, R_2, R_3, R_4, ..., R_{b-2}, R_{b-1})$$

 R_k k-receives m: R_k receives m from S through all the available b-cast channels shared with k-1 other recipients $R_1, R_2, \ldots, R_{k-1}$.

$$(R_1, R_2, ..., R_{k-1}, R_k, \star, \star, ..., \star)$$

 \implies Any recipient R (k+1)-receives m.

 $(R_1, R_2, ..., R_{k-1}, R_k, R, \star, ..., \star)$

 R_k k-receives m: R_k receives m from S through all the available b-cast channels shared with k-1 other recipients $R_1, R_2, \ldots, R_{k-1}$.

$$(R_1, R_2, ..., R_{k-1}, R_k, \star, \star, ..., \star)$$

 \implies It is possible that $R \in \{R_1, ..., R_{k-1}\}$ (k-1)-receives m.

 $(R_1, R_2, \dots, R_{k-1}, \overline{R_k} \star, \star, \star, \dots, \star)$

For a message m, we build the following levels:

• Level 1: recipients that 1-receive m and believe that S is honest.

For a message m, we build the following levels:

- Level 1: recipients that 1-receive m and believe that S is honest.
- Level 2: recipients that 2-receive *m* and *believe* that someone on level 1 is honest and terminated with output *m*.

For a message m, we build the following levels:

- Level 1: recipients that 1-receive m and believe that S is honest.
- Level 2: recipients that 2-receive *m* and *believe* that someone on level 1 is honest and terminated with output *m*.

• Level k: recipients that k-receive m and believe that someone on level k - 1 is honest and terminated with output m.

For a message m, we build the following levels:

- Level 1: recipients that 1-receive m and believe that S is honest.
- Level 2: recipients that 2-receive *m* and *believe* that someone on level 1 is honest and terminated with output *m*.

• Level k: recipients that k-receive m and believe that someone on level k - 1 is honest and terminated with output m.

• Level b: recipients that do not receive m, but believe that someone on level b-1 is honest and terminated with output m.

Level 1

When a recipient 1-receives m, it places itself on level 1 and sends notifications to the other recipients.

Level 1

Level 1

The recipients on level 1 output m if there are n - t recipients that sent notifications for level 1.

Level 1

Levels 1 and 2

If a recipient 2-receives m and receives notifications for level 1 from n-t recipients, it sends notifications for level 2 and outputs m.

Levels 2 and 3

If a recipient 3-receives m and receives n-t notifications for level 1 and at least one for 2, it places itself on level 3 and sends notifications.

Levels 2 and 3

When there are n - t recipients that sent notifications for levels 2 and 3, the recipients on level 3 output m.

Levels 3 and 4

Levels 3 and 4

Different Outputs?

t must be small enough such that the honest recipients cannot place themselves on levels for different messages.

Summary

Can we achieve asynchronous reliable broadcast secure against more than t < n/3 corruptions by assuming b-cast channels? Yes!

What is the trade-off between the strength of the communication network and the corruptive power of the adversary?

- There is no protocol achieving (nonstop) reliable broadcast secure against $t \ge \frac{b-1}{b+1}n$ corruptions in the asynchronous setting.
- An **optimal** reliable broadcast protocol for b = 3.
- An **almost optimal** reliable broadcast protocol.
- An **optimal** *nonstop* reliable broadcast protocol.